Related
I have a code to write and I need to create a sepia filter for my image. I came up with this but it is not the result that I need to have my image made with the color (159,85,30) that is not exactly the right sepia filter.
#FILTRE SÉPIA
from PIL import Image
Chateau = Image.open("Chateau.png")
Taille = Chateau.size
Chateau_Sepia = Image.new("RGB", (Taille))
for x in range (0, Taille[0]):
for y in range (0, Taille[1]):
Pixel = Chateau.getpixel((x, y))
R = Pixel[0]
G = Pixel[1]
B = Pixel[2]
taux_rouge = int(0.393 * R + 0.769 * G + 0.189 * B)
taux_vert = int(0.349 * R + 0.686 * G + 0.168 * B)
taux_bleu = int(0.272 * R + 0.534 * G + 0.131 * B)
if taux_rouge > 255:
taux_rouge = 255
if taux_vert > 255:
taux_vert = 255
if taux_bleu > 255:
taux_bleu = 255
Chateau_Sepia.putpixel((x, y), (taux_rouge, taux_vert, taux_bleu))
Chateau_Sepia.save("Chateau Sépia.png")
Chateau_Sepia.show()
for your problem try add the alpha channel and play with this value to get the tone you want.
Chateau_Sepia.putpixel((x, y), (taux_rouge, taux_vert, taux_bleu, 255))
I would like to apply a simple algebraic operation to the RBG values of an image, that I have loaded via PIL. My current version works, but is slow:
from PIL import Image
import numpy as np
file_name = '1'
im = Image.open('data/' + file_name + '.jpg').convert('RGB')
pixels = np.array(im)
s = pixels.shape
p = pixels.reshape((s[0] * s[1], s[2]))
def update(ratio=0.5):
p2 = np.array([[min(rgb[0] + rgb[0] * ratio, 1), max(rgb[1] - rgb[1] * ratio, 0), rgb[2]] for rgb in p])
img = Image.fromarray(np.uint8(p2.reshape(s)))
img.save('result/' + file_name + '_test.png')
return 0
update(0.5)
Has someone a more efficient idea?
Make use of NumPy's vectorized operations to get rid of the loop.
I modified your original approach to compare performance between the following, different solutions. Also, I added a PIL only approach using ImageMath, if you want to get rid of NumPy completely.
Furthermore, I assume, there is/was a bug:
p2 = np.array([[min(rgb[0] + rgb[0] * ratio, 1), max(rgb[1] - rgb[1] * ratio, 0), rgb[2]] for rgb in p])
You actually do NOT convert to float, so it should be 255 instead of 1 in the min call.
Here's, what I've done:
import numpy as np
from PIL import Image, ImageMath
import time
# Modified, original implementation; fixed most likely wrong compare value in min (255 instead of 1)
def update_1(ratio=0.5):
pixels = np.array(im)
s = pixels.shape
p = pixels.reshape((s[0] * s[1], s[2]))
p2 = np.array([[min(rgb[0] + rgb[0] * ratio, 255), max(rgb[1] - rgb[1] * ratio, 0), rgb[2]] for rgb in p])
img = Image.fromarray(np.uint8(p2.reshape(s)))
img.save('result_update_1.png')
return 0
# More efficient vectorized approach using NumPy
def update_2(ratio=0.5):
pixels = np.array(im)
pixels[:, :, 0] = np.minimum(pixels[:, :, 0] * (1 + ratio), 255)
pixels[:, :, 1] = np.maximum(pixels[:, :, 1] * (1 - ratio), 0)
img = Image.fromarray(pixels)
img.save('result_update_2.png')
return 0
# More efficient approach only using PIL
def update_3(ratio=0.5):
(r, g, b) = im.split()
r = ImageMath.eval('min(float(r) / 255 * (1 + ratio), 1) * 255', r=r, ratio=ratio).convert('L')
g = ImageMath.eval('max(float(g) / 255 * (1 - ratio), 0) * 255', g=g, ratio=ratio).convert('L')
Image.merge('RGB', (r, g, b)).save('result_update_3.png')
return 0
im = Image.open('path/to/your/image.png')
t1 = time.perf_counter()
update_1(0.5)
print(time.perf_counter() - t1)
t1 = time.perf_counter()
update_2(0.5)
print(time.perf_counter() - t1)
t1 = time.perf_counter()
update_3(0.5)
print(time.perf_counter() - t1)
The performance on a [400, 400] RGB image on my machine:
1.723889293 s # your approach
0.055316339 s # vectorized NumPy approach
0.062502050 s # PIL only approach
Hope that helps!
I have two images, one with and other without alpha channel. Thus, image A and B has a shape of (x,y,4) and (x,y,3) respectively.
I want to merge both images in a single tensor using python, where B is the background and A is the upper image. The final image must have a shape of (x, y, 3). I tried if scikit-image or cv2 is capable of doing this, but I couldn't found any solution.
here is alpha blending in python
import numpy as np
import cv2
alpha = 0.4
img1 = cv2.imread('Desert.jpg')
img2 = cv2.imread('Penguins.jpg')
#r,c,z = img1.shape
out_img = np.zeros(img1.shape,dtype=img1.dtype)
out_img[:,:,:] = (alpha * img1[:,:,:]) + ((1-alpha) * img2[:,:,:])
'''
# if want to loop over the whole image
for y in range(r):
for x in range(c):
out_img[y,x,0] = (alpha * img1[y,x,0]) + ((1-alpha) * img2[y,x,0])
out_img[y,x,1] = (alpha * img1[y,x,1]) + ((1-alpha) * img2[y,x,1])
out_img[y,x,2] = (alpha * img1[y,x,2]) + ((1-alpha) * img2[y,x,2])
'''
cv2.imshow('Output',out_img)
cv2.waitKey(0)
The above solution works, however I have a more efficient one:
alpha = A[:,:,3]
A1 = A[:,:,:3]
C = np.multiply(A1, alpha.reshape(x,y,1)) + np.multiply(B, 1-alpha.reshape(x,y,1))
In tensorflow, I would like to rotate an image from a random angle, for data augmentation. But I don't find this transformation in the tf.image module.
This can be done in tensorflow now:
tf.contrib.image.rotate(images, degrees * math.pi / 180, interpolation='BILINEAR')
Because I wanted to be able to rotate tensors I came up with the following piece of code, which rotates a [height, width, depth] tensor by a given angle:
def rotate_image_tensor(image, angle, mode='black'):
"""
Rotates a 3D tensor (HWD), which represents an image by given radian angle.
New image has the same size as the input image.
mode controls what happens to border pixels.
mode = 'black' results in black bars (value 0 in unknown areas)
mode = 'white' results in value 255 in unknown areas
mode = 'ones' results in value 1 in unknown areas
mode = 'repeat' keeps repeating the closest pixel known
"""
s = image.get_shape().as_list()
assert len(s) == 3, "Input needs to be 3D."
assert (mode == 'repeat') or (mode == 'black') or (mode == 'white') or (mode == 'ones'), "Unknown boundary mode."
image_center = [np.floor(x/2) for x in s]
# Coordinates of new image
coord1 = tf.range(s[0])
coord2 = tf.range(s[1])
# Create vectors of those coordinates in order to vectorize the image
coord1_vec = tf.tile(coord1, [s[1]])
coord2_vec_unordered = tf.tile(coord2, [s[0]])
coord2_vec_unordered = tf.reshape(coord2_vec_unordered, [s[0], s[1]])
coord2_vec = tf.reshape(tf.transpose(coord2_vec_unordered, [1, 0]), [-1])
# center coordinates since rotation center is supposed to be in the image center
coord1_vec_centered = coord1_vec - image_center[0]
coord2_vec_centered = coord2_vec - image_center[1]
coord_new_centered = tf.cast(tf.pack([coord1_vec_centered, coord2_vec_centered]), tf.float32)
# Perform backward transformation of the image coordinates
rot_mat_inv = tf.dynamic_stitch([[0], [1], [2], [3]], [tf.cos(angle), tf.sin(angle), -tf.sin(angle), tf.cos(angle)])
rot_mat_inv = tf.reshape(rot_mat_inv, shape=[2, 2])
coord_old_centered = tf.matmul(rot_mat_inv, coord_new_centered)
# Find nearest neighbor in old image
coord1_old_nn = tf.cast(tf.round(coord_old_centered[0, :] + image_center[0]), tf.int32)
coord2_old_nn = tf.cast(tf.round(coord_old_centered[1, :] + image_center[1]), tf.int32)
# Clip values to stay inside image coordinates
if mode == 'repeat':
coord_old1_clipped = tf.minimum(tf.maximum(coord1_old_nn, 0), s[0]-1)
coord_old2_clipped = tf.minimum(tf.maximum(coord2_old_nn, 0), s[1]-1)
else:
outside_ind1 = tf.logical_or(tf.greater(coord1_old_nn, s[0]-1), tf.less(coord1_old_nn, 0))
outside_ind2 = tf.logical_or(tf.greater(coord2_old_nn, s[1]-1), tf.less(coord2_old_nn, 0))
outside_ind = tf.logical_or(outside_ind1, outside_ind2)
coord_old1_clipped = tf.boolean_mask(coord1_old_nn, tf.logical_not(outside_ind))
coord_old2_clipped = tf.boolean_mask(coord2_old_nn, tf.logical_not(outside_ind))
coord1_vec = tf.boolean_mask(coord1_vec, tf.logical_not(outside_ind))
coord2_vec = tf.boolean_mask(coord2_vec, tf.logical_not(outside_ind))
coord_old_clipped = tf.cast(tf.transpose(tf.pack([coord_old1_clipped, coord_old2_clipped]), [1, 0]), tf.int32)
# Coordinates of the new image
coord_new = tf.transpose(tf.cast(tf.pack([coord1_vec, coord2_vec]), tf.int32), [1, 0])
image_channel_list = tf.split(2, s[2], image)
image_rotated_channel_list = list()
for image_channel in image_channel_list:
image_chan_new_values = tf.gather_nd(tf.squeeze(image_channel), coord_old_clipped)
if (mode == 'black') or (mode == 'repeat'):
background_color = 0
elif mode == 'ones':
background_color = 1
elif mode == 'white':
background_color = 255
image_rotated_channel_list.append(tf.sparse_to_dense(coord_new, [s[0], s[1]], image_chan_new_values,
background_color, validate_indices=False))
image_rotated = tf.transpose(tf.pack(image_rotated_channel_list), [1, 2, 0])
return image_rotated
for tensorflow 2.0:
import tensorflow_addons as tfa
tfa.image.transform_ops.rotate(image, radian)
Rotation and cropping in TensorFlow
I personally needed image rotation and cropping out black borders functions in TensorFlow as below.
And I could implement this function as below.
def _rotate_and_crop(image, output_height, output_width, rotation_degree, do_crop):
"""Rotate the given image with the given rotation degree and crop for the black edges if necessary
Args:
image: A `Tensor` representing an image of arbitrary size.
output_height: The height of the image after preprocessing.
output_width: The width of the image after preprocessing.
rotation_degree: The degree of rotation on the image.
do_crop: Do cropping if it is True.
Returns:
A rotated image.
"""
# Rotate the given image with the given rotation degree
if rotation_degree != 0:
image = tf.contrib.image.rotate(image, math.radians(rotation_degree), interpolation='BILINEAR')
# Center crop to ommit black noise on the edges
if do_crop == True:
lrr_width, lrr_height = _largest_rotated_rect(output_height, output_width, math.radians(rotation_degree))
resized_image = tf.image.central_crop(image, float(lrr_height)/output_height)
image = tf.image.resize_images(resized_image, [output_height, output_width], method=tf.image.ResizeMethod.BILINEAR, align_corners=False)
return image
def _largest_rotated_rect(w, h, angle):
"""
Given a rectangle of size wxh that has been rotated by 'angle' (in
radians), computes the width and height of the largest possible
axis-aligned rectangle within the rotated rectangle.
Original JS code by 'Andri' and Magnus Hoff from Stack Overflow
Converted to Python by Aaron Snoswell
Source: http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders
"""
quadrant = int(math.floor(angle / (math.pi / 2))) & 3
sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
alpha = (sign_alpha % math.pi + math.pi) % math.pi
bb_w = w * math.cos(alpha) + h * math.sin(alpha)
bb_h = w * math.sin(alpha) + h * math.cos(alpha)
gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)
delta = math.pi - alpha - gamma
length = h if (w < h) else w
d = length * math.cos(alpha)
a = d * math.sin(alpha) / math.sin(delta)
y = a * math.cos(gamma)
x = y * math.tan(gamma)
return (
bb_w - 2 * x,
bb_h - 2 * y
)
If you need further implementation of example and visualization in TensorFlow, you can use this repository.
I hope this could be helpful to other people.
Update: see #astromme's answer below. Tensorflow now supports rotating images natively.
What you can do while there is no native method in tensorflow is something like this:
from PIL import Image
sess = tf.InteractiveSession()
# Pass image tensor object to a PIL image
image = Image.fromarray(image.eval())
# Use PIL or other library of the sort to rotate
rotated = Image.Image.rotate(image, degrees)
# Convert rotated image back to tensor
rotated_tensor = tf.convert_to_tensor(np.array(rotated))
tf.contrib is not available in tensorflow 2.
For tensorflow >= 2.* the following can be used:
tf.keras.preprocessing.image.random_rotation(x, rg, row_axis=1,col_axis=2, channel_axis=0,fill_mode='nearest', cval=0., interpolation_order=1);
you can find the documantation here:
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/random_rotation
Here's the #zimmermc answer updated to Tensorflow v0.12
Changes:
pack() is now stack()
order of split parameters reversed
def rotate_image_tensor(image, angle, mode='white'):
"""
Rotates a 3D tensor (HWD), which represents an image by given radian angle.
New image has the same size as the input image.
mode controls what happens to border pixels.
mode = 'black' results in black bars (value 0 in unknown areas)
mode = 'white' results in value 255 in unknown areas
mode = 'ones' results in value 1 in unknown areas
mode = 'repeat' keeps repeating the closest pixel known
"""
s = image.get_shape().as_list()
assert len(s) == 3, "Input needs to be 3D."
assert (mode == 'repeat') or (mode == 'black') or (mode == 'white') or (mode == 'ones'), "Unknown boundary mode."
image_center = [np.floor(x/2) for x in s]
# Coordinates of new image
coord1 = tf.range(s[0])
coord2 = tf.range(s[1])
# Create vectors of those coordinates in order to vectorize the image
coord1_vec = tf.tile(coord1, [s[1]])
coord2_vec_unordered = tf.tile(coord2, [s[0]])
coord2_vec_unordered = tf.reshape(coord2_vec_unordered, [s[0], s[1]])
coord2_vec = tf.reshape(tf.transpose(coord2_vec_unordered, [1, 0]), [-1])
# center coordinates since rotation center is supposed to be in the image center
coord1_vec_centered = coord1_vec - image_center[0]
coord2_vec_centered = coord2_vec - image_center[1]
coord_new_centered = tf.cast(tf.stack([coord1_vec_centered, coord2_vec_centered]), tf.float32)
# Perform backward transformation of the image coordinates
rot_mat_inv = tf.dynamic_stitch([[0], [1], [2], [3]], [tf.cos(angle), tf.sin(angle), -tf.sin(angle), tf.cos(angle)])
rot_mat_inv = tf.reshape(rot_mat_inv, shape=[2, 2])
coord_old_centered = tf.matmul(rot_mat_inv, coord_new_centered)
# Find nearest neighbor in old image
coord1_old_nn = tf.cast(tf.round(coord_old_centered[0, :] + image_center[0]), tf.int32)
coord2_old_nn = tf.cast(tf.round(coord_old_centered[1, :] + image_center[1]), tf.int32)
# Clip values to stay inside image coordinates
if mode == 'repeat':
coord_old1_clipped = tf.minimum(tf.maximum(coord1_old_nn, 0), s[0]-1)
coord_old2_clipped = tf.minimum(tf.maximum(coord2_old_nn, 0), s[1]-1)
else:
outside_ind1 = tf.logical_or(tf.greater(coord1_old_nn, s[0]-1), tf.less(coord1_old_nn, 0))
outside_ind2 = tf.logical_or(tf.greater(coord2_old_nn, s[1]-1), tf.less(coord2_old_nn, 0))
outside_ind = tf.logical_or(outside_ind1, outside_ind2)
coord_old1_clipped = tf.boolean_mask(coord1_old_nn, tf.logical_not(outside_ind))
coord_old2_clipped = tf.boolean_mask(coord2_old_nn, tf.logical_not(outside_ind))
coord1_vec = tf.boolean_mask(coord1_vec, tf.logical_not(outside_ind))
coord2_vec = tf.boolean_mask(coord2_vec, tf.logical_not(outside_ind))
coord_old_clipped = tf.cast(tf.transpose(tf.stack([coord_old1_clipped, coord_old2_clipped]), [1, 0]), tf.int32)
# Coordinates of the new image
coord_new = tf.transpose(tf.cast(tf.stack([coord1_vec, coord2_vec]), tf.int32), [1, 0])
image_channel_list = tf.split(image, s[2], 2)
image_rotated_channel_list = list()
for image_channel in image_channel_list:
image_chan_new_values = tf.gather_nd(tf.squeeze(image_channel), coord_old_clipped)
if (mode == 'black') or (mode == 'repeat'):
background_color = 0
elif mode == 'ones':
background_color = 1
elif mode == 'white':
background_color = 255
image_rotated_channel_list.append(tf.sparse_to_dense(coord_new, [s[0], s[1]], image_chan_new_values,
background_color, validate_indices=False))
image_rotated = tf.transpose(tf.stack(image_rotated_channel_list), [1, 2, 0])
return image_rotated
For rotating an image or a batch of images counter-clockwise by multiples of 90 degrees, you can use tf.image.rot90(image,k=1,name=None).
k denotes the number of 90 degrees rotations you want to make.
In case of a single image, image is a 3-D Tensor of shape [height, width, channels] and in case of a batch of images, image is a 4-D Tensor of shape [batch, height, width, channels]
Hi I am creating a program that replaces a face in a image with someone else's face. However, I am stuck on trying to insert the new face into the original, larger image. I have researched ROI and addWeight(needs the images to be the same size) but I haven't found a way to do this in python. Any advise is great. I am new to opencv.
I am using the following test images:
smaller_image:
larger_image:
Here is my Code so far... a mixer of other samples:
import cv2
import cv2.cv as cv
import sys
import numpy
def detect(img, cascade):
rects = cascade.detectMultiScale(img, scaleFactor=1.1, minNeighbors=3, minSize=(10, 10), flags = cv.CV_HAAR_SCALE_IMAGE)
if len(rects) == 0:
return []
rects[:,2:] += rects[:,:2]
return rects
def draw_rects(img, rects, color):
for x1, y1, x2, y2 in rects:
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
if __name__ == '__main__':
if len(sys.argv) != 2: ## Check for error in usage syntax
print "Usage : python faces.py <image_file>"
else:
img = cv2.imread(sys.argv[1],cv2.CV_LOAD_IMAGE_COLOR) ## Read image file
if (img == None):
print "Could not open or find the image"
else:
cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
gray = cv2.cvtColor(img, cv.CV_BGR2GRAY)
gray = cv2.equalizeHist(gray)
rects = detect(gray, cascade)
## Extract face coordinates
x1 = rects[0][3]
y1 = rects[0][0]
x2 = rects[0][4]
y2 = rects[0][5]
y=y2-y1
x=x2-x1
## Extract face ROI
faceROI = gray[x1:x2, y1:y2]
## Show face ROI
cv2.imshow('Display face ROI', faceROI)
small = cv2.imread("average_face.png",cv2.CV_LOAD_IMAGE_COLOR)
print "here"
small=cv2.resize(small, (x, y))
cv2.namedWindow('Display image') ## create window for display
cv2.imshow('Display image', small) ## Show image in the window
print "size of image: ", img.shape ## print size of image
cv2.waitKey(1000)
A simple way to achieve what you want:
import cv2
s_img = cv2.imread("smaller_image.png")
l_img = cv2.imread("larger_image.jpg")
x_offset=y_offset=50
l_img[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1]] = s_img
Update
I suppose you want to take care of the alpha channel too. Here is a quick and dirty way of doing so:
s_img = cv2.imread("smaller_image.png", -1)
y1, y2 = y_offset, y_offset + s_img.shape[0]
x1, x2 = x_offset, x_offset + s_img.shape[1]
alpha_s = s_img[:, :, 3] / 255.0
alpha_l = 1.0 - alpha_s
for c in range(0, 3):
l_img[y1:y2, x1:x2, c] = (alpha_s * s_img[:, :, c] +
alpha_l * l_img[y1:y2, x1:x2, c])
Using #fireant's idea, I wrote up a function to handle overlays. This works well for any position argument (including negative positions).
def overlay_image_alpha(img, img_overlay, x, y, alpha_mask):
"""Overlay `img_overlay` onto `img` at (x, y) and blend using `alpha_mask`.
`alpha_mask` must have same HxW as `img_overlay` and values in range [0, 1].
"""
# Image ranges
y1, y2 = max(0, y), min(img.shape[0], y + img_overlay.shape[0])
x1, x2 = max(0, x), min(img.shape[1], x + img_overlay.shape[1])
# Overlay ranges
y1o, y2o = max(0, -y), min(img_overlay.shape[0], img.shape[0] - y)
x1o, x2o = max(0, -x), min(img_overlay.shape[1], img.shape[1] - x)
# Exit if nothing to do
if y1 >= y2 or x1 >= x2 or y1o >= y2o or x1o >= x2o:
return
# Blend overlay within the determined ranges
img_crop = img[y1:y2, x1:x2]
img_overlay_crop = img_overlay[y1o:y2o, x1o:x2o]
alpha = alpha_mask[y1o:y2o, x1o:x2o, np.newaxis]
alpha_inv = 1.0 - alpha
img_crop[:] = alpha * img_overlay_crop + alpha_inv * img_crop
Example usage:
import numpy as np
from PIL import Image
# Prepare inputs
x, y = 50, 0
img = np.array(Image.open("img_large.jpg"))
img_overlay_rgba = np.array(Image.open("img_small.png"))
# Perform blending
alpha_mask = img_overlay_rgba[:, :, 3] / 255.0
img_result = img[:, :, :3].copy()
img_overlay = img_overlay_rgba[:, :, :3]
overlay_image_alpha(img_result, img_overlay, x, y, alpha_mask)
# Save result
Image.fromarray(img_result).save("img_result.jpg")
Result:
If you encounter errors or unusual outputs, please ensure:
img should not contain an alpha channel. (e.g. If it is RGBA, convert to RGB first.)
img_overlay has the same number of channels as img.
Based on fireant's excellent answer above, here is the alpha blending but a bit more human legible. You may need to swap 1.0-alpha and alpha depending on which direction you're merging (mine is swapped from fireant's answer).
o* == s_img.*
b* == b_img.*
for c in range(0,3):
alpha = s_img[oy:oy+height, ox:ox+width, 3] / 255.0
color = s_img[oy:oy+height, ox:ox+width, c] * (1.0-alpha)
beta = l_img[by:by+height, bx:bx+width, c] * (alpha)
l_img[by:by+height, bx:bx+width, c] = color + beta
Here it is:
def put4ChannelImageOn4ChannelImage(back, fore, x, y):
rows, cols, channels = fore.shape
trans_indices = fore[...,3] != 0 # Where not transparent
overlay_copy = back[y:y+rows, x:x+cols]
overlay_copy[trans_indices] = fore[trans_indices]
back[y:y+rows, x:x+cols] = overlay_copy
#test
background = np.zeros((1000, 1000, 4), np.uint8)
background[:] = (127, 127, 127, 1)
overlay = cv2.imread('imagee.png', cv2.IMREAD_UNCHANGED)
put4ChannelImageOn4ChannelImage(background, overlay, 5, 5)
A simple function that blits an image front onto an image back and returns the result. It works with both 3 and 4-channel images and deals with the alpha channel. Overlaps are handled as well.
The output image has the same size as back, but always 4 channels.
The output alpha channel is given by (u+v)/(1+uv) where u,v are the alpha channels of the front and back image and -1 <= u,v <= 1. Where there is no overlap with front, the alpha value from back is taken.
import cv2
def merge_image(back, front, x,y):
# convert to rgba
if back.shape[2] == 3:
back = cv2.cvtColor(back, cv2.COLOR_BGR2BGRA)
if front.shape[2] == 3:
front = cv2.cvtColor(front, cv2.COLOR_BGR2BGRA)
# crop the overlay from both images
bh,bw = back.shape[:2]
fh,fw = front.shape[:2]
x1, x2 = max(x, 0), min(x+fw, bw)
y1, y2 = max(y, 0), min(y+fh, bh)
front_cropped = front[y1-y:y2-y, x1-x:x2-x]
back_cropped = back[y1:y2, x1:x2]
alpha_front = front_cropped[:,:,3:4] / 255
alpha_back = back_cropped[:,:,3:4] / 255
# replace an area in result with overlay
result = back.copy()
print(f'af: {alpha_front.shape}\nab: {alpha_back.shape}\nfront_cropped: {front_cropped.shape}\nback_cropped: {back_cropped.shape}')
result[y1:y2, x1:x2, :3] = alpha_front * front_cropped[:,:,:3] + (1-alpha_front) * back_cropped[:,:,:3]
result[y1:y2, x1:x2, 3:4] = (alpha_front + alpha_back) / (1 + alpha_front*alpha_back) * 255
return result
For just add an alpha channel to s_img I just use cv2.addWeighted before the line
l_img[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1]] = s_img
as following:
s_img=cv2.addWeighted(l_img[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1]],0.5,s_img,0.5,0)
When attempting to write to the destination image using any of these answers above and you get the following error:
ValueError: assignment destination is read-only
A quick potential fix is to set the WRITEABLE flag to true.
img.setflags(write=1)
A simple 4on4 pasting function that works-
def paste(background,foreground,pos=(0,0)):
#get position and crop pasting area if needed
x = pos[0]
y = pos[1]
bgWidth = background.shape[0]
bgHeight = background.shape[1]
frWidth = foreground.shape[0]
frHeight = foreground.shape[1]
width = bgWidth-x
height = bgHeight-y
if frWidth<width:
width = frWidth
if frHeight<height:
height = frHeight
# normalize alpha channels from 0-255 to 0-1
alpha_background = background[x:x+width,y:y+height,3] / 255.0
alpha_foreground = foreground[:width,:height,3] / 255.0
# set adjusted colors
for color in range(0, 3):
fr = alpha_foreground * foreground[:width,:height,color]
bg = alpha_background * background[x:x+width,y:y+height,color] * (1 - alpha_foreground)
background[x:x+width,y:y+height,color] = fr+bg
# set adjusted alpha and denormalize back to 0-255
background[x:x+width,y:y+height,3] = (1 - (1 - alpha_foreground) * (1 - alpha_background)) * 255
return background
I reworked #fireant's concept to allow for optional alpha masks and allow any x or y, including values outside of the bounds of the image. It will crop to the bounds.
def overlay_image_alpha(img, img_overlay, x, y, alpha_mask=None):
"""Overlay `img_overlay` onto `img` at (x, y) and blend using optional `alpha_mask`.
`alpha_mask` must have same HxW as `img_overlay` and values in range [0, 1].
"""
if y < 0 or y + img_overlay.shape[0] > img.shape[0] or x < 0 or x + img_overlay.shape[1] > img.shape[1]:
y_origin = 0 if y > 0 else -y
y_end = img_overlay.shape[0] if y < 0 else min(img.shape[0] - y, img_overlay.shape[0])
x_origin = 0 if x > 0 else -x
x_end = img_overlay.shape[1] if x < 0 else min(img.shape[1] - x, img_overlay.shape[1])
img_overlay_crop = img_overlay[y_origin:y_end, x_origin:x_end]
alpha = alpha_mask[y_origin:y_end, x_origin:x_end] if alpha_mask is not None else None
else:
img_overlay_crop = img_overlay
alpha = alpha_mask
y1 = max(y, 0)
y2 = min(img.shape[0], y1 + img_overlay_crop.shape[0])
x1 = max(x, 0)
x2 = min(img.shape[1], x1 + img_overlay_crop.shape[1])
img_crop = img[y1:y2, x1:x2]
img_crop[:] = alpha * img_overlay_crop + (1.0 - alpha) * img_crop if alpha is not None else img_overlay_crop