Minimum path on potential energy surface using matplotlib - python

I used Matplotlib to plot a 3D potential energy surface.
But, I also want to show a reaction path with the lowest potential barrier between the minima of a potential energy surface by arrows.
Can any one help me with this: this is the my code for the 3D surface:
#!/usr/bin/python
INPUT='input.txt'
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.mlab import griddata
from matplotlib import cm
from pylab import *
from matplotlib.ticker import LinearLocator, FormatStrFormatter
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
data = np.genfromtxt(INPUT)
x = data[:,0]
y = data[:,1]
z = data[:,2]
xi = np.linspace(min(x), max(x))
yi = np.linspace(min(y), max(y))
X, Y = np.meshgrid(xi, yi)
Z = griddata(x, y, z, xi, yi, interp='linear')
ax.contourf(X, Y, Z, 30, zdir='z', offset=-7, linewidth=0.2, cmap=cm.jet, antialiased=False, shade=True)
C = ax.contour(X, Y, Z, 30, colors='k', linewidths=0.2)
surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet, linewidth=0, antialiased=False, shade=False)
fig.colorbar(surf)
ax.clabel(C, inline=1, fontsize=10)
ax.set_xlabel(r"$d$$_{3}$ ($\AA$)")
ax.set_ylabel(r"$d$$_{4}$ ($\AA$)")
ax.set_zlabel(r"$\Delta$$E$$_{e}$ (kcal/mol)")
plt.show()
I want a graph like the one below:
3D surface
Source: http://pubs.acs.org/doi/abs/10.1021/ja801727k

Related

Mayavi : surface plot and 3D contours

Good evening everyone, I am a long time user of Matplotlib and I recently discovered Mayavi.
With Matplotlib, I can plot a 3D surface with projected contours of the surface plot for each axis and I was wondering if the same could be done with Mayavi.
Here is an example of what I have done so far with Matplotlib (source), but I have not been able to find a similar way to plot contours with Mayavi on the internet:
Can someone who knows Mayavi tell me if I can plot 3D contours for each axis like with Matplotlib?
Matplotlib code
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)
cset = ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
ax.set_xlabel('X')
ax.set_xlim(-40, 40)
ax.set_ylabel('Y')
ax.set_ylim(-40, 40)
ax.set_zlabel('Z')
ax.set_zlim(-100, 100)
plt.show()
Mayavi code
from mpl_toolkits.mplot3d import axes3d
from mayavi import mlab
X, Y, Z = axes3d.get_test_data(0.05)
Z = np.rollaxis(Z,0,2)
X = np.rollaxis(X,0,2)
Y = np.rollaxis(Y,0,2)
mlab.surf(X, Y, Z, warp_scale="auto", opacity=1)
mlab.axes(xlabel='X', ylabel='Y', zlabel='Z')
mlab.show()

Matplotlib 3D Surface missing 1 required positional argument: 'Z'

I'm trying to make 3D surface just like in this example: https://gis.stackexchange.com/questions/66367/display-a-georeferenced-dem-surface-in-3d-matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.axes3d import *
from matplotlib.mlab import griddata
from matplotlib import cm
data = np.random.random((20, 2))
z = np.random.randint(5, 30, 20)
x = data.T[0]
y = data.T[-1]
xi = np.linspace(min(x), max(x))
yi = np.linspace(min(x), max(y))
X, Y = np.meshgrid(xi, yi)
Z = griddata(x, y, z, xi, yi)
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter3D(x, y, z, c=z)
Axes3D.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet, linewidth=1, antialiased=True)
plt.show()
I think my code is similar as the example, but it doesn't
work. I got this error
TypeError: plot_surface() missing 1 required positional argument: 'Z'
How can I fix it?
You just need to use your 3D axis object to plot. To do so, replace
Axes3D.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet, linewidth=1, antialiased=True)
by
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet, linewidth=1, antialiased=True)
I am not even sure why you were in the first place using Axes3D.plot_surface even after having defining an object ax of kind Axes3D.
P.S: I (using matplotlib version 2.2.2) also got a warning
The griddata function was deprecated in version 2.2.

Plot an energy potential with matplotlib

I want to plot the gravitational energy potential to highlight its extremums (the Lagrangian points around two celestial bodies).
Here is the function that returns the potential for each set of coordinates x and y:
def gravitational_potential(M,m,R,x,y):
G = 6.674*10**(-11)
omega2 = G*(M+m)/(R**3)
r = np.sqrt(x**2+y**2)
r2 = R*m/(M+m)
r1 = R-r2
phi = -G*(M/abs(r-r1)+m/abs(r-r2))-1/2*omega2*(x**2+y**2)
return phi
I want to use meshgrid and plot_surface to plot the surface and the contour of the potential but it doesn't work.
What am I doing wrong ?
PS: I managed to plot the potential with WolframAlpha so I know the math works.
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
def gravitational_potential(M,m,R,x,y):
G = 6.674*10**(-11)
omega2 = G*(M+m)/(R**3)
r = np.sqrt(x**2+y**2)
r2 = R*m/(M+m)
r1 = R-r2
phi = -G*(M/abs(r-r1)+m/abs(r-r2))-1/2*omega2*(x**2+y**2)
return phi
fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y = np.meshgrid(np.arange(-20, 20, 0.5), np.arange(-20, 20, 0.5))
M = 10
m = 1
R = 10
Z = gravitational_potential(M,m,R,X,Y)
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.9)
cset = ax.contour(X, Y, Z, zdir='z', offset=-40, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='x', offset=-20, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='y', offset=20, cmap=cm.coolwarm)
ax.set_xlabel('X')
ax.set_xlim(-20, 20)
ax.set_ylabel('Y')
ax.set_ylim(-20, 20)
ax.set_zlabel('Z')
ax.set_zlim(-40, 40)
plt.show()
When I execute it I get the following:
runfile('C:/Users/python/Google Drive/lagrangepoint_maths/potential/gravitational_potential.py', wdir='C:/Users/python/Google Drive/lagrangepoint_maths/potential')
C:/Users/python/Google Drive/lagrangepoint_maths/potential/gravitational_potential.py:13: RuntimeWarning: divide by zero encountered in divide
phi = -G*(M/abs(r-r1)+m/abs(r-r2))-1/2*omega2*(x**2+y**2)
This is not really what I want. There is something wrong with Z. I want something like that:
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.9)
cset = ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
ax.set_xlabel('X')
ax.set_xlim(-40, 40)
ax.set_ylabel('Y')
ax.set_ylim(-40, 40)
ax.set_zlabel('Z')
ax.set_zlim(-100, 100)
plt.show()
All of this are things one may just debug one by one:
Integer division in python 2 results in 0 if the nominator is smaller than the denominator. You may from __future__ import division or correct your code to divide by floats.
If you want to show numbers between -2 x 10^-8 and +2 x 10^-8 it is not useful to set the z_limits to -40 to 40.
If you want to show small features in the plot, you should not set the plotting resolution coarsely to rstride=8, cstride=8.
In total you would arrive at something like this:

Mark projected min and max in 3D surface-/contourplot

I am using the standard matplotlib surfaceplot as an example here.
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)
cset = ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
ax.set_xlabel('X')
ax.set_xlim(-40, 40)
ax.set_ylabel('Y')
ax.set_ylim(-40, 40)
ax.set_zlabel('Z')
ax.set_zlim(-100, 100)][1]][1]
I would like to mark the two extrema of the surface with a "X" on their respective position on the contour.
How can this be achieved?
I tried:
max_column = np.argmax(np.max(Z, axis=0))
max_row = np.argmax(np.max(Z, axis=1))
min_column = np.argmin(np.min(Z, axis=0))
min_row = np.argmin(np.min(Z, axis=1))
target = [max_row,max_column,0]
ax.plot([target[0]],[target[1]],[0],'r',marker = u'X',markersize = 8)
I guess I need somehow the projected coordinates.
Additionally I would like to draw a hairline-cross with lines on the 2D plane where the extrema are.
First you need to find out the points corresponding to the minimum and maximum of the Z array.
You can then plot those points, where setting one of the coordinates to the values of the respective offset from the contour lets them be projected.
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
import numpy as np
fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3)
cset = ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
cset = ax.contour(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
ax.set_xlabel('X')
ax.set_xlim(-40, 40)
ax.set_ylabel('Y')
ax.set_ylim(-40, 40)
ax.set_zlabel('Z')
ax.set_zlim(-100, 100)
# calc index of min/max Z value
xmin, ymin = np.unravel_index(np.argmin(Z), Z.shape)
xmax, ymax = np.unravel_index(np.argmax(Z), Z.shape)
# min max points in 3D space (x,y,z)
mi = (X[xmin,ymin], Y[xmin,ymin], Z.min())
ma = (X[xmax, ymax], Y[xmax, ymax], Z.max())
# Arrays for plotting,
# first row for points in xplane, last row for points in 3D space
Ami = np.array([mi]*4)
Ama = np.array([ma]*4)
for i, v in enumerate([-40,40,-100]):
Ami[i,i] = v
Ama[i,i] = v
#plot points.
ax.plot(Ami[:,0], Ami[:,1], Ami[:,2], marker="o", ls="", c=cm.coolwarm(0.))
ax.plot(Ama[:,0], Ama[:,1], Ama[:,2], marker="o", ls="", c=cm.coolwarm(1.))
ax.view_init(azim=-45, elev=19)
plt.savefig(__file__+".png")
plt.show()

Adding legend to a surface plot

I am trying to add legend to a surface plot but unable to do so. Here is the code.
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import random
def fun(x, y):
return 0.063*x**2 + 0.0628*x*y - 0.15015876*x + 96.1659*y**2 - 74.05284306*y + 14.319143466051
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = y = np.arange(-1.0, 1.0, 0.05)
X, Y = np.meshgrid(x, y)
zs = np.array([fun(x,y) for x,y in zip(np.ravel(X), np.ravel(Y))])
Z = zs.reshape(X.shape)
ax.plot_surface(X, Y, Z)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.plot(color='red',label='Lyapunov function on XY plane',linewidth=4) # Adding legend
plt.show()
Kindly help. Thanks in advance.
It is not trivial to make a legend in a 3D axis. You can use the following hack:
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib as mpl
import random
def fun(x, y):
return 0.063*x**2 + 0.0628*x*y - 0.15015876*x + 96.1659*y**2 - 74.05284306*y + 14.319143466051
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
x = y = np.arange(-1.0, 1.0, 0.05)
X, Y = np.meshgrid(x, y)
zs = np.array([fun(x,y) for x,y in zip(np.ravel(X), np.ravel(Y))])
Z = zs.reshape(X.shape)
ax.plot_surface(X, Y, Z)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
fake2Dline = mpl.lines.Line2D([0],[0], linestyle="none", c='b', marker = 'o')
ax.legend([fake2Dline], ['Lyapunov function on XY plane'], numpoints = 1)
plt.show()
I would say a title is more appropriate than a legend in this case.
According to this question, the issue is ongoing, and there is a relatively simple workaround. You can manually set the two missing attributes that would allow legend to automatically create the patch for you:
surf = ax.plot_surface(X, Y, Z, label='Lyapunov function on XY plane')
surf._edgecolors2d = surf._edgecolor3d
surf._facecolors2d = surf._facecolor3d
ax.legend()
The attribute names on the right hand side of the assignment are surf._edgecolors3d and surf.facecolors3d for matplotlib < v3.3.3.

Categories