Related
currently running into a problem solving this.
The objective of the exercise given is to find a polynom of certian degree (the degree is given) from a dataset of points (that can be noist) and to best fit it using least sqaure method.
I don't understand the steps that lead to solving the linear equations?
what are the steps or should anyone provide such a python program that lead to the matrix that I put as an argument in my decomposition program?
Note:I have a python program for cubic splines ,LU decomposition/Guassian decomposition.
Thanks.
I tried to apply guassin / LU decomposition straight away on the dataset but I understand there are more steps to the solution...
I donwt understand how cubic splines add to the mix either..
Edit:
guassian elimintaion :
import numpy as np
import math
def swapRows(v,i,j):
if len(v.shape) == 1:
v[i],v[j] = v[j],v[i]
else:
v[[i,j],:] = v[[j,i],:]
def swapCols(v,i,j):
v[:,[i,j]] = v[:,[j,i]]
def gaussPivot(a,b,tol=1.0e-12):
n = len(b)
# Set up scale factors
s = np.zeros(n)
for i in range(n):
s[i] = max(np.abs(a[i,:]))
for k in range(0,n-1):
# Row interchange, if needed
p = np.argmax(np.abs(a[k:n,k])/s[k:n]) + k
if abs(a[p,k]) < tol: error.err('Matrix is singular')
if p != k:
swapRows(b,k,p)
swapRows(s,k,p)
swapRows(a,k,p)
# Elimination
for i in range(k+1,n):
if a[i,k] != 0.0:
lam = a[i,k]/a[k,k]
a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]
b[i] = b[i] - lam*b[k]
if abs(a[n-1,n-1]) < tol: error.err('Matrix is singular')
# Back substitution
b[n-1] = b[n-1]/a[n-1,n-1]
for k in range(n-2,-1,-1):
b[k] = (b[k] - np.dot(a[k,k+1:n],b[k+1:n]))/a[k,k]
return b
def polyFit(xData,yData,m):
a = np.zeros((m+1,m+1))
b = np.zeros(m+1)
s = np.zeros(2*m+1)
for i in range(len(xData)):
temp = yData[i]
for j in range(m+1):
b[j] = b[j] + temp
temp = temp*xData[i]
temp = 1.0
for j in range(2*m+1):
s[j] = s[j] + temp
temp = temp*xData[i]
for i in range(m+1):
for j in range(m+1):
a[i,j] = s[i+j]
return gaussPivot(a,b)
degree = 10 # can be any degree
polyFit(xData,yData,degree)
I was under the impression the code above gets a dataset of points and a degree. The output should be coeefients of a polynom that fits those points but I have a grader that was provided by my proffesor , and after checking the grading the polynom that returns has a lrage error.
After that I tried the following LU decomposition instead:
import numpy as np
def swapRows(v,i,j):
if len(v.shape) == 1:
v[i],v[j] = v[j],v[i]
else:
v[[i,j],:] = v[[j,i],:]
def swapCols(v,i,j):
v[:,[i,j]] = v[:,[j,i]]
def LUdecomp(a,tol=1.0e-9):
n = len(a)
seq = np.array(range(n))
# Set up scale factors
s = np.zeros((n))
for i in range(n):
s[i] = max(abs(a[i,:]))
for k in range(0,n-1):
# Row interchange, if needed
p = np.argmax(np.abs(a[k:n,k])/s[k:n]) + k
if abs(a[p,k]) < tol: error.err('Matrix is singular')
if p != k:
swapRows(s,k,p)
swapRows(a,k,p)
swapRows(seq,k,p)
# Elimination
for i in range(k+1,n):
if a[i,k] != 0.0:
lam = a[i,k]/a[k,k]
a[i,k+1:n] = a[i,k+1:n] - lam*a[k,k+1:n]
a[i,k] = lam
return a,seq
def LUsolve(a,b,seq):
n = len(a)
# Rearrange constant vector; store it in [x]
x = b.copy()
for i in range(n):
x[i] = b[seq[i]]
# Solution
for k in range(1,n):
x[k] = x[k] - np.dot(a[k,0:k],x[0:k])
x[n-1] = x[n-1]/a[n-1,n-1]
for k in range(n-2,-1,-1):
x[k] = (x[k] - np.dot(a[k,k+1:n],x[k+1:n]))/a[k,k]
return x
the results were a bit better but nowhere near what it should be
Edit 2:
I tried the chebyshev method suggested in the comments and came up with:
import numpy as np
def chebyshev_transform(x, n):
"""
Transforms x-coordinates to Chebyshev coordinates
"""
return np.cos(n * np.arccos(x))
def chebyshev_design_matrix(x, n):
"""
Constructs the Chebyshev design matrix
"""
x_cheb = chebyshev_transform(x, n)
T = np.zeros((len(x), n+1))
T[:,0] = 1
T[:,1] = x_cheb
for i in range(2, n+1):
T[:,i] = 2 * x_cheb * T[:,i-1] - T[:,i-2]
return T
degree =10
f = lambda x: np.cos(X)
xdata = np.linspace(-1,1,num=100)
ydata = np.array([f(i) for i in xdata])
M = chebyshev_design_matrix(xdata,degree)
D_x ,D_y = np.linalg.qr(M)
D_x, seq = LUdecomp(D_x)
A = LUsolve(D_x,D_y,seq)
I can't use linalg.qr in my program , it was just for checking how it works.In addition , I didn't get the 'slow way' of the formula that were in the comment.
The program cant get an x point that is not between -1 and 1 , is there any way around it , any normalizition?
Thanks a lot.
Hints:
You are probably asked for an unsophisticated method. If the degree of the polynomial remains low, you can use the straightforward approach below. For the sake of the explanation, I'll use a cubic model.
Assume that you want to fit your data to this polynomial, by observing that it seems to follow a cubic behavior:
ax³ + bx² + cx + d ~ y
[All x and y should be understood with an index i which is omitted for notational convenience.]
If there are more than four data points, you get an overdetermined system of equations, usually with no solution. The trick is to consider the error on the individual equations, e = ax³ + bx² + cx + d - y, and to minimize the total error. As the error is a signed number, negative errors would make minimization impossible. Instead, we minimize the sum of squared errors. (The sum of absolute errors is another option but it unfortunately leads to a much harder problem.)
Min(a, b, c, d) Σ(ax³ + bx² + cx + d - y)²
As the unknown parameters are unconstrained, it suffices to look for a stationary point, i.e. cancel the gradient of the total error. By differentiation on the unknowns a, b, c and d, we obtain
2Σ(ax³x³ + bx²x³ + cxx³ + dx³ - yx³) = 0
2Σ(ax³x² + bx²x² + cxx² + dx² - yx²) = 0
2Σ(ax³x + bx²x + cxx + dx - yx ) = 0
2Σ(ax³ + bx² + cx + d - y ) = 0
As you can recognize, this is a square linear system of equations.
I have tried to no avail for a week while trying to solve a system of coupled differential equations and reproduce the results shown in the attached image. I seem to be getting weird results as shown also. I don't seem to know what I might be doing wrong.The set of coupled differential equations were solved using Newman's BAND. Here's a link to the python implementation: python solution using BAND . And another link to the original image of the problem in case the attached is not clear enough: here you find a clearer image of the problem. Now what I am trying to do is to solve the same problem by creating a sparse array directly from the discretized equations using a combination of sympy and numpy and then solving using scipy's spsolve. Here is my code below. I need some help to figure out what I am doing wrong.
I have represented the variables as c1 = cA, c2 = cB, c3 = cC, c4 = cD in my code. Equation 2 has been linearized and phi10 and phi20 are the trial values of the variables cC and cD.
# import modules
import numpy as np
import sympy
from sympy.core.function import _mexpand
import scipy as sp
import scipy.sparse as ss
import scipy.sparse.linalg as ssl
import matplotlib.pyplot as plt
# define functions
def flatten(t):
"""
function to flatten lists
"""
return [item for sublist in t for item in sublist]
def get_coeffs(coeff_dict, func_vars):
"""
function to extract coefficients from variables
and form the sparse symbolic array
"""
c = coeff_dict
for i in list(c.keys()):
b, _ = i.as_base_exp()
if b == i:
continue
if b in c:
c[i] = 0
if any(k.has(b) for k in c):
c[i] = 0
return [coeff_dict[val] for val in func_vars]
# Constants for the problem
I = 0.1 # A/cm2
L = 1.0 # distance (x) in cm
m = 100 # grid spacing
h = L / (m-1)
a = 23300 # 1/cm
io = 2e-7 # A/cm2
n = 1
F = 96500 # C/mol
R = 8.314 # J/mol-K
T = 298 # K
sigma = 20 # S/cm
kappa = 0.06 # S/cm
alpha = 0.5
beta = -(1-alpha)*n*F/R/T
phi10 , phi20 = 5, 0.5 # these are just guesses
P = a*io*np.exp(beta*(phi10-phi20))
j = sympy.symbols('j',integer = True)
cA = sympy.IndexedBase('cA')
cB = sympy.IndexedBase('cB')
cC = sympy.IndexedBase('cC')
cD = sympy.IndexedBase('cD')
# write the boundary conditions at x = 0
bc=[cA[1], cB[1],
(4/3) * cC[2] - (1/3)*cC[3], # use a three point approximation for cC_prime
cD[1]
]
# form a list of expressions from the boundary conditions and equations
expr=flatten([bc,flatten([[
-cA[j-1] - cB[j-1] + cA[j+1] + cB[j+1],
cB[j-1] - 2*h*P*beta*cC[j] + 2*h*P*beta*cD[j] - cB[j+1],
-sigma*cC[j-1] + 2*h*cA[j] + sigma * cC[j+1],
-kappa * cD[j-1] + 2*h * cB[j] + kappa * cD[j+1]] for j in range(2, m)])])
vars = [cA[j], cB[j], cC[j], cD[j]]
# flatten the list of variables
unknowns = flatten([[cA[j], cB[j], cC[j], cD[j]] for j in range(1,m)])
var_len = len(unknowns)
# # # substitute in the boundary conditions at x = L while getting the coefficients
A = sympy.SparseMatrix([get_coeffs(_mexpand(i.subs({cA[m]:I}))\
.as_coefficients_dict(), unknowns) for i in expr])
# convert to a numpy array
mat_temp = np.array(A).astype(np.float64)
# you can view the sparse array with this
fig = plt.figure(figsize=(6,6))
ax = fig.add_axes([0,0, 1,1])
cmap = plt.cm.binary
plt.spy(mat_temp, cmap = cmap, alpha = 0.8)
def solve_sparse(b0, error):
# create the b column vector
b = np.copy(b0)
b[0:4] = np.array([0.0, I, 0.0, 0.0])
b[var_len-4] = I
b[var_len-3] = 0
b[var_len-2] = 0
b[var_len-1] = 0
print(b.shape)
old = np.copy(b0)
mat = np.copy(mat_temp)
b_2 = np.copy(b)
resid = 10
lss = 0
while lss < 100:
mat_2 = np.copy(mat)
for j in range(3, var_len - 3, 4):
# update the forcing term of equation 2
b_2[j+2] = 2*h*(1-beta*old[j+3]+beta*old[j+4])*a*io*np.exp(beta*(old[j+3]-old[j+4]))
# update the sparse array at every iteration for variables cC and cD in equation2
mat_2[j+2, j+3] += 2*h*beta*a*io*np.exp(beta*(old[j+3]-old[j+4]))
mat_2[j+2, j+4] += 2*h*beta*a*io*np.exp(beta*(old[j+3]-old[j+4]))
# form the column sparse matrix
A_s = ss.csc_matrix(mat_2)
new = ssl.spsolve(A_s, b_2).flatten()
resid = np.sum((new - old)**2)/var_len
lss += 1
old = np.copy(new)
return new
val0 = np.array([[0.0, 0.0, 0.0, 0.0] for _ in range(m-1)]).flatten() # form an array of initial values
error = 1e-7
## Run the code
conc = solve_sparse(val0, error).reshape(m-1, len(vars))
conc.shape # gives (99, 4)
# Plot result for cA:
plt.plot(conc[:,0], marker = 'o', linestyle = '')
What happens seems pretty clear now, after having seen that the plotted solution indeed oscillates between the upper and lower values. You are using the central Euler method as discretization, for u'=F(u) this reads as
u[j+1]-u[j-1] = 2*h*F(u[j])
This method is only weakly stable and allows the sub-sequences of odd and even indices to evolve rather independently. As equation this would mean that the solution might approximate the system ue'=F(uo), uo'=F(ue) with independent functions ue, uo that follow the path of the even or odd sub-sequence.
These even and odd parts are only tied together by the treatment of the boundary points, two or three points deep. So to avoid or reduce the oscillation requires a very careful handling of boundary conditions and also the differential equations for the boundary points.
But one can avoid all this unpleasantness by using the trapezoidal method
u[j+1]-u[j] = 0.5*h*(F(u[j+1])+F(u[j]))
This also reduces the band-width of the system matrix.
To properly implement the implied Newton method correctly (linearizing via Taylor and solving the linearized equation is what the Newton-Kantorovich method does) you need to replace F(u[j]) with F(u_old[j])+F'(u_old[j])*(u[j]-u_old[j]). This then gives a linear system of equations in u for the iteration step.
For the trapezoidal method this gives
(I-0.5*h*F'(u_old[j+1]))*u[j+1] - (I+0.5*h*F'(u_old[j]))*u[j]
= 0.5*h*(F(u_old[j+1])-F'(u_old[j+1])*u_old[j+1] + F(u_old[j])-F'(u_old[j])*u_old[j])
In general, the derivatives values and thus the system matrix need not be updated every step, only the function value (else the iteration does not move forward).
I do have a function, for example , but this can be something else as well, like a quadratic or logarithmic function. I am only interested in the domain of . The parameters of the function (a and k in this case) are known as well.
My goal is to fit a continuous piece-wise function to this, which contains alternating segments of linear functions (i.e. sloped straight segments, each with intercept of 0) and constants (i.e. horizontal segments joining the sloped segments together). The first and last segments are both sloped. And the number of segments should be pre-selected between around 9-29 (that is 5-15 linear steps + 4-14 constant plateaus).
Formally
The input function:
The fitted piecewise function:
I am looking for the optimal resulting parameters (c,r,b) (in terms of least squares) if the segment numbers (n) are specified beforehand.
The resulting constants (c) and the breakpoints (r) should be whole natural numbers, and the slopes (b) round two decimal point values.
I have tried to do the fitting numerically using the pwlf package using a segmented constant models, and further processed the resulting constant model with some graphical intuition to "slice" the constant steps with the slopes. It works to some extent, but I am sure this is suboptimal from both fitting perspective and computational efficiency. It takes multiple minutes to generate a fitting with 8 slopes on the range of 1-50000. I am sure there must be a better way to do this.
My idea would be to instead using only numerical methods/ML, the fact that we have the algebraic form of the input function could be exploited in some way to at least to use algebraic transforms (integrals) to get to a simpler optimization problem.
import numpy as np
import matplotlib.pyplot as plt
import pwlf
# The input function
def input_func(x,k,a):
return np.power(x,1/a)*k
x = np.arange(1,5e4)
y = input_func(x, 1.8, 1.3)
plt.plot(x,y);
def pw_fit(func, x_r, no_seg, *fparams):
# working on the specified range
x = np.arange(1,x_r)
y_input = func(x, *fparams)
my_pwlf = pwlf.PiecewiseLinFit(x, y_input, degree=0)
res = my_pwlf.fit(no_seg)
yHat = my_pwlf.predict(x)
# Function values at the breakpoints
y_isec = func(res, *fparams)
# Slope values at the breakpoints
slopes = np.round(y_isec / res, decimals=2)
slopes = slopes[1:]
# For the first slope value, I use the intersection of the first constant plateau and the input function
slopes = np.insert(slopes,0,np.round(y_input[np.argwhere(np.diff(np.sign(y_input - yHat))).flatten()[0]] / np.argwhere(np.diff(np.sign(y_input - yHat))).flatten()[0], decimals=2))
plateaus = np.unique(np.round(yHat))
# If due to rounding slope values (to two decimals), there is no change in a subsequent step, I just remove those segments
to_del = np.argwhere(np.diff(slopes) == 0).flatten()
slopes = np.delete(slopes,to_del + 1)
plateaus = np.delete(plateaus,to_del)
breakpoints = [np.ceil(plateaus[0]/slopes[0])]
for idx, j in enumerate(slopes[1:-1]):
breakpoints.append(np.floor(plateaus[idx]/j))
breakpoints.append(np.ceil(plateaus[idx+1]/j))
breakpoints.append(np.floor(plateaus[-1]/slopes[-1]))
return slopes, plateaus, breakpoints
slo, plat, breaks = pw_fit(input_func, 50000, 8, 1.8, 1.3)
# The piecewise function itself
def pw_calc(x, slopes, plateaus, breaks):
x = x.astype('float')
cond_list = [x < breaks[0]]
for idx, j in enumerate(breaks[:-1]):
cond_list.append((j <= x) & (x < breaks[idx+1]))
cond_list.append(breaks[-1] <= x)
func_list = [lambda x: x * slopes[0]]
for idx, j in enumerate(slopes[1:]):
func_list.append(plateaus[idx])
func_list.append(lambda x, j=j: x * j)
return np.piecewise(x, cond_list, func_list)
y_output = pw_calc(x, slo, plat, breaks)
plt.plot(x,y,y_output);
(Not important, but I think the fitted piecewise function is not continuous as it is. Intervals should be x<=r1; r1<x<=r2; ....)
As Anatolyg has pointed out, it looks to me that in the optimal solution (for the function posted at least, and probably for any where the derivative is different from zero), the horizantal segments will collapse to a point or the minimum segment length (in this case 1).
EDIT---------------------------------------------
The behavior above could only be valid if the slopes could have an intercept. If the intercepts are zero, as posted in the question, one consideration must be taken into account: Is the initial parabolic function defined in zero or nearby? Imagine the function y=0.001 *sqrt(x-1000), then the segments defined as b*x will have a slope close to zero and will be so similar to the constant segments that the best fit will be just the line that without intercept that fits better all the function.
Provided that the function is defined in zero or nearby, you can start by approximating the curve just by linear segments (with intercepts):
divide the function domain in N intervals(equal intervals or whose size is a function of the average curvature (or second derivative) of the function along the domain).
linear fit/regression in each intervals
for each interval, if a point (or bunch of points) in the extreme of any interval is better fitted by the line of the neighbor interval than the line of its interval, this point is assigned to the neighbor interval.
Repeat from 2) until no extreme points are moved.
Linear regressions might be optimized not to calculate all the covariance matrixes from scratch on each iteration, but just adding the contributions of the moved points to the previous covariance matrixes.
Then each linear segment (LSi) is replaced by a combination of a small constant segment at the beginning (Cbi), a linear segment without intercept (Si), and another constant segment at the end (Cei). This segments are easy to calculate as Si will contain the middle point of LSi, and Cbi and Cei will have respectively the begin and end values of the segment LSi. Then the intervals of each segment has to be calculated as an intersection between lines.
With this, the constant end segment will be collinear with the constant begin segment from the next interval so they will merge, resulting in a series of constant and linear segments interleaved.
But this would be a floating point start solution. Next, you will have to apply all the roundings which will mess up quite a lot all the segments as the conditions integer intervals and linear segments without slope can be very confronting. In fact, b,c,r are not totally independent. If ci and ri+1 are known, then bi+1 is already fixed
If nothing is broken so far, the final task will be to minimize the error/cost function (I assume that it will be the integral of the error between the parabolic function and the segments). My guess is that gradients here will be quite a pain, as if you change for example one ci, all the rest of the bj and cj will have to adapt as well due to the integer intervals restriction. However, if you can generalize the derivatives between parameters ( how much do I have to adapt bi+1 if ci changes a unit), you can propagate the change of one parameter to all other parameters and have kind of a gradient. Then for each interval, you can estimate what would be the ideal parameter and averaging all intervals calculate the best gradient step. Let me illustrate this:
Assuming first that r parameters are fixed, if I change c1 by one unit, b2 changes by 0.1, c2 changes by -0.2 and b3 changes by 0.2. This would be the gradient.
Then I estimate, comparing with the parabolic curve, that c1 should increase 0.5 (to reduce the cost by 10 points), b2 should increase 0.2 (to reduce the cost by 5 points), c2 should increase 0.2 (to reduce the cost by 6 points) and b3 should increase 0.1 (to reduce the cost by 9 points).
Finally, the gradient step would be (0.5/1·10 + 0.2/0.1·5 - 0.2/(-0.2)·6 + 0.1/0.2·9)/(10 + 5 + 6 + 9)~= 0.45. Thus, c1 would increase 0.45 units, b2 would increase 0.45·0.1, and so on.
When you add the r parameters to the pot, as integer intervals do not have an proper derivative, calculation is not straightforward. However, you can consider r parameters as floating points, calculate and apply the gradient step and then apply the roundings.
We can integrate the squared error function for linear and constant pieces and let SciPy optimize it. Python 3:
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize
xl = 1
xh = 50000
a = 1.3
p = 1 / a
n = 8
def split_b_and_c(bc):
return bc[::2], bc[1::2]
def solve_for_r(b, c):
r = np.empty(2 * n)
r[0] = xl
r[1:-1:2] = c / b[:-1]
r[2::2] = c / b[1:]
r[-1] = xh
return r
def linear_residual_integral(b, x):
return (
(x ** (2 * p + 1)) / (2 * p + 1)
- 2 * b * x ** (p + 2) / (p + 2)
+ b ** 2 * x ** 3 / 3
)
def constant_residual_integral(c, x):
return x ** (2 * p + 1) / (2 * p + 1) - 2 * c * x ** (p + 1) / (p + 1) + c ** 2 * x
def squared_error(bc):
b, c = split_b_and_c(bc)
r = solve_for_r(b, c)
linear = np.sum(
linear_residual_integral(b, r[1::2]) - linear_residual_integral(b, r[::2])
)
constant = np.sum(
constant_residual_integral(c, r[2::2])
- constant_residual_integral(c, r[1:-1:2])
)
return linear + constant
def evaluate(x, b, c, r):
i = 0
while x > r[i + 1]:
i += 1
return b[i // 2] * x if i % 2 == 0 else c[i // 2]
def main():
bc0 = (xl + (xh - xl) * np.arange(1, 4 * n - 2, 2) / (4 * n - 2)) ** (
p - 1 + np.arange(2 * n - 1) % 2
)
bc = scipy.optimize.minimize(
squared_error, bc0, bounds=[(1e-06, None) for i in range(2 * n - 1)]
).x
b, c = split_b_and_c(bc)
r = solve_for_r(b, c)
X = np.linspace(xl, xh, 1000)
Y = [evaluate(x, b, c, r) for x in X]
plt.plot(X, X ** p)
plt.plot(X, Y)
plt.show()
if __name__ == "__main__":
main()
I have tried to come up with a new solution myself, based on the idea of #Amo Robb, where I have partitioned the domain, and curve fitted a dual - constant and linear - piece together (with the help of np.maximum). I have used the 1 / f(x)' as the function to designate the breakpoints, but I know this is arbitrary and does not provide a global optimum. Maybe there is some optimal function for these breakpoints. But this solution is OK for me, as it might be appropriate to have a better fit at the first segments, at the expense of the error for the later segments. (The task itself is actually a cost based retail margin calculation {supply price -> added margin}, as the retail POS software can only work with such piecewise margin function).
The answer from #David Eisenstat is correct optimal solution if the parameters are allowed to be floats. Unfortunately the POS software can not use floats. It is OK to round up c-s and r-s afterwards. But the b-s should be rounded to two decimals, as those are inputted as percents, and this constraint would ruin the optimal solution with long floats. I will try to further improve my solution with both Amo's and David's valuable input. Thank You for that!
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
# The input function f(x)
def input_func(x,k,a):
return np.power(x,1/a) * k
# 1 / f(x)'
def one_per_der(x,k,a):
return a / (k * np.power(x, 1/a-1))
# 1 / f(x)' inverted
def one_per_der_inv(x,k,a):
return np.power(a / (x*k), a / (1-a))
def segment_fit(start,end,y,first_val):
b, _ = curve_fit(lambda x,b: np.maximum(first_val, b*x), np.arange(start,end), y[start-1:end-1])
b = float(np.round(b, decimals=2))
bp = np.round(first_val / b)
last_val = np.round(b * end)
return b, bp, last_val
def pw_fit(end_range, no_seg, **fparams):
y_bps = np.linspace(one_per_der(1, **fparams), one_per_der(end_range,**fparams) , no_seg+1)[1:]
x_bps = np.round(one_per_der_inv(y_bps, **fparams))
y = input_func(x, **fparams)
slopes = [np.round(float(curve_fit(lambda x,b: x * b, np.arange(1,x_bps[0]), y[:int(x_bps[0])-1])[0]), decimals = 2)]
plats = [np.round(x_bps[0] * slopes[0])]
bps = []
for i, xbp in enumerate(x_bps[1:]):
b, bp, last_val = segment_fit(int(x_bps[i]+1), int(xbp), y, plats[i])
slopes.append(b); bps.append(bp); plats.append(last_val)
breaks = sorted(list(x_bps) + bps)[:-1]
# If due to rounding slope values (to two decimals), there is no change in a subsequent step, I just remove those segments
to_del = np.argwhere(np.diff(slopes) == 0).flatten()
breaks_to_del = np.concatenate((to_del * 2, to_del * 2 + 1))
slopes = np.delete(slopes,to_del + 1)
plats = np.delete(plats[:-1],to_del)
breaks = np.delete(breaks,breaks_to_del)
return slopes, plats, breaks
def pw_calc(x, slopes, plateaus, breaks):
x = x.astype('float')
cond_list = [x < breaks[0]]
for idx, j in enumerate(breaks[:-1]):
cond_list.append((j <= x) & (x < breaks[idx+1]))
cond_list.append(breaks[-1] <= x)
func_list = [lambda x: x * slopes[0]]
for idx, j in enumerate(slopes[1:]):
func_list.append(plateaus[idx])
func_list.append(lambda x, j=j: x * j)
return np.piecewise(x, cond_list, func_list)
fparams = {'k':1.8, 'a':1.2}
end_range = 5e4
no_steps = 10
x = np.arange(1, end_range)
y = input_func(x, **fparams)
slopes, plats, breaks = pw_fit(end_range, no_steps, **fparams)
y_output = pw_calc(x, slopes, plats, breaks)
plt.plot(x,y_output,y);
I am trying to find the minimum of a natural cubic spline. I have written the following code to find the natural cubic spline. (I have been given test data and have confirmed this method is correct.) Now I can not figure out how to find the minimum of this function.
This is the data
xdata = np.linspace(0.25, 2, 8)
ydata = 10**(-12) * np.array([1,2,1,2,3,1,1,2])
This is the function
import scipy as sp
import numpy as np
import math
from numpy.linalg import inv
from scipy.optimize import fmin_slsqp
from scipy.optimize import minimize, rosen, rosen_der
def phi(x, xd,yd):
n = len(xd)
h = np.array(xd[1:n] - xd[0:n-1])
f = np.divide(yd[1:n] - yd[0:(n-1)],h)
q = [0]*(n-2)
for i in range(n-2):
q[i] = 3*(f[i+1] - f[i])
A = np.zeros(((n-2),(n-2)))
#define A for j=0
A[0,0] = 2*(h[0] + h[1])
A[0,1] = h[1]
#define A for j = n-2
A[-1,-2] = h[-2]
A[-1,-1] = 2*(h[-2] + h[-1])
#define A for in the middle
for j in range(1,(n-3)):
A[j,j-1] = h[j]
A[j,j] = 2*(h[j] + h[j+1])
A[j,j+1] = h[j+1]
Ainv = inv(A)
B = Ainv.dot(q)
b = (n)*[0]
b[1:(n-1)] = B
# now we find a, b, c and d
a = [0]*(n-1)
c = [0]*(n-1)
d = [0]*(n-1)
s = [0]*(n-1)
for r in range(n-1):
a[r] = 1/(3*h[r]) * (b[r + 1] - b[r])
c[r] = f[r] - h[r]*((2*b[r] + b[r+1])/3)
d[r] = yd[r]
#solution 1 start
for m in range(n-1):
if xd[m] <= x <= xd[m+1]:
s = a[m]*(x - xd[m])**3 + b[m]*(x-xd[m])**2 + c[m]*(x-xd[m]) + d[m]
return(s)
#solution 1 end
I want to find the minimum on the domain of my xdata, so a fmin didn't work as you can not define bounds there. I tried both fmin_slsqp and minimize. They are not compatible with the phi function I wrote so I rewrote phi(x, xd,yd) and added an extra variable such that phi is phi(x, xd,yd, m). M indicates in which subfunction of the spline we are calculating a solution (from x_m to x_m+1). In the code we replaced #solution 1 by the following
# solution 2 start
return(a[m]*(x - xd[m])**3 + b[m]*(x-xd[m])**2 + c[m]*(x-xd[m]) + d[m])
# solution 2 end
To find the minimum in a domain x_m to x_(m+1) we use the following code: (we use an instance where m=0, so x from 0.25 to 0.5. The initial guess is 0.3)
fmin_slsqp(phi, x0 = 0.3, bounds=([(0.25,0.5)]), args=(xdata, ydata, 0))
What I would then do (I know it's crude), is iterate this with a for loop to find the minimum on all subdomains and then take the overall minimum. However, the function fmin_slsqp constantly returns the initial guess as the minimum. So there is something wrong, which I do not know how to fix. If you could help me this would be greatly appreciated. Thanks for reading this far.
When I plot your function phi and the data you feed in, I see that its range is of the order of 1e-12. However, fmin_slsqp is unable to handle that level of precision and fails to find any change in your objective.
The solution I propose is scaling the return of your objective by the same order of precision like so:
return(s*1e12)
Then you get good results.
>>> sol = fmin_slsqp(phi, x0=0.3, bounds=([(0.25, 0.5)]), args=(xdata, ydata))
>>> print(sol)
Optimization terminated successfully. (Exit mode 0)
Current function value: 1.0
Iterations: 2
Function evaluations: 6
Gradient evaluations: 2
[ 0.25]
I am trying to solve the following problem via a Finite Difference Approximation in Python using NumPy:
$u_t = k \, u_{xx}$, on $0 < x < L$ and $t > 0$;
$u(0,t) = u(L,t) = 0$;
$u(x,0) = f(x)$.
I take $u(x,0) = f(x) = x^2$ for my problem.
Programming is not my forte so I need help with the implementation of my code. Here is my code (I'm sorry it is a bit messy, but not too bad I hope):
## This program is to implement a Finite Difference method approximation
## to solve the Heat Equation, u_t = k * u_xx,
## in 1D w/out sources & on a finite interval 0 < x < L. The PDE
## is subject to B.C: u(0,t) = u(L,t) = 0,
## and the I.C: u(x,0) = f(x).
import numpy as np
import matplotlib.pyplot as plt
# definition of initial condition function
def f(x):
return x^2
# parameters
L = 1
T = 10
N = 10
M = 100
s = 0.25
# uniform mesh
x_init = 0
x_end = L
dx = float(x_end - x_init) / N
#x = np.zeros(N+1)
x = np.arange(x_init, x_end, dx)
x[0] = x_init
# time discretization
t_init = 0
t_end = T
dt = float(t_end - t_init) / M
#t = np.zeros(M+1)
t = np.arange(t_init, t_end, dt)
t[0] = t_init
# Boundary Conditions
for m in xrange(0, M):
t[m] = m * dt
# Initial Conditions
for j in xrange(0, N):
x[j] = j * dx
# definition of solution to u_t = k * u_xx
u = np.zeros((N+1, M+1)) # NxM array to store values of the solution
# finite difference scheme
for j in xrange(0, N-1):
u[j][0] = x**2 #initial condition
for m in xrange(0, M):
for j in xrange(1, N-1):
if j == 1:
u[j-1][m] = 0 # Boundary condition
else:
u[j][m+1] = u[j][m] + s * ( u[j+1][m] - #FDM scheme
2 * u[j][m] + u[j-1][m] )
else:
if j == N-1:
u[j+1][m] = 0 # Boundary Condition
print u, t, x
#plt.plot(t, u)
#plt.show()
So the first issue I am having is I am trying to create an array/matrix to store values for the solution. I wanted it to be an NxM matrix, but in my code I made the matrix (N+1)x(M+1) because I kept getting an error that the index was going out of bounds. Anyways how can I make such a matrix using numpy.array so as not to needlessly take up memory by creating a (N+1)x(M+1) matrix filled with zeros?
Second, how can I "access" such an array? The real solution u(x,t) is approximated by u(x[j], t[m]) were j is the jth spatial value, and m is the mth time value. The finite difference scheme is given by:
u(x[j],t[m+1]) = u(x[j],t[m]) + s * ( u(x[j+1],t[m]) - 2 * u(x[j],t[m]) + u(x[j-1],t[m]) )
(See here for the formulation)
I want to be able to implement the Initial Condition u(x[j],t[0]) = x**2 for all values of j = 0,...,N-1. I also need to implement Boundary Conditions u(x[0],t[m]) = 0 = u(x[N],t[m]) for all values of t = 0,...,M. Is the nested loop I created the best way to do this? Originally I tried implementing the I.C. and B.C. under two different for loops which I used to calculate values of the matrices x and t (in my code I still have comments placed where I tried to do this)
I think I am just not using the right notation but I cannot find anywhere in the documentation for NumPy how to "call" such an array so at to iterate through each value in the proposed scheme. Can anyone shed some light on what I am doing wrong?
Any help is very greatly appreciated. This is not homework but rather to understand how to program FDM for Heat Equation because later I will use similar methods to solve the Black-Scholes PDE.
EDIT: So when I run my code on line 60 (the last "else" that I use) I get an error that says invalid syntax, and on line 51 (u[j][0] = x**2 #initial condition) I get an error that reads "setting an array element with a sequence." What does that mean?