Python outputs parentheses - python

I'm sorta new to python, and I wanted to try to create a program that finds the slope of two inputted points. I assume I'm doing fine on the math part, but the output part is my problem. This is my code:
import math
x1 = input("x1 = ")
y1 = input("y1 = ")
x2 = input("x2 = ")
y2 = input("y2 = ")
chy = y2 - y1
chx = x2 - x1
slope = 'Slope = ', chy, '/', chx
print (slope)
and this is my expected output:
x1 = 1
y1 = 1
x2 = 2
y2 = 2
Slope = 1/1
and this is my ACTUAL output:
x1 = 1
y1 = 1
x2 = 2
y2 = 2
('Slope = ', 1, '/', 1)
any help?

Right now, slope is a tuple (a sequence of Python objects), which is not what you want. What you want to do is
slope = 'Slope = ' + str(chy) + "/"+ str(chx)
This uses string concatenation (every part is a string, it is all put together).
Alternatively, you can use string formatting.
slope = "Slope = {}/{}".format(chy,chx)

You want string concatenation:
slope = 'Slope = ' + str(chy) + '/' + str(chx)
The + operator is used in Python to concatenate strings. However, it will give an error if you don't convert chy and chx to strings (by using str()), since they currently have numerical values.
Another way to print strings is to use string formatting:
slope = 'Slope = {}/{}'.format(str(chy), str(chx))

Related

Replacing Sympy indexed symbols with numeric values

I have a sympy expression I want to put numerical values in after differentiating it. The variables I want to replace are all the x[i], y[i] and R_abs[i] in the last expression and are numpy arrays a la
rx=np.array([-0.357, -0.742, -1.078, 0.206])
But trying subs or replace either doesn't do anything or raises the error that Symbols dont allow indexation for for example e1.subs(x[1],rx[0]). I pretty much went through every iteration I could think of to no avail.
import sympy as sp
r0,ge_x,ge_y,bx,by = sp.symbols('r0,ge_x,ge_y,bx,by', real=True) #Main symbols
i,x,y,R_abs = sp.symbols('i,x,y,R_abs', real=True) #Helper symbols
n=4
s2=sp.Sum((bx+r0*sp.Indexed('x',i)/sp.Indexed('R_abs',i)+ge_x*sp.Indexed('x',i)+ge_y*sp.Indexed('y',i)-sp.Indexed('x',i))**2+(by+r0*sp.Indexed('y',i)/sp.Indexed('R_abs',i)-ge_x*sp.Indexed('y',i)+ge_y*sp.Indexed('x',i)-sp.Indexed('y',i))**2,(i,1,n))
e1=sp.Eq(sp.diff(s2,bx).doit(),0)
With e1 then being
Eq(8*bx + 2*ge_x*x[1] + 2*ge_x*x[2] + 2*ge_x*x[3] + 2*ge_x*x[4] + 2*ge_y*y[1] + 2*ge_y*y[2] + 2*ge_y*y[3] + 2*ge_y*y[4] + 2*r0*x[4]/R_abs[4] + 2*r0*x[3]/R_abs[3] + 2*r0*x[2]/R_abs[2] + 2*r0*x[1]/R_abs[1] - 2*x[1] - 2*x[2] - 2*x[3] - 2*x[4], 0)
In here I would like to replace all the x, y, and R_abs with their numerical values.
I've always struggled with indexing in SymPy. Turns out, making Function instances are way easier than indexing instances of Symbol. It also makes notation simpler.
Also note that by using strings in your expression, I think SymPy makes its own symbols with those same string names but they can't be accessed with yours since your symbols are different. At least that's what happens sometimes to me.
Here is a working sample:
import sympy as sp
r0, ge_x, ge_y, bx, by = sp.symbols("r0 ge_x ge_y bx by", real=True) # main symbols
# define functions that will take the role of indexed symbols
x = sp.Function("x")
y = sp.Function("y")
R_abs = sp.Function("R_abs")
i = sp.Symbol("i", positive=True, integer=True)
n = 4
s2 = sp.Sum((bx + r0 * x(i) / R_abs(i) + ge_x * x(i) + ge_y * y(i) - x(i)) ** 2 +
(by + r0 * y(i) / R_abs(i) - ge_x * y(i) + ge_y * x(i) - y(i)) ** 2, (i, 1, n))
s2_prime = sp.diff(s2, bx).doit().simplify()
print(s2_prime)
# whatever lists you want. Can even be an instance of `np.ndarray`
# note that you summed from 1 to n so the 0th element will not be used
x_array = [0, 1, 2, 3, 4]
y_array = [4, 3, 2, 1, 0]
R_abs_array = [-10, 10, 5, 4, 3]
# define a function to access these array elements
x_function = lambda index: x_array[index]
y_function = lambda index: y_array[index]
R_abs_function = lambda index: R_abs_array[index]
# no idea why subs does not work and you MUST keep the same name for the variable.
# you can't have for example `evaluated_s2_prime = ...`.
# Probably something to do with forcing sp to remove references to `x`?
s2_prime = s2_prime.replace(x, x_function).replace(y, y_function).replace(R_abs, R_abs_function)
print(s2_prime)
Producing:
8*bx + 2*ge_x*x(1) + 2*ge_x*x(2) + 2*ge_x*x(3) + 2*ge_x*x(4) + 2*ge_y*y(1) + 2*ge_y*y(2) + 2*ge_y*y(3) + 2*ge_y*y(4) + 2*r0*x(4)/R_abs(4) + 2*r0*x(3)/R_abs(3) + 2*r0*x(2)/R_abs(2) + 2*r0*x(1)/R_abs(1) - 2*x(1) - 2*x(2) - 2*x(3) - 2*x(4)
8*bx + 20*ge_x + 12*ge_y + 31*r0/6 - 20

python: changing symbol variable and assign numerical value

In order to calculate derivatives and other expressions I used the sympy package and said that T = sy.Symbol('T') now that I have calculated the right expression:
E= -T**2*F_deriv_T(T,rho)
where
def F_deriv_rho(T,rho):
ret = 0
for n in range(5):
for m in range(4):
inner= c[n,m]*g_rho_deriv_rho_np*g_T_np
ret += inner
return ret
that looks like this:
F_deriv_rho: [0.0 7.76971e-5*T 0.0001553942*T**2*rho
T*(-5.14488e-5*log(rho) - 5.14488e-5)*log(T) + T*(1.22574e-5*log(rho)+1.22574e-5)*log(T) + T*(1.89488e-5*log(rho) + 1.89488e-5)*log(T) + T(2.29441e-5*log(rho) + 2.29441e-5)*log(T) + T*(7.49956e-5*log(rho) + 7.49956e-5)*log(T)
T**2*(-0.0001028976*rho*log(rho) - 5.14488e-5*rho)*log(T) + T**2*(2.45148e-5*rho*log(rho) + 1.22574e-5*rho)*log(T) + T**2*(3.78976e-5*rho*log(rho) + 1.89488e-5*rho)*log(T) + T**2*(4.58882e-5*rho*log(rho) + 2.29441e-5*rho)*log(T) + T**2*(0.0001499912*rho*log(rho) + 7.49956e 5*rho)*log(T)]
with python I would like to change T (and rho) as a symbol to a value. How could I do that?
So, I would like to create 10 numbers like T_def = np.arange(2000, 10000, 800)and exchange all my sy.symbol(T) by iterating through the 10 values I created in the array.
Thanks for your help
I have found the solution according to this post:
How to substitute multiple symbols in an expression in sympy?
by usings "subs":
>>> from sympy import Symbol
>>> x, y = Symbol('x y')
>>> f = x + y
>>> f.subs({x:10, y: 20})
>>> f
30
There's more for this kinda thing here: http://docs.sympy.org/latest/tutorial/basic_operations.html
EDIT: A faster way would be by using "lamdify" as suggested by #Bjoern Dahlgren

Condensing repeat code with a "for" statement using strings - Python

I am very new with "for" statements in Python, and I can't get something that I think should be simple to work. My code that I have is:
import pandas as pd
df1 = pd.DataFrame({'Column1' : pd.Series([1,2,3,4,5,6])})
df2 = pd.DataFrame({'Column1' : pd.Series([1,2,3,4,5,6])})
df3 = pd.DataFrame({'Column1' : pd.Series([1,2,3,4,5,6])})
DF1 = pd.DataFrame({'Column1' : pd.Series([1,2,3,4,5,6])})
DF2 = pd.DataFrame({'Column1' : pd.Series([1,2,3,4,5,6])})
DF3 = pd.DataFrame({'Column1' : pd.Series([1,2,3,4,5,6])})
Then:
A1 = len(df1.loc[df1['Column1'] <= DF1['Column1'].iloc[2]])
Z1 = len(df1.loc[df1['Column1'] >= DF1['Column1'].iloc[3]])
A2 = len(df2.loc[df2['Column1'] <= DF2['Column1'].iloc[2]])
Z2 = len(df2.loc[df2['Column1'] >= DF2['Column1'].iloc[3]])
A3 = len(df3.loc[df3['Column1'] <= DF3['Column1'].iloc[2]])
Z3 = len(df3.loc[df3['Column1'] >= DF3['Column1'].iloc[3]])
As you can see, it is a lot of repeat code with just the identifying numbers being different. So my first attempt at a "for" statement was:
Numbers = [1,2,3]
for i in Numbers:
"A" + str(i) = len("df" + str(i).loc["df" + str(i)['Column1'] <= "DF" + str(i)['Column1'].iloc[2]])
"Z" + str(i) = len("df" + str(i).loc["df" + str(i)['Column1'] >= "DF" + str(i)['Column1'].iloc[3]])
This yielded the SyntaxError: "can't assign to operator". So I tried:
Numbers = [1,2,3]
for i in Numbers:
A = "A" + str(i)
Z = "Z" + str(i)
A = len("df" + str(i).loc["df" + str(i)['Column1'] <= "DF" + str(i)['Column1'].iloc[2]])
Z = len("df" + str(i).loc["df" + str(i)['Column1'] >= "DF" + str(i)['Column1'].iloc[3]])
This yielded the AttributeError: 'str' object has no attribute 'loc'. I tried a few other things like:
Numbers = [1,2,3]
for i in Numbers:
A = "A" + str(i)
Z = "Z" + str(i)
df = "df" + str(i)
DF = "DF" + str(i)
A = len(df.loc[df['Column1'] <= DF['Column1'].iloc[2]])
Z = len(df.loc[df['Column1'] <= DF['Column1'].iloc[3]])
But that just gives me the same errors. Ultimately what I would want is something like:
Numbers = [1,2,3]
for i in Numbers:
Ai = len(dfi.loc[dfi['Column1'] <= DFi['Column1'].iloc[2]])
Zi = len(dfi.loc[dfi['Column1'] <= DFi['Column1'].iloc[3]])
Where the output would be equivalent if I typed:
A1 = len(df1.loc[df1['Column1'] <= DF1['Column1'].iloc[2]])
Z1 = len(df1.loc[df1['Column1'] >= DF1['Column1'].iloc[3]])
A2 = len(df2.loc[df1['Column1'] <= DF2['Column1'].iloc[2]])
Z2 = len(df2.loc[df1['Column1'] >= DF2['Column1'].iloc[3]])
A3 = len(df3.loc[df3['Column1'] <= DF3['Column1'].iloc[2]])
Z3 = len(df3.loc[df3['Column1'] >= DF3['Column1'].iloc[3]])
It is "restricted" to generate variables in for loop (you can do that, but it's better to avoid. See other posts: post_1, post_2).
Instead use this code to achieve your goal without generating as many variables as your needs (actually generate only the values in the for loop):
# Lists of your dataframes
Hanimals = [H26, H45, H46, H47, H51, H58, H64, H65]
Ianimals = [I26, I45, I46, I47, I51, I58, I64, I65]
# Generate your series using for loops iterating through your lists above
BPM = pd.DataFrame({'BPM_Base':pd.Series([i_a for i_a in [len(i_h.loc[i_h['EKG-evt'] <=\
i_i[0].iloc[0]]) / 10 for i_h, i_i in zip(Hanimals, Ianimals)]]),
'BPM_Test':pd.Series([i_z for i_z in [len(i_h.loc[i_h['EKG-evt'] >=\
i_i[0].iloc[-1]]) / 30 for i_h, i_i in zip(Hanimals, Ianimals)]])})
UPDATE
A more efficient way (iterate over "animals" lists only once):
# Lists of your dataframes
Hanimals = [H26, H45, H46, H47, H51, H58, H64, H65]
Ianimals = [I26, I45, I46, I47, I51, I58, I64, I65]
# You don't need using pd.Series(),
# just create a list of tuples: [(A26, Z26), (A45, Z45)...] and iterate over it
BPM = pd.DataFrame({'BPM_Base':i[0], 'BPM_Test':i[1]} for i in \
[(len(i_h.loc[i_h['EKG-evt'] <= i_i[0].iloc[0]]) / 10,
len(i_h.loc[i_h['EKG-evt'] >= i_i[0].iloc[-1]]) / 30) \
for i_h, i_i in zip(Hanimals, Ianimals)])
Figured out a better way to do this that fits my needs. This is mainly so that I will be able to find my method.
# Change/Add animals and conditions here, make sure they match up directly
Animal = ['26','45','46','47','51','58','64','65', '69','72','84']
Cond = ['Stomach','Intestine','Stomach','Stomach','Intestine','Intestine','Intestine','Stomach','Cut','Cut','Cut']
d = []
def CuSO4():
for i in Animal:
# load in Spike data
A = pd.read_csv('TXT/INJ/' + i + '.txt',delimiter=r"\s+", skiprows = 15, header = None, usecols = range(1))
B = pd.read_csv('TXT/EKG/' + i + '.txt', skiprows = 3)
C = pd.read_csv('TXT/ESO/' + i + '.txt', skiprows = 3)
D = pd.read_csv('TXT/TRACH/' + i + '.txt', skiprows = 3)
E = pd.read_csv('TXT/BP/' + i + '.txt', delimiter=r"\s+").rename(columns={"4 BP": "BP"})
# Count number of beats before/after injection, divide by 10/30 minutes for average BPM.
F = len(B.loc[B['EKG-evt'] <= A[0].iloc[0]])/10
G = len(B.loc[B['EKG-evt'] >= A[0].iloc[-1]])/30
# Count number of esophogeal events before/after injection
H = len(C.loc[C['Eso-evt'] <= A[0].iloc[0]])
I = len(C.loc[C['Eso-evt'] >= A[0].iloc[-1]])
# Find Trach events after injection
J = D.loc[D['Trach-evt'] >= A[0].iloc[-1]]
# Count number of breaths before/after injection, divide by 10/30 min for average breaths/min
K = len(D.loc[D['Trach-evt'] <= A[0].iloc[0]])/10
L = len(J)/30
# Use Trach events from J to find the number of EE
M = pd.DataFrame(pybursts.kleinberg(J['Trach-evt'], s=4, gamma=0.1))
N = M.last_valid_index()
# Use N and M to determine the latency, set value to MaxTime (1800s)if EE = 0
O = 1800 if N == 0 else M.iloc[1][1] - A[0].iloc[-1]
# Find BP value before/after injection, then determine the mean value
P = E.loc[E['Time'] <= A[0].iloc[0]]
Q = E.loc[E['Time'] >= A[0].iloc[-1]]
R = P["BP"].mean()
S = Q["BP"].mean()
# Combine all factors into one DF
d.append({'EE' : N, 'EE-lat' : O,
'BPM_Base' : F, 'BPM_Test' : G,
'Eso_Base' : H, 'Eso_Test' : I,
'Trach_Base' : K, 'Trach_Test' : L,
'BP_Base' : R, 'BP_Test' : S})
CuSO4()
# Create shell DF with animal numbers and their conditions.
DF = pd.DataFrame({'Animal' : pd.Series(Animal), 'Cond' : pd.Series(Cond)})
# Pull appended DF from CuSO4 and make it a pd.DF
Df = pd.DataFrame(d)
# Combine the two DF's
df = pd.concat([DF, Df], axis=1)
df

my 2 point distance code returns syntax error in python 3

im really new in python and i wanted to make a code that asks you for the coordinates and returns you the distance between 2 points in the plane. This is my code:
def 2pointdistance(d):
print(d)
xa = int(input("x1?: "))
xaa = int(input("x2?: "))
ya = int(input("y1?: "))
yaa = int(input("y2?: "))
xx = x1 - x2
yy = y1 - y2
xxx = xx ** 2
yyy = yy ** 2
xy = xxx + yyy
d = sqrt(xy)
2pointdistance(d)
hope you could please help me with this, i really liked this language
P.S.: Sorry for my english, im from chile
The function name should not start with the digit
Your whole code (logic) should be in the function, not just a print statement
You define different variables then are actually used
It should be something like
def distance(x1,x2,y1,y2):
xx = x1 - x2
yy = y1 - y2
xxx = xx ** 2
yyy = yy ** 2
xy = xxx + yyy
return sqrt(xy)
x1 = int(input("x1?: "))
x2 = int(input("x2?: "))
y1 = int(input("y1?: "))
y2 = int(input("y2?: "))
print( distance( x1, x2, y1, y2 ) )
2pointdistance is not a valid name for a function. A name should not start with a digit.
The docs explain it in all detail, but the point is that the function name should start with a letter or an underscore.

ValueError: setting an array element with a sequence please

My code is working right except when i enter r1 into the function equation below
def u(Substrate):
return((u_max*ys[:,0])/(Ks+ys[:,0]))
biomass = ys[:,1]
u = u(ys[:,0])
def r1(u,biomass):
r1 = u*biomass*YieldCO2_1
return r1
r1 = r1(u,biomass)
def F(y,t):
Ptot = 710
Vgas = 2
D = 0.00826*(273.15+Temp)
Cstar_CO2 = KH_CO2 * y[2]
Cstar_CH4 = KH_CH4 * y[3]
TG_CO2 = KLa_CO2*(Cstar_CO2-y[0])
TG_CH4 = KLa_CH4*(Cstar_CH4-y[1])
Q_CO2 = -D*V*TG_CO2
Q_CH4 = -D*V*TG_CH4
Qgas = (Q_CO2+Q_CH4)+Q
F=np.zeros(4)
F[0] = Q/V * (CO2_To-y[0]) + TG_CO2 + r1
F[1] = Q/V * (CH4_Do-y[1]) + TG_CH4
F[2] = -Ptot*D*TG_CO2*(V/Vgas)-y[2]*(Qgas/Vgas)
F[3] = -Ptot*D*TG_CH4*(V/Vgas)-y[3]*(Qgas/Vgas)
return F
yinit = np.array([4,3,250,200])
ts = np.arange(0,4,0.4)
y = odeint(F,yinit,ts)
When r1 is seen in equation F[0] I get the following error:
F[0] = Q/V * (CO2_To-y[0]) + TG_CO2 + r1
ValueError: setting an array element with a sequence.
odepack.error: Error occurred while calling the Python function named F
However when I do the function without the r1 array, there is no error. so that is why i am assuming something is wrong with putting the r1 array into the function
If anyone could provide input to my problem i would
F[0] = expression expects expression to be a number here, not an array. However Q/V * (CO2_To-y[0]) + TG_CO2 + r1 is an array of r1 dimensions. To see this, try evaluating the following line:
>>> 1 + numpy.array([1,2])
array([2, 3])
To get rid of the exception you should covert this expression to a number somehow depending on what you are trying to achieve.

Categories