I am planning to use Linear Regression in Spark. To get started, I checked out the example from the official documentation (which you can find here)
I also found this question on stackoverflow, which is essentially the same question as mine. The answer suggest to tweak the step size, which I also tried to do, however the results are still as random as without tweaking the step size. The code I'm using looks like this:
from pyspark.mllib.regression import LabeledPoint, LinearRegressionWithSGD, LinearRegressionModel
# Load and parse the data
def parsePoint(line):
values = [float(x) for x in line.replace(',', ' ').split(' ')]
return LabeledPoint(values[0], values[1:])
data = sc.textFile("data/mllib/ridge-data/lpsa.data")
parsedData = data.map(parsePoint)
# Build the model
model = LinearRegressionWithSGD.train(parsedData,100000,0.01)
# Evaluate the model on training data
valuesAndPreds = parsedData.map(lambda p: (p.label, model.predict(p.features)))
MSE = valuesAndPreds.map(lambda (v, p): (v - p)**2).reduce(lambda x, y: x + y) / valuesAndPreds.count()
print("Mean Squared Error = " + str(MSE))
The results look as follows:
(Expected Label, Predicted Label)
(-0.4307829, -0.7824231588143065)
(-0.1625189, -0.6234287565006766)
(-0.1625189, -0.41979307020176226)
(-0.1625189, -0.6517649080382241)
(0.3715636, -0.38543073492870156)
(0.7654678, -0.7329426818746223)
(0.8544153, -0.33273378445315)
(1.2669476, -0.36663240056848917)
(1.2669476, -0.47541427992967517)
(1.2669476, -0.1887811811672498)
(1.3480731, -0.28646712964591936)
(1.446919, -0.3425075015127807)
(1.4701758, -0.14055275401870437)
(1.4929041, -0.06819303631450688)
(1.5581446, -0.772558163357755)
(1.5993876, -0.19251656391040356)
(1.6389967, -0.38105697301968594)
(1.6956156, -0.5409707504639943)
(1.7137979, 0.14914490255841997)
(1.8000583, -0.0008818203337740971)
(1.8484548, 0.06478505759587616)
(1.8946169, -0.0685096804502884)
(1.9242487, -0.14607596025743624)
(2.008214, -0.24904211817187422)
(2.0476928, -0.4686214015035236)
(2.1575593, 0.14845590638215034)
(2.1916535, -0.5140996125798528)
(2.2137539, 0.6278134417345228)
(2.2772673, -0.35049969044209983)
(2.2975726, -0.06036824276546304)
(2.3272777, -0.18585219083806218)
(2.5217206, -0.03167349168036536)
(2.5533438, -0.1611040092884861)
(2.5687881, 1.1032200139582564)
(2.6567569, 0.04975777739217784)
(2.677591, -0.01426285133724671)
(2.7180005, 0.07853368755223371)
(2.7942279, -0.4071930969456503)
(2.8063861, 0.000492545291049501)
(2.8124102, -0.019947344959659177)
(2.8419982, 0.03023139779978133)
(2.8535925, 0.5421291261646886)
(2.9204698, 0.3923068894170366)
(2.9626924, 0.21639267973240908)
(2.9626924, -0.22540434628281075)
(2.9729753, 0.2363938458250126)
(3.0130809, 0.35136961387278565)
(3.0373539, 0.013876918415846595)
(3.2752562, 0.49970959078043126)
(3.3375474, 0.5436323480304672)
(3.3928291, 0.48746004196839055)
(3.4355988, 0.3350764608584778)
(3.4578927, 0.6127634045652381)
(3.5160131, -0.03781697409079157)
(3.5307626, 0.2129806543371961)
(3.5652984, 0.5528805608876549)
(3.5876769, 0.06299042506665305)
(3.6309855, 0.5648082098866389)
(3.6800909, -0.1588172848952902)
(3.7123518, 0.1635062564072022)
(3.9843437, 0.7827244309795267)
(3.993603, 0.6049246406551748)
(4.029806, 0.06372113813964088)
(4.1295508, 0.24281029469705093)
(4.3851468, 0.5906868686740623)
(4.6844434, 0.4055055537895428)
(5.477509, 0.7335244827296759)
Mean Squared Error = 6.83550847274
So, what am I missing? Since the data is from the official spark documentation, I would guess that it should be suited to apply linear regression on it (and get at least a reasonably good prediction)?
For starters you're missing an intercept. While mean values of the independent variables are close to zero:
parsedData.map(lambda lp: lp.features).mean()
## DenseVector([-0.031, -0.0066, 0.1182, -0.0199, 0.0178, -0.0249,
## -0.0294, 0.0669]
mean of the dependent variable is pretty far from it:
parsedData.map(lambda lp: lp.label).mean()
## 2.452345085074627
Forcing the regression line to go through the origin in case like this doesn't make sense. So lets see how LinearRegressionWithSGD performs with default arguments and added intercept:
model = LinearRegressionWithSGD.train(parsedData, intercept=True)
valuesAndPreds = (parsedData.map(lambda p: (p.label, model.predict(p.features))))
valuesAndPreds.map(lambda vp: (vp[0] - vp[1]) ** 2).mean()
## 0.44005904185432504
Lets compare it to the analytical solution
import numpy as np
from sklearn import linear_model
features = np.array(parsedData.map(lambda lp: lp.features.toArray()).collect())
labels = np.array(parsedData.map(lambda lp: lp.label).collect())
lm = linear_model.LinearRegression()
lm.fit(features, labels)
np.mean((lm.predict(features) - labels) ** 2)
## 0.43919976805833411
As you can results obtained using LinearRegressionWithSGD are almost optimal.
You could add a grid search but in this particular case there is probably nothing to gain.
Related
I am trying to create a multiple linear regression model from scratch in python. Dataset used: Boston Housing Dataset from Sklearn. Since my focus was on the model building I did not perform any pre-processing steps on the data. However, I used an OLS model to calculate p-values and dropped 3 features from the data. After that, I used a Linear Regression model to find out the weights for each feature.
import pandas as pd
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression
X=load_boston()
data=pd.DataFrame(X.data,columns=X.feature_names)
y=X.target
data.head()
#dropping three features
data=data.drop(['INDUS','NOX','AGE'],axis=1)
#new shape of the data (506,10) not including the target variable
#Passed the whole dataset to Linear Regression Model
model_lr=LinearRegression()
model_lr.fit(data,y)
model_lr.score(data,y)
0.7278959820021539
model_lr.intercept_
22.60536462807957 #----- intercept value
model_lr.coef_
array([-0.09649731, 0.05281081, 2.3802989 , 3.94059598, -1.05476566,
0.28259531, -0.01572265, -0.75651996, 0.01023922, -0.57069861]) #--- coefficients
Now I wanted to calculate the coefficients manually in excel before creating the model in python. To calculate the weights of each feature I used this formula:
Calculating the Weights of the Features
To calculate the intercept I used the formula
b0 = mean(y)-b1*mean(x1)-b2*(mean(x2)....-bn*mean(xn)
The intercept value from my calculations was 22.63551387(almost same to that of the model)
The problem is that the weights of the features from my calculation are far off from that of the sklearn linear model.
-0.002528644 #-- CRIM
-0.001028914 #-- Zn
-0.038663314 #-- CHAS
-0.035026972 #-- RM
-0.014275311 #-- DIS
-0.004058291 #-- RAD
-0.000241103 #-- TAX
-0.015035534 #-- PTRATIO
-0.000318376 #-- B
-0.006411897 #-- LSTAT
Using the first row as a test data to check my calculations, I get 22.73167044199992 while the Linear Regression model predicts 30.42657776. The original value is 24.
But as soon as I check for other rows the sklearn model is having more variation while the predictions made by the weights from my calculations are all showing values close to 22.
I think I am making a mistake in calculating the weights, but I am not sure where the problem is? Is there a mistake in my calculation? Why are all my coefficients from the calculations so close to 0?
Here is my Code for Calculating the coefficients:(beginner here)
x_1=[]
x_2=[]
for i,j in zip(data['CRIM'],y):
mean_x=data['CRIM'].mean()
mean_y=np.mean(y)
c=i-mean_x*(j-mean_y)
d=(i-mean_x)**2
x_1.append(c)
x_2.append(d)
print(sum(x_1)/sum(x_2))
Thank you for reading this long post, I appreciate it.
It seems like the trouble lies in the coefficient calculation. The formula you have given for calculating the coefficients is in scalar form, used for the simplest case of linear regression, namely with only one feature x.
EDIT
Now after seeing your code for the coefficient calculation, the problem is clearer.
You cannot use this equation to calculate the coefficients of each feature independent of each other, as each coefficient will depend on all the features. I suggest you take a look at the derivation of the solution to this least squares optimization problem in the simple case here and in the general case here. And as a general tip stick with matrix implementation whenever you can, as this is radically more efficient.
However, in this case we have a 10-dimensional feature vector, and so in matrix notation it becomes.
See derivation here
I suspect you made some computational error here, as implementing this in python using the scalar formula is more tedious and untidy than the matrix equivalent. But since you haven't shared this peace of your code its hard to know.
Here's an example of how you would implement it:
def calc_coefficients(X,Y):
X=np.mat(X)
Y = np.mat(Y)
return np.dot((np.dot(np.transpose(X),X))**(-1),np.transpose(np.dot(Y,X)))
def score_r2(y_pred,y_true):
ss_tot=np.power(y_true-y_true.mean(),2).sum()
ss_res = np.power(y_true -y_pred,2).sum()
return 1 -ss_res/ss_tot
X = np.ones(shape=(506,11))
X[:,1:] = data.values
B=calc_coefficients(X,y)
##### Coeffcients
B[:]
matrix([[ 2.26053646e+01],
[-9.64973063e-02],
[ 5.28108077e-02],
[ 2.38029890e+00],
[ 3.94059598e+00],
[-1.05476566e+00],
[ 2.82595310e-01],
[-1.57226536e-02],
[-7.56519964e-01],
[ 1.02392192e-02],
[-5.70698610e-01]])
#### Intercept
B[0]
matrix([[22.60536463]])
y_pred = np.dot(np.transpose(B),np.transpose(X))
##### First 5 rows predicted
np.array(y_pred)[0][:5]
array([30.42657776, 24.80818347, 30.69339701, 29.35761397, 28.6004966 ])
##### First 5 rows Ground Truth
y[:5]
array([24. , 21.6, 34.7, 33.4, 36.2])
### R^2 score
score_r2(y_pred,y)
0.7278959820021539
Complete Solution - 2020 - boston dataset
As the other said, to compute the coefficients for the linear regression you have to compute
β = (X^T X)^-1 X^T y
This give you the coefficients ( all B for the feature + the intercept ).
Be sure to add a column with all 1ones to the X for compute the intercept(more in the code)
Main.py
from sklearn.datasets import load_boston
import numpy as np
from CustomLibrary import CustomLinearRegression
from CustomLibrary import CustomMeanSquaredError
boston = load_boston()
X = np.array(boston.data, dtype="f")
Y = np.array(boston.target, dtype="f")
regression = CustomLinearRegression()
regression.fit(X, Y)
print("Projection matrix sk:", regression.coefficients, "\n")
print("bias sk:", regression.intercept, "\n")
Y_pred = regression.predict(X)
loss_sk = CustomMeanSquaredError(Y, Y_pred)
print("Model performance:")
print("--------------------------------------")
print("MSE is {}".format(loss_sk))
print("\n")
CustomLibrary.py
import numpy as np
class CustomLinearRegression():
def __init__(self):
self.coefficients = None
self.intercept = None
def fit(self, x , y):
x = self.add_one_column(x)
x_T = np.transpose(x)
inverse = np.linalg.inv(np.dot(x_T, x))
pseudo_inverse = inverse.dot(x_T)
coef = pseudo_inverse.dot(y)
self.intercept = coef[0]
self.coefficients = coef[1:]
return coef
def add_one_column(self, x):
'''
the fit method with x feature return x coefficients ( include the intercept)
so for have the intercept + x feature coefficients we have to add one column ( in the beginning )
with all 1ones
'''
X = np.ones(shape=(x.shape[0], x.shape[1] +1))
X[:, 1:] = x
return X
def predict(self, x):
predicted = np.array([])
for sample in x:
result = self.intercept
for idx, feature_value_in_sample in enumerate(sample):
result += feature_value_in_sample * self.coefficients[idx]
predicted = np.append(predicted, result)
return predicted
def CustomMeanSquaredError(Y, Y_pred):
mse = 0
for idx,data in enumerate(Y):
mse += (data - Y_pred[idx])**2
return mse * (1 / len(Y))
I have fitted a logisitic regression model to some data, everything is working great. I need to calculate the wald statistic which is a function of the model result.
My problem is that I do not understand, from the documentation, what the wald test requires as input? Specifically what is the R matrix and how is it generated?
I tried simply inputting the data I used to train and test the model as the R matrix, but I do not think this is correct. The documentation suggest examining the examples however none give an example of this test. I also asked the same question on crossvalidated but got shot down.
Kind regards
http://statsmodels.sourceforge.net/0.6.0/generated/statsmodels.discrete.discrete_model.LogitResults.wald_test.html#statsmodels.discrete.discrete_model.LogitResults.wald_test
The Wald test is used to test if a predictor is significant or not, of the form:
W = (beta_hat - beta_0) / SE(beta_hat) ~ N(0,1)
So somehow you'll want to input the predictors into the test. Judging from the example of the t.test and f.test, it may be simpler to input a string or tuple to indicate what you are testing.
Here is their example using a string for the f.test:
from statsmodels.datasets import longley
from statsmodels.formula.api import ols
dta = longley.load_pandas().data
formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR'
results = ols(formula, dta).fit()
hypotheses = '(GNPDEFL = GNP), (UNEMP = 2), (YEAR/1829 = 1)'
f_test = results.f_test(hypotheses)
print(f_test)
And here is their example using a tuple:
import numpy as np
import statsmodels.api as sm
data = sm.datasets.longley.load()
data.exog = sm.add_constant(data.exog)
results = sm.OLS(data.endog, data.exog).fit()
r = np.zeros_like(results.params)
r[5:] = [1,-1]
T_test = results.t_test(r)
If you're still struggling getting the wald test to work, include your code and I can try to help make it work.
I've been messing around with Random Forest models lately and they are really useful w/ the feature_importance_ attribute!
It would be useful to know which variables are more predictive of particular targets.
For example, what if the 1st and 2nd attributes were more predictive of distringuishing target 0 but the 3rd and 4th attributes were more predictive of target 1?
Is there a way to get the feature_importance_ array for each target separately? With sklearn, scipy, pandas, or numpy preferably.
# Iris dataset
DF_iris = pd.DataFrame(load_iris().data,
index = ["iris_%d" % i for i in range(load_iris().data.shape[0])],
columns = load_iris().feature_names)
Se_iris = pd.Series(load_iris().target,
index = ["iris_%d" % i for i in range(load_iris().data.shape[0])],
name = "Species")
# Import modules
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import train_test_split
# Split Data
X_tr, X_te, y_tr, y_te = train_test_split(DF_iris, Se_iris, test_size=0.3, random_state=0)
# Create model
Mod_rf = RandomForestClassifier(random_state=0)
Mod_rf.fit(X_tr,y_tr)
# Variable Importance
Mod_rf.feature_importances_
# array([ 0.14334485, 0.0264803 , 0.40058315, 0.42959169])
# Target groups
Se_iris.unique()
# array([0, 1, 2])
This is not really how RF works. Since there is no simple "feature voting" (which takes place in linear models) it is really hard to answer the question what "feature X is more predictive for target Y" even means. What feature_importance of RF captures is "how probable is, in general, to use this feature in the decision process". The problem with addressing your question is that if you ask "how probable is, in general, to use this feature in decision process leading to label Y" you would have to pretty much run the same procedure but remove all subtrees which do not contain label Y in a leaf - this way you remove parts of the decision process which do not address the problem "is it Y or not Y" but rather try to answer which "not Y" it is. However, in practice, due to very stochastic nature of RF, cutting its depth etc. this might barely reduce anything. The bad news is also, that I never seen it implemented in any standard RF library, you could do this on your own, just the way I said:
for i = 1 to K (K is number of distinct labels)
tmp_RF = deepcopy(RF)
for tree in tmp_RF:
tree = remove_all_subtrees_that_do_not_contain_given_label(tree, i)
for x in X (X is your dataset)
features_importance[i] += how_many_times_each_feature_is_used(tree, x) / |X|
features_importance[i] /= |tmp_RF|
return features_importance
in particular you could use existing feature_importance codes, simply by doing
for i = 1 to K (K is number of distinct labels)
tmp_RF = deepcopy(RF)
for tree in tmp_RF:
tree = remove_all_subtrees_that_do_not_contain_given_label(tree, i)
features_importance[i] = run_regular_feature_importance(tmp_RF)
return features_importance
The reproducible example to fix the discussion:
from sklearn.linear_model import RidgeCV
from sklearn.datasets import load_boston
from sklearn.preprocessing import scale
boston = scale(load_boston().data)
target = load_boston().target
import numpy as np
alphas = np.linspace(1.0,200.0, 5)
fit0 = RidgeCV(alphas=alphas, store_cv_values = True, gcv_mode='eigen').fit(boston, target)
fit0.alpha_
fit0.cv_values_[:,0]
The question: what formula is used to compute fit0.cv_values_?
Edit:
#Abhinav Arora answer below seems to suggests that fit0.cv_values_[:,0][0], the first entry of fit0.cv_values_[:,0] would be
(fit1.predict(boston[0,].reshape(1, -1)) - target[0])**2
where fit1 is a ridge regression with alpha = 1.0, fitted to the data-set from which observation 0 was removed.
Let's see:
1) create new dataset with first row of original dataset removed:
from sklearn.linear_model import Ridge
boston1 = np.delete(boston, (0), axis=0)
target1 = np.delete(target, (0), axis=0)
2) fit a ridge model with alpha = 1.0 on this truncated dataset:
fit1 = Ridge(alpha=1.0).fit(boston1, target1)
3) check the MSE of that model on the first data-point:
(fit1.predict(boston[0,].reshape(1, -1)) - target[0])**2
it is array([ 37.64650853]) which is not the same as what is produced by the fit0.cv_values_[:,0], ergo:
fit0.cv_values_[:,0][0]
which is 37.495629960571137
What gives?
Quoting from the Sklearn documentation:
Cross-validation values for each alpha (if store_cv_values=True and
cv=None). After fit() has been called, this attribute will contain the
mean squared errors (by default) or the values of the
{loss,score}_func function (if provided in the constructor).
Since you have not provided any scoring function in the constructor and also not provided anything for the cv argument in the constructor, this attribute should store the mean squared error for each sample using Leave-One out cross validation. The general formula for Mean Squared Error is
where the Y (with the cap) is the prediction of your regressor and the other Y is the true value.
In your case, you are doing Leave-One out cross validation. Therefore, in every fold you have only 1 test point and thus n = 1. So, in your case doing a fit0.cv_values_[:,0] will simply give you the squared error for every point in your training data set when it was a part of the test fold and when the value of alpha was 1.0
Hope that helps.
Let's look - it's open source after all
The first call to fit makes a call upwards to its parent, _BaseRidgeCV (line 997, in that implementation). We haven't provided a cross-validation generator, so we make another call upwards to _RidgeGCV.fit. There' plenty of math in the documentation of this function, but we're so close to the source that I'll let you go and read about it.
Here's the actual source
v, Q, QT_y = _pre_compute(X, y)
n_y = 1 if len(y.shape) == 1 else y.shape[1]
cv_values = np.zeros((n_samples * n_y, len(self.alphas)))
C = []
scorer = check_scoring(self, scoring=self.scoring, allow_none=True)
error = scorer is None
for i, alpha in enumerate(self.alphas):
weighted_alpha = (sample_weight * alpha
if sample_weight is not None
else alpha)
if error:
out, c = _errors(weighted_alpha, y, v, Q, QT_y)
else:
out, c = _values(weighted_alpha, y, v, Q, QT_y)
cv_values[:, i] = out.ravel()
C.append(c)
Note the un-exciting pre_compute function
def _pre_compute(self, X, y):
# even if X is very sparse, K is usually very dense
K = safe_sparse_dot(X, X.T, dense_output=True)
v, Q = linalg.eigh(K)
QT_y = np.dot(Q.T, y)
return v, Q, QT_y
Abinav has explained what's going on on a mathematical level -it's simply accumulating the weighted mean squared error. The details of their implementation, and where it differs from your implementation, can be evaluated step-by-step from the code
How to perform stepwise regression in python? There are methods for OLS in SCIPY but I am not able to do stepwise. Any help in this regard would be a great help. Thanks.
Edit: I am trying to build a linear regression model. I have 5 independent variables and using forward stepwise regression, I aim to select variables such that my model has the lowest p-value. Following link explains the objective:
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&ved=0CEAQFjAD&url=http%3A%2F%2Fbusiness.fullerton.edu%2Fisds%2Fjlawrence%2FStat-On-Line%2FExcel%2520Notes%2FExcel%2520Notes%2520-%2520STEPWISE%2520REGRESSION.doc&ei=YjKsUZzXHoPwrQfGs4GQCg&usg=AFQjCNGDaQ7qRhyBaQCmLeO4OD2RVkUhzw&bvm=bv.47244034,d.bmk
Thanks again.
Trevor Smith and I wrote a little forward selection function for linear regression with statsmodels: http://planspace.org/20150423-forward_selection_with_statsmodels/ You could easily modify it to minimize a p-value, or select based on beta p-values with just a little more work.
You may try mlxtend which got various selection methods.
from mlxtend.feature_selection import SequentialFeatureSelector as sfs
clf = LinearRegression()
# Build step forward feature selection
sfs1 = sfs(clf,k_features = 10,forward=True,floating=False, scoring='r2',cv=5)
# Perform SFFS
sfs1 = sfs1.fit(X_train, y_train)
You can make forward-backward selection based on statsmodels.api.OLS model, as shown in this answer.
However, this answer describes why you should not use stepwise selection for econometric models in the first place.
I developed this repository https://github.com/xinhe97/StepwiseSelectionOLS
My Stepwise Selection Classes (best subset, forward stepwise, backward stepwise) are compatible to sklearn. You can do Pipeline and GridSearchCV with my Classes.
The essential part of my code is as follows:
################### Criteria ###################
def processSubset(self, X,y,feature_index):
# Fit model on feature_set and calculate rsq_adj
regr = sm.OLS(y,X[:,feature_index]).fit()
rsq_adj = regr.rsquared_adj
bic = self.myBic(X.shape[0], regr.mse_resid, len(feature_index))
rsq = regr.rsquared
return {"model":regr, "rsq_adj":rsq_adj, "bic":bic, "rsq":rsq, "predictors_index":feature_index}
################### Forward Stepwise ###################
def forward(self,predictors_index,X,y):
# Pull out predictors we still need to process
remaining_predictors_index = [p for p in range(X.shape[1])
if p not in predictors_index]
results = []
for p in remaining_predictors_index:
new_predictors_index = predictors_index+[p]
new_predictors_index.sort()
results.append(self.processSubset(X,y,new_predictors_index))
# Wrap everything up in a nice dataframe
models = pd.DataFrame(results)
# Choose the model with the highest rsq_adj
# best_model = models.loc[models['bic'].idxmin()]
best_model = models.loc[models['rsq'].idxmax()]
# Return the best model, along with model's other information
return best_model
def forwardK(self,X_est,y_est, fK):
models_fwd = pd.DataFrame(columns=["model", "rsq_adj", "bic", "rsq", "predictors_index"])
predictors_index = []
M = min(fK,X_est.shape[1])
for i in range(1,M+1):
print(i)
models_fwd.loc[i] = self.forward(predictors_index,X_est,y_est)
predictors_index = models_fwd.loc[i,'predictors_index']
print(models_fwd)
# best_model_fwd = models_fwd.loc[models_fwd['bic'].idxmin(),'model']
best_model_fwd = models_fwd.loc[models_fwd['rsq'].idxmax(),'model']
# best_predictors = models_fwd.loc[models_fwd['bic'].idxmin(),'predictors_index']
best_predictors = models_fwd.loc[models_fwd['rsq'].idxmax(),'predictors_index']
return best_model_fwd, best_predictors
Statsmodels has additional methods for regression: http://statsmodels.sourceforge.net/devel/examples/generated/example_ols.html. I think it will help you to implement stepwise regression.
"""Importing the api class from statsmodels"""
import statsmodels.formula.api as sm
"""X_opt variable has all the columns of independent variables of matrix X
in this case we have 5 independent variables"""
X_opt = X[:,[0,1,2,3,4]]
"""Running the OLS method on X_opt and storing results in regressor_OLS"""
regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()
regressor_OLS.summary()
Using the summary method, you can check in your kernel the p values of your
variables written as 'P>|t|'. Then check for the variable with the highest p
value. Suppose x3 has the highest value e.g 0.956. Then remove this column
from your array and repeat all the steps.
X_opt = X[:,[0,1,3,4]]
regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()
regressor_OLS.summary()
Repeat these methods until you remove all the columns which have p value higher than the significance value(e.g 0.05). In the end your variable X_opt will have all the optimal variables with p values less than significance level.
Here's a method I just wrote that uses "mixed selection" as described in Introduction to Statistical Learning. As input, it takes:
lm, a statsmodels.OLS.fit(Y,X), where X is an array of n ones, where n is the
number of data points, and Y, where Y is the response in the training data
curr_preds- a list with ['const']
potential_preds- a list of all potential predictors.
There also needs to be a pandas dataframe X_mix that has all of the data, including 'const', and all of the data corresponding to the potential predictors
tol, optional. The max pvalue, .05 if not specified
def mixed_selection (lm, curr_preds, potential_preds, tol = .05):
while (len(potential_preds) > 0):
index_best = -1 # this will record the index of the best predictor
curr = -1 # this will record current index
best_r_squared = lm.rsquared_adj # record the r squared of the current model
# loop to determine if any of the predictors can better the r-squared
for pred in potential_preds:
curr += 1 # increment current
preds = curr_preds.copy() # grab the current predictors
preds.append(pred)
lm_new = sm.OLS(y, X_mix[preds]).fit() # create a model with the current predictors plus an addional potential predictor
new_r_sq = lm_new.rsquared_adj # record r squared for new model
if new_r_sq > best_r_squared:
best_r_squared = new_r_sq
index_best = curr
if index_best != -1: # a potential predictor improved the r-squared; remove it from potential_preds and add it to current_preds
curr_preds.append(potential_preds.pop(index_best))
else: # none of the remaining potential predictors improved the adjust r-squared; exit loop
break
# fit a new lm using the new predictors, look at the p-values
pvals = sm.OLS(y, X_mix[curr_preds]).fit().pvalues
pval_too_big = []
# make a list of all the p-values that are greater than the tolerance
for feat in pvals.index:
if(pvals[feat] > tol and feat != 'const'): # if the pvalue is too large, add it to the list of big pvalues
pval_too_big.append(feat)
# now remove all the features from curr_preds that have a p-value that is too large
for feat in pval_too_big:
pop_index = curr_preds.index(feat)
curr_preds.pop(pop_index)