Optimizing scipy.spatial.Delaunay.find_simplex - python

I have a set of points in a plane where each point has an associated altitude. I'm thinking of using the scipy.spatial library to compute the Delaunay triangulation of the point set and then use the result to interpolate for the points in between.
The library implements a nice function that, given a point, finds the triangle it lies in. This would be particularly useful when calculating the depth map from the mesh. I assume though (please do correct me if I'm wrong) that the search function searches from the same starting point every time it is called. Since the points I will be looking for will tend to lie either on the triangle the previous one lied on or on an adjacent one, I figure that's unneccessary, but can't seem to find a way to optimize the search, other than to implement it myself.
Is there a way to set the initial triangle for the search, or to optimize the depth map calculation otherwise?

You can try point in location test, especially Kirkpatrick algorithm/data structure. Basically you subdivide the mesh in both axis and re-triangulate it. A better and simpler solution is to give each triangle a color and draw a bitmap then check the color of the bitmap with the point.

Related

How to check if a 2D point is inside or outside a 2D Closed Bezier Curve using Python?

Hello,
in my 2d software i have two inputs available:
an array of XY points
[(x,y),(1,1),(2,2),(2,3),(-1,3),...]
and another matrix representing the closed 2D bezier curve handles
[((x,y),(x,y),(x,y)),
((-1,-1),(1,1),(1,2)),
((1,1),(2,2),(2,3)),
...]
How can i check if a point is inside or outside the given curve using python ? using preferably numpy maybe
I don't know how the theory of Bezier curves, so if your second list of points is a kind of compressed way to represent a Bezier curve, first try to sample some points of the curve with the precision you want.
So you have n points of your curve, and then you can apply a simple PIP algorithm : https://en.wikipedia.org/wiki/Point_in_polygon
I can explain in details later if you want to know how to do it programmatically.
I cant write code right here, because I need the entire program to understand properly, however I may provide two approaches how to do that.
The hardest way is to approximate each Bézier curve by a polyline. And then, according to the wiki you can use two techniques:
Ray casting algorithm: the shorthand of the algorithm: You put a ray, which starting from a point and goes through the entire polygon to an another point. Some lines lies inside a polygon, some outside. And then you check to which line belongs a specific point Looks like this:
Winding number algorithm: A little bit about winding numbers. So if a winding number is non-zero, the point lies inside the polygon
The huge drawback of this approach is that the accuracy depends on how close you approximated a curve to a polyline.
The second way is to use a bitmap. For example, you set your points to the white then render the area under the curve to the black and see if your points remain white. This method is more accurate and the fastest one, because you can use the GPU for the render.
And some links related to the first a approach:
https://pomax.github.io/bezierinfo/#intersections
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node80.html

Compute distance between combinations of points in a grid

I am looking for an efficient solution to the following problem. This should work with python, but does not have to be in python.
I have a 2D matrix, each element of the matrix represents a point in a 2D, orthogonal grid. I want to compute the shortest distance between couples of points in the grid. This would be trivial if there were no "obstacles" in the grid.
A figure helps explaining:
Each cell in the figure is one element of the matrix (the matrix is square, but it could be rectangular). Gray cells are obstacles, any path between two points must go around them. The green cells are those I am interested in. I am not interested in red cells, but a path can go trough them.
The distance between points like A and B is trivial to compute, but how to compute the path between A and C as shown in the figure?
I have read about the A* algorithm, but since I am working with a rather big grid, generally (few hundred) x (few hundred), I was wondering if there is a smarter alternative. Remember: I have to find the distance between all couples of "green cells", not just between two of them. If I have n green cells, I will have a number of combinations equal to the binomial coefficient (n 2).
The grid is fixed, I have to compute all the distances once and them use them in further calculations, say accessing them based on the relevant indices in the matrix.
Note: the problem is NOT this one, were coordinates are in a list. My 2D coordinates are organised in a 2D grid and the question is about exploiting this aspect for having a more efficient algorithm.
I suppose the most straightforward solution would be the Floyd-Warshall algorithm, which computes the shortest distances between all pairs of nodes in a graph. This doesn't necessarily exploit the fact that you happen to have a 2D grid (it could work on other kinds of graphs too), but it should work fine. The fact that you do have a 2D grid may enable you to implement it more efficiently than if you had to write an implementation for any arbitrary graph (e.g. you can just store distances as they're computed in a matrix, instead of some less efficient data structure).
The regular version only produces the distances of all shortest paths as output, and doesn't actually store the paths themselves as output. There's additional info on the wikipedia page on how to modify the algorithm to enable you to efficiently reconstruct paths if necessary.
Intuitively, I suspect more efficient implementations may be possible which do exploit the fact that you have a 2D grid, probably using ideas from Rectangular Symmetry Reduction and/or Jump Point Search. Both of those ideas are traditionally used with A* for single-pair pathfinding queries though, I'm not aware of any work using them for all-pair shortest path computations. My intuition says they can be exploited there too, but in the time it'll take to figure that out exactly and implement it correctly, you can probably much more easily implement and run Floyd-Warshall.

How to determine and extract surface points of 3D object?

I have a 3D object which is not hollow, so there are many 3D points. How would you determine which of these points of such an object (especially with a very curvaceous surface) are on the surface? I understand how to extract them, but I need either a function somewhat like libraryUNK.surfacePoint... Which I don't know.
Or better an understanding of what is considered to be a surface point, which I don't know either and couldn't (yet) develop (for myself) any proper definition.
I know I can do triangulation to get the surface. But I don't get what to do next, as I will be left now with a set of triangles, some of which are on the surface, some of which are not... but again I have no definition how to consider what's on surface and what is not...
It seems to me that you want to compute the convex hull of your 3D points cloud.
It's not an easy problem, but there's plently of solutions (and algorithms) to do that. One of the efficients one is called "convex hull". There's a ConvexHull function in scipy.spatial.
Here is the details with an example (2D, but it works in any dimension)
http://scipy.github.io/devdocs/generated/scipy.spatial.ConvexHull.html
This function use the QHull library
http://www.qhull.org/
There's plently of ressources on the QHull page. There's also a Wikipedia page (Again, this is not the only method to compute convex hulls, you may want to try others):
https://en.wikipedia.org/wiki/Quickhull
Edit: after re-reading the question, it seems your volume may not be convex. Unfortunately, if it isn't, there's no way to tell whether a point is inside the volume or in the surface without additional informations on the volume or on the points cloud.

Pipeline to create Voronoi Meshes

I would like to implement a Maya plugin (this question is independent from Maya) to create 3D Voronoi patterns, Something like
I just know that I have to start from point sampling (I implemented the adaptive poisson sampling algorithm described in this paper).
I thought that, from those points, I should create the 3D wire of the mesh applying Voronoi but the result was something different from what I expected.
Here are a few example of what I get handling the result i get from scipy.spatial.Voronoi like this (as suggested here):
vor = Voronoi(points)
for vpair in vor.ridge_vertices:
for i in range(len(vpair) - 1):
if all(x >= 0 for x in vpair):
v0 = vor.vertices[vpair[i]]
v1 = vor.vertices[vpair[i+1]]
create_line(v0.tolist(), v1.tolist())
The grey vertices are the sampled points (the original shape was a simple sphere):
Here is a more complex shape (an arm)
I am missing something? Can anyone suggest the proper pipeline and algorithms I have to implement to create such patterns?
I saw your question since you posted it but didn’t have a real answer for you, however as I see you still didn’t get any response I’ll at least write down some ideas from me. Unfortunately it’s still not a full solution for your problem.
For me it seems you’re mixing few separate problems in this question so it would help to break it down to few pieces:
Voronoi diagram:
The diagram is by definition infinite, so when you draw it directly you should expect a similar mess you’ve got on your second image, so this seems fine. I don’t know how the SciPy does that, but the implementation I’ve used flagged some edge ends as ‘infinite’ and provided me the edges direction, so I could clip it at some distance by myself. You’ll need to check the exact data you get from SciPy.
In the 3D world you’ll almost always want to remove such infinite areas to get any meaningful rendering, or at least remove the area that contains your camera.
Points generation:
The Poisson disc is fine as some sample data or for early R&D but it’s also the most boring one :). You’ll need more ways to generate input points.
I tried to imagine the input needed for your ball-like example and I came up with something like this:
Create two spheres of points, with the same center but different radius.
When you create a Voronoi diagram out of it and remove infinite areas you should end up with something like a football ball.
If you created both spheres randomly you’ll get very irregular boundaries of the ‘ball’, but if you scale the points of one sphere, to use for the 2nd one you should get a regular mesh, similar to ball. You can also use similar points, but add some random offset to control the level of surface irregularity.
Get your computed diagram and for each edge create few points along this edge - this will give you small areas building up the edges of bigger areas. Play with random offsets again. Try to ignore edges, that doesn't touch any infinite region to get result similar to your image.
Get the points from both stages and compute the diagram once more.
Mesh generation:
Up to now it didn’t look like your target images. In fact it may be really hard to do it with production quality (for a Maya plugin) but I see some tricks that may help.
What I would try first would be to get all my edges and extrude some circle along them. You may modulate circle size to make it slightly bigger at the ends. Then do Boolean ‘OR’ between all those meshes and some Mesh Smooth at the end.
This way may give you similar results but you’ll need to be careful at mesh intersections, they can get ugly and need some special treatment.

Image registration using python and cross-correlation

I got two images showing exaktly the same content: 2D-gaussian-shaped spots. I call these two 16-bit png-files "left.png" and "right.png". But as they are obtained thru an slightly different optical setup, the corresponding spots (physically the same) appear at slightly different positions. Meaning the right is slightly stretched, distorted, or so, in a non-linear way. Therefore I would like to get the transformation from left to right.
So for every pixel on the left side with its x- and y-coordinate I want a function giving me the components of the displacement-vector that points to the corresponding pixel on the right side.
In a former approach I tried to get the positions of the corresponding spots to obtain the relative distances deltaX and deltaY. These distances then I fitted to the taylor-expansion up to second order of T(x,y) giving me the x- and y-component of the displacement vector for every pixel (x,y) on the left, pointing to corresponding pixel (x',y') on the right.
To get a more general result I would like to use normalized cross-correlation. For this I multiply every pixelvalue from left with a corresponding pixelvalue from right and sum over these products. The transformation I am looking for should connect the pixels that will maximize the sum. So when the sum is maximzied, I know that I multiplied the corresponding pixels.
I really tried a lot with this, but didn't manage. My question is if somebody of you has an idea or has ever done something similar.
import numpy as np
import Image
left = np.array(Image.open('left.png'))
right = np.array(Image.open('right.png'))
# for normalization (http://en.wikipedia.org/wiki/Cross-correlation#Normalized_cross-correlation)
left = (left - left.mean()) / left.std()
right = (right - right.mean()) / right.std()
Please let me know if I can make this question more clear. I still have to check out how to post questions using latex.
Thank you very much for input.
[left.png] http://i.stack.imgur.com/oSTER.png
[right.png] http://i.stack.imgur.com/Njahj.png
I'm afraid, in most cases 16-bit images appear just black (at least on systems I use) :( but of course there is data in there.
UPDATE 1
I try to clearify my question. I am looking for a vector-field with displacement-vectors that point from every pixel in left.png to the corresponding pixel in right.png. My problem is, that I am not sure about the constraints I have.
where vector r (components x and y) points to a pixel in left.png and vector r-prime (components x-prime and y-prime) points to the corresponding pixel in right.png. for every r there is a displacement-vector.
What I did earlier was, that I found manually components of vector-field d and fitted them to a polynom second degree:
So I fitted:
and
Does this make sense to you? Is it possible to get all the delta-x(x,y) and delta-y(x,y) with cross-correlation? The cross-correlation should be maximized if the corresponding pixels are linked together thru the displacement-vectors, right?
UPDATE 2
So the algorithm I was thinking of is as follows:
Deform right.png
Get the value of cross-correlation
Deform right.png further
Get the value of cross-correlation and compare to value before
If it's greater, good deformation, if not, redo deformation and do something else
After maximzied the cross-correlation value, know what deformation there is :)
About deformation: could one do first a shift along x- and y-direction to maximize cross-correlation, then in a second step stretch or compress x- and y-dependant and in a third step deform quadratic x- and y-dependent and repeat this procedure iterativ?? I really have a problem to do this with integer-coordinates. Do you think I would have to interpolate the picture to obtain a continuous distribution?? I have to think about this again :( Thanks to everybody for taking part :)
OpenCV (and with it the python Opencv binding) has a StarDetector class which implements this algorithm.
As an alternative you might have a look at the OpenCV SIFT class, which stands for Scale Invariant Feature Transform.
Update
Regarding your comment, I understand that the "right" transformation will maximize the cross-correlation between the images, but I don't understand how you choose the set of transformations over which to maximize. Maybe if you know the coordinates of three matching points (either by some heuristics or by choosing them by hand), and if you expect affinity, you could use something like cv2.getAffineTransform to have a good initial transformation for your maximization process. From there you could use small additional transformations to have a set over which to maximize. But this approach seems to me like re-inventing something which SIFT could take care of.
To actually transform your test image you can use cv2.warpAffine, which also can take care of border values (e.g. pad with 0). To calculate the cross-correlation you could use scipy.signal.correlate2d.
Update
Your latest update did indeed clarify some points for me. But I think that a vector field of displacements is not the most natural thing to look for, and this is also where the misunderstanding came from. I was thinking more along the lines of a global transformation T, which applied to any point (x,y) of the left image gives (x',y')=T(x,y) on the right side, but T has the same analytical form for every pixel. For example, this could be a combination of a displacement, rotation, scaling, maybe some perspective transformation. I cannot say whether it is realistic or not to hope to find such a transformation, this depends on your setup, but if the scene is physically the same on both sides I would say it is reasonable to expect some affine transformation. This is why I suggested cv2.getAffineTransform. It is of course trivial to calculate your displacement Vector field from such a T, as this is just T(x,y)-(x,y).
The big advantage would be that you have only very few degrees of freedom for your transformation, instead of, I would argue, 2N degrees of freedom in the displacement vector field, where N is the number of bright spots.
If it is indeed an affine transformation, I would suggest some algorithm like this:
identify three bright and well isolated spots on the left
for each of these three spots, define a bounding box so that you can hope to identify the corresponding spot within it in the right image
find the coordinates of the corresponding spots, e.g. with some correlation method as implemented in cv2.matchTemplate or by also just finding the brightest spot within the bounding box.
once you have three matching pairs of coordinates, calculate the affine transformation which transforms one set into the other with cv2.getAffineTransform.
apply this affine transformation to the left image, as a check if you found the right one you could calculate if the overall normalized cross-correlation is above some threshold or drops significantly if you displace one image with respect to the other.
if you wish and still need it, calculate the displacement vector field trivially from your transformation T.
Update
It seems cv2.getAffineTransform expects an awkward input data type 'float32'. Let's assume the source coordinates are (sxi,syi) and destination (dxi,dyi) with i=0,1,2, then what you need is
src = np.array( ((sx0,sy0),(sx1,sy1),(sx2,sy2)), dtype='float32' )
dst = np.array( ((dx0,dy0),(dx1,dy1),(dx2,dy2)), dtype='float32' )
result = cv2.getAffineTransform(src,dst)
I don't think a cross correlation is going to help here, as it only gives you a single best shift for the whole image. There are three alternatives I would consider:
Do a cross correlation on sub-clusters of dots. Take, for example, the three dots in the top right and find the optimal x-y shift through cross-correlation. This gives you the rough transform for the top left. Repeat for as many clusters as you can to obtain a reasonable map of your transformations. Fit this with your Taylor expansion and you might get reasonably close. However, to have your cross-correlation work in any way, the difference in displacement between spots must be less than the extend of the spot, else you can never get all spots in a cluster to overlap simultaneously with a single displacement. Under these conditions, option 2 might be more suitable.
If the displacements are relatively small (which I think is a condition for option 1), then we might assume that for a given spot in the left image, the closest spot in the right image is the corresponding spot. Thus, for every spot in the left image, we find the nearest spot in the right image and use that as the displacement in that location. From the 40-something well distributed displacement vectors we can obtain a reasonable approximation of the actual displacement by fitting your Taylor expansion.
This is probably the slowest method, but might be the most robust if you have large displacements (and option 2 thus doesn't work): use something like an evolutionary algorithm to find the displacement. Apply a random transformation, compute the remaining error (you might need to define this as sum of the smallest distance between spots in your original and transformed image), and improve your transformation with those results. If your displacements are rather large you might need a very broad search as you'll probably get lots of local minima in your landscape.
I would try option 2 as it seems your displacements might be small enough to easily associate a spot in the left image with a spot in the right image.
Update
I assume your optics induce non linear distortions and having two separate beampaths (different filters in each?) will make the relationship between the two images even more non-linear. The affine transformation PiQuer suggests might give a reasonable approach but can probably never completely cover the actual distortions.
I think your approach of fitting to a low order Taylor polynomial is fine. This works for all my applications with similar conditions. Highest orders probably should be something like xy^2 and x^2y; anything higher than that you won't notice.
Alternatively, you might be able to calibrate the distortions for each image first, and then do your experiments. This way you are not dependent on the distribution of you dots, but can use a high resolution reference image to get the best description of your transformation.
Option 2 above still stands as my suggestion for getting the two images to overlap. This can be fully automated and I'm not sure what you mean when you want a more general result.
Update 2
You comment that you have trouble matching dots in the two images. If this is the case, I think your iterative cross-correlation approach may not be very robust either. You have very small dots, so overlap between them will only occur if the difference between the two images is small.
In principle there is nothing wrong with your proposed solution, but whether it works or not strongly depends on the size of your deformations and the robustness of your optimization algorithm. If you start off with very little overlap, then it may be hard to find a good starting point for your optimization. Yet if you have sufficient overlap to begin with, then you should have been able to find the deformation per dot first, but in a comment you indicate that this doesn't work.
Perhaps you can go for a mixed solution: find the cross correlation of clusters of dots to get a starting point for your optimization, and then tweak the deformation using something like the procedure you describe in your update. Thus:
For a NxN pixel segment find the shift between the left and right images
Repeat for, say, 16 of those segments
Compute an approximation of the deformation using those 16 points
Use this as the starting point of your optimization approach
You might want to have a look at bunwarpj which already does what you're trying to do. It's not python but I use it in exactly this context. You can export a plain text spline transformation and use it if you wish to do so.

Categories