Data structure of memoization in db - python

What is the best data structure to cache (save/store/memorize) so many function result in database.
Suppose function calc_regress with flowing definition in python:
def calc_regress(ind_key, dep_key, count=30):
independent_list = sql_select_recent_values(count, ind_key)
dependant_list = sql_select_recent_values(count, dep_key)
import scipy.stats as st
return st.linregress(independent_list, dependant_list)
I see answers to What kind of table structure should be used to store memoized function parameters and results in a relational database? but it seem to resolve problem of just one function while I have about 500 function.

Option A
You could use the structure in the linked answer, un-normalized with the number of columns = max number of arguments among the 500 functions. Also need to add a column for the function name.
Then you could do a SELECT * FROM expensive_func_results WHERE func_name = 'calc_regress' AND arg1 = ind_key AND arg2 = dep_key and arg3 = count, etc.
Ofcourse, that's not a very good design to use. For the same function called with fewer parameters, columns with null values/non-matches need to be ignored; otherwise you'll get multiple result rows.
Option B
Create the table/structure as func_name, arguments, result where 'arguments' is always a kwargs dictionary or positional args but not mixed per entry. Even with the kwargs dict stored as a string, order of keys->values in it is not predictable/consistent even if it's the same args. So you'll need to order it before converting to a string and storing it. When you want to query, you'll use SELECT * FROM expensive_func_results WHERE func_name = 'calc_regress' AND arguments = 'str(kwargs_dict)', where str(kwargs_dict) is something you'll set programmatically. It could also be set to the result of inspect.getargspec, (or inspect.getcallargs) though you'll have to check for consistency.
You won't be able to do queries on the argument combos unless you provide all the arguments to the query or partial match with LIKE.
Option C
Normalised all the way: One table func_calls as func_name, args_combo_id, arg_name_idx, arg_value. Each row of the table will store one arg for one combo of that function's calling args. Another table func_results as func_name, args_combo_id, result. You could also normalise further for func_name to be mapped to a func_id.
In this one, the order of keyword args doesn't matter since you'll be doing an Inner join to select each parameter. This query will have to be built programmatically or done via a stored procedure, since the number of joins required to fetch all the parameters is determined by the number of parameters. Your function above has 3 params but you may have another with 10. arg_name_idx is 'argument name or index' so it also works for mixed kwargs + args. Some duplication may occur in cases like calc_regress(ind_key=1, dep_key=2, count=30) and calc_regress(1, 2, 30) (as well as calc_regress(1, 2) with a default value for count <-- this cases should be avoided, the table entry should have all args); since the args_combo_id will be different for both but result will obviously be the same. Again, the inspect module may help in this area.
[Edit] PS: Additionally, for the func_name, you may need to use a fully qualified name to avoid conflicts across modules in your package. And decorators may interfere with that as well; without a deco.__name__ = func.__name__, etc.
PPS: If objects are being passed to functions being memoized in the db, make sure that their __str__ is something useful & repeatable/consistent to store as arg values.
This particular case doesn't require you to re-create objects from the arg values in the db, otherwise, you'd need to make __str__ or __repr__ like the way __repr__ was intended to be (but isn't generally done):
this should look like a valid Python expression that could be used to recreate an object with the same value (given an appropriate environment).

I'd use a key value storage here, where the key could be a concatenation of the id of the function object (to guarantee the key uniqness) and its arguments while the value would be the function returned value.
So calc_regress(1, 5, 30) call would produce an example key 139694472779248_1_5_30 where the first part is id(calc_regress). An example key producing function:
>>> def produce_cache_key(fun, *args, **kwargs):
... args_key = '_'.join(str(a) for a in args)
... kwargs_key = '_'.join('%s%s' % (k, v) for k, v in kwargs.items())
... return '%s_%s_%s' % (id(fun), args_key, kwargs_key)
You could keep your results in memory using a dictionary and a decorator:
>>> def cache_result(cache):
... def decorator(fun):
... def wrapper(*args, **kwargs):
... key = produce_cache_key(fun, *args, **kwargs)
... if key not in cache:
... cache[key] = fun(*args, **kwargs)
... return cache[key]
... return wrapper
... return decorator
...
>>>
>>> #cache_result(cache_dict)
... def fx(x, y, z=0):
... print 'Doing some expensive job...'
...
>>> cache = {}
>>> fx(1, 2, z=1)
Doing some expensive job...
>>> fx(1, 2, z=1)
>>>

Related

Defining default keyword values to function in a dictionary in python

I am writing a function that takes a lot of keywords.
I have a dictionary which is very lengthy that contains many of these keywords that already exists in my code and is being used elsewhere. E.g.
{'setting1':None, 'setting2': None....}
I am wondering is there a way, when I define my function, for me to set all of these as keywords, rather than having to type them out again like this:
def my_function(setting1=None, setting2=None, **kwargs)
To be clear, essentially I want to set all of the contents of the dictionary to be keywords with default value None, and when I call the function I should be able to change their values. So I am not looking to provide the dictionary as kwargs upon calling the function.
While not exactly the same, I ususally prefer to save the arguments in **kwargs and use .get() to get the value or None:
def my_function(**kwargs):
do_something(kwargs.get("alpha"), kwargs.get("beta"))
.get() on a dictionary returns the value if a key exists, or None of it does not. You can optionally specify a different default value as a second argument if you like.
When creating a function, you will need to implement how your arguments are used. By automatically creating arguments you end up adding arguments and forgetting to implement a behaviour for them.
# Manually defined.
def func(a, b, c, d):
return a + b / c * d
# Auto-defined - Human error.
def func(""" auto define a,b,c,d,e,f,g,h """):
return a + b / c * d # <- you only use half of the arguments. Confusing at best.
# Auto-defined - Inputs unclear, code is not explicit.
def func(defind_my_args):
return a + b / c * d
If you need to reuse "code behaviour" to the point that you can "inherit" parameters, maybe you should be using an object instead.

How to pop elements from another function's kwargs?

I have a function that is responsible for getting data from the kwargs of several other functions.
The other functions pass their own kwargs to this function along with a keep argument that determines whether or not to keep these properties in the kwargs - i.e. whether to use get or pop.
def _handle_kwargs(keep, **kwargs):
# keep: whether to keep the kwarg when we're done with it (i.e. get or pop)
if keep: func = getattr(kwargs, 'get')
else: func = getattr(kwargs, 'pop')
# get or pop some kwargs individually
debug = func('debug', False)
assert isinstance(debug, bool)
...
# repeated for several different possible kwargs
return debug, some_other_kwarg, ...
def normal_function(**kwargs)
debug, some_other_kwarg = _handle_kwargs(False, **kwargs)
Getting the values from the kwargs works fine. However, if I try to pop the kwargs, then they are still present in the original function's kwargs. I suspect this is because _handle_kwargs is only modifying its own kwargs.
How can I ensure that the kwargs are removed if I use pop, even if that's coming from another function?
I doubt you can do that passing to **kwargs, as it appears to be passed by value, but if it's ok to modify the inner function, you could pass kwargs as a plain dictionary, i.e. without the **.
def test(x):
print(x)
x.pop('test')
print(x)
def real(**kwargs):
test(kwargs)
print(kwargs)
real(test='nothing', real='something')
Output
{'test': 'nothing', 'real': 'something'}
{'real': 'something'}
{'real': 'something'}
The problem is that you don't pass a dictionary to _handle_kwargs. The **kwargs syntax when calling a function actually "explodes" kwargs.
That is, if kwargs is {'a':1, 'b':2}, then _handle_kwargs(False, **kwargs) is equivalent to _handle_kwargs(False, kwargs['a'], kwargs['b']). You don't pass the kwargs dict at all!
_handle_kwargs collects them into a new dictionary, so it won't affect the original one.
The solution is very simple.
First, def _handle_kwargs(keep, kwargs): without asterisks. Just receive a dict.
Second, call it like so:
def normal_function(**kwargs)
debug, some_other_kwarg = _handle_kwargs(False, kwargs)
See the second line - calling _handle_kwargs without asterisks - just pass the dict.

How to get list of arguments by name and value in Python

How can I dynamically get the names and values of all arguments to a class method? (For debugging).
The following code works, but it would need to be repeated a few dozen times (one for each method). Is there a simpler, more Pythonic way to do this?
class Foo:
def foo(self, a, b):
myself = getattr(self, inspect.stack()[0][3])
argnames = inspect.getfullargspec(myself).args[1:]
d = {}
for argname in argnames:
d[argname] = locals()[argname]
log.debug(d)
That's six lines of code for something that should be a lot simpler.
Sure, I can hardcode the debugging code separately for each method, but it seems easier to use copy/paste. Besides, it's way too easy to leave out an argument or two when hardcoding, which could make the debugging more confusing.
I would also prefer to assign local variables instead of accessing the values using a kwargs dict, because the rest of the code (not shown) could get clunky real fast, and is partially copied/pasted.
What is the simplest way to do this?
An alternative:
from collections import OrderedDict
class Foo:
def foo(self, *args):
argnames = 'a b'.split()
kwargs = OrderedDict(zip(argnames, args))
log.debug(kwargs)
for argname, argval in kwargs.items():
locals()[argname] = argval
This saves one line per method, but at the expense of IDE autocompete/intellisense when calling the method.
As wpercy wrote, you can reduce the last three lines to a single line using a dict comprehension. The caveat is that it only works in some versions of Python.
However, in Python 3, a dict comprehension has its own namespace and locals wouldn't work. So a workaround is to put the locals func after the in:
from itertools import repeat
class Foo:
def foo(self, a, b):
myname = inspect.stack()[0][3]
argnames = inspect.getfullargspec(getattr(self, myname)).args[1:]
args = [(x, parent[x]) for x, parent in zip(argnames, repeat(locals()))]
log.debug('{}: {!s}'.format(myname, args))
This saves two lines per method.

Get array name in function it is passed to [duplicate]

I already read How to get a function name as a string?.
How can I do the same for a variable? As opposed to functions, Python variables do not have the __name__ attribute.
In other words, if I have a variable such as:
foo = dict()
foo['bar'] = 2
I am looking for a function/attribute, e.g. retrieve_name() in order to create a DataFrame in Pandas from this list, where the column names are given by the names of the actual dictionaries:
# List of dictionaries for my DataFrame
list_of_dicts = [n_jobs, users, queues, priorities]
columns = [retrieve_name(d) for d in list_of_dicts]
With Python 3.8 one can simply use f-string debugging feature:
>>> foo = dict()
>>> f'{foo=}'.split('=')[0]
'foo'
One drawback of this method is that in order to get 'foo' printed you have to add f'{foo=}' yourself. In other words, you already have to know the name of the variable. In other words, the above code snippet is exactly the same as just
>>> 'foo'
Even if variable values don't point back to the name, you have access to the list of every assigned variable and its value, so I'm astounded that only one person suggested looping through there to look for your var name.
Someone mentioned on that answer that you might have to walk the stack and check everyone's locals and globals to find foo, but if foo is assigned in the scope where you're calling this retrieve_name function, you can use inspect's current frame to get you all of those local variables.
My explanation might be a little bit too wordy (maybe I should've used a "foo" less words), but here's how it would look in code (Note that if there is more than one variable assigned to the same value, you will get both of those variable names):
import inspect
x, y, z = 1, 2, 3
def retrieve_name(var):
callers_local_vars = inspect.currentframe().f_back.f_locals.items()
return [var_name for var_name, var_val in callers_local_vars if var_val is var]
print(retrieve_name(y))
If you're calling this function from another function, something like:
def foo(bar):
return retrieve_name(bar)
foo(baz)
And you want the baz instead of bar, you'll just need to go back a scope further. This can be done by adding an extra .f_back in the caller_local_vars initialization.
See an example here: ideone
The only objects in Python that have canonical names are modules, functions, and classes, and of course there is no guarantee that this canonical name has any meaning in any namespace after the function or class has been defined or the module imported. These names can also be modified after the objects are created so they may not always be particularly trustworthy.
What you want to do is not possible without recursively walking the tree of named objects; a name is a one-way reference to an object. A common or garden-variety Python object contains no references to its names. Imagine if every integer, every dict, every list, every Boolean needed to maintain a list of strings that represented names that referred to it! It would be an implementation nightmare, with little benefit to the programmer.
TL;DR
Use the Wrapper helper from python-varname:
from varname.helpers import Wrapper
foo = Wrapper(dict())
# foo.name == 'foo'
# foo.value == {}
foo.value['bar'] = 2
For list comprehension part, you can do:
n_jobs = Wrapper(<original_value>)
users = Wrapper(<original_value>)
queues = Wrapper(<original_value>)
priorities = Wrapper(<original_value>)
list_of_dicts = [n_jobs, users, queues, priorities]
columns = [d.name for d in list_of_dicts]
# ['n_jobs', 'users', 'queues', 'priorities']
# REMEMBER that you have to access the <original_value> by d.value
I am the author of the python-varname package. Please let me know if you have any questions or you can submit issues on Github.
The long answer
Is it even possible?
Yes and No.
We are retrieving the variable names at runtime, so we need a function to be called to enable us to access the previous frames to retrieve the variable names. That's why we need a Wrapper there. In that function, at runtime, we are parsing the source code/AST nodes in the previous frames to get the exact variable name.
However, the source code/AST nodes in the previous frames are not always available, or they could be modified by other environments (e.g: pytest's assert statement). One simple example is that the codes run via exec(). Even though we are still able to retrieve some information from the bytecode, it needs too much effort and it is also error-prone.
How to do it?
First of all, we need to identify which frame the variable is given. It's not always simply the direct previous frame. For example, we may have another wrapper for the function:
from varname import varname
def func():
return varname()
def wrapped():
return func()
x = wrapped()
In the above example, we have to skip the frame inside wrapped to get to the right frame x = wrapped() so that we are able to locate x. The arguments frame and ignore of varname allow us to skip some of these intermediate frames. See more details in the README file and the API docs of the package.
Then we need to parse the AST node to locate where the variable is assigned value (function call) to. It's not always just a simple assignment. Sometimes there could be complex AST nodes, for example, x = [wrapped()]. We need to identify the correct assignment by traversing the AST tree.
How reliable is it?
Once we identify the assignment node, it is reliable.
varname is all depending on executing package to look for the node. The node executing detects is ensured to be the correct one (see also this).
It partially works with environments where other AST magics apply, including pytest, ipython, macropy, birdseye, reticulate with R, etc. Neither executing nor varname is 100% working with those environments.
Do we need a package to do it?
Well, yes and no, again.
If your scenario is simple, the code provided by #juan Isaza or #scohe001 probably is enough for you to work with the case where a variable is defined at the direct previous frame and the AST node is a simple assignment. You just need to go one frame back and retrieve the information there.
However, if the scenario becomes complicated, or we need to adopt different application scenarios, you probably need a package like python-varname, to handle them. These scenarios may include to:
present more friendly messages when the source code is not available or AST nodes are not accessible
skip intermediate frames (allows the function to be wrapped or called in other intermediate frames)
automatically ignores calls from built-in functions or libraries. For example: x = str(func())
retrieve multiple variable names on the left-hand side of the assignment
etc.
How about the f-string?
Like the answer provided by #Aivar Paalberg. It's definitely fast and reliable. However, it's not at runtime, meaning that you have to know it's foo before you print the name out. But with varname, you don't have to know that variable is coming:
from varname import varname
def func():
return varname()
# In external uses
x = func() # 'x'
y = func() # 'y'
Finally
python-varname is not only able to detect the variable name from an assignment, but also:
Retrieve variable names directly, using nameof
Detect next immediate attribute name, using will
Fetch argument names/sources passed to a function using argname
Read more from its documentation.
However, the final word I want to say is that, try to avoid using it whenever you can.
Because you can't make sure that the client code will run in an environment where the source node is available or AST node is accessible. And of course, it costs resources to parse the source code, identify the environment, retrieve the AST nodes and evaluate them when needed.
On python3, this function will get the outer most name in the stack:
import inspect
def retrieve_name(var):
"""
Gets the name of var. Does it from the out most frame inner-wards.
:param var: variable to get name from.
:return: string
"""
for fi in reversed(inspect.stack()):
names = [var_name for var_name, var_val in fi.frame.f_locals.items() if var_val is var]
if len(names) > 0:
return names[0]
It is useful anywhere on the code. Traverses the reversed stack looking for the first match.
I don't believe this is possible. Consider the following example:
>>> a = []
>>> b = a
>>> id(a)
140031712435664
>>> id(b)
140031712435664
The a and b point to the same object, but the object can't know what variables point to it.
def name(**variables):
return [x for x in variables]
It's used like this:
name(variable=variable)
>> my_var = 5
>> my_var_name = [ k for k,v in locals().items() if v == my_var][0]
>> my_var_name
'my_var'
In case you get an error if myvar points to another variable, try this (suggested by #mherzog)-
>> my_var = 5
>> my_var_name = [ k for k,v in locals().items() if v is my_var][0]
>> my_var_name
'my_var'
locals() - Return a dictionary containing the current scope's local variables.
by iterating through this dictionary we can check the key which has a value equal to the defined variable, just extracting the key will give us the text of variable in string format.
from (after a bit changes)
https://www.tutorialspoint.com/How-to-get-a-variable-name-as-a-string-in-Python
I wrote the package sorcery to do this kind of magic robustly. You can write:
from sorcery import dict_of
columns = dict_of(n_jobs, users, queues, priorities)
and pass that to the dataframe constructor. It's equivalent to:
columns = dict(n_jobs=n_jobs, users=users, queues=queues, priorities=priorities)
Here's one approach. I wouldn't recommend this for anything important, because it'll be quite brittle. But it can be done.
Create a function that uses the inspect module to find the source code that called it. Then you can parse the source code to identify the variable names that you want to retrieve. For example, here's a function called autodict that takes a list of variables and returns a dictionary mapping variable names to their values. E.g.:
x = 'foo'
y = 'bar'
d = autodict(x, y)
print d
Would give:
{'x': 'foo', 'y': 'bar'}
Inspecting the source code itself is better than searching through the locals() or globals() because the latter approach doesn't tell you which of the variables are the ones you want.
At any rate, here's the code:
def autodict(*args):
get_rid_of = ['autodict(', ',', ')', '\n']
calling_code = inspect.getouterframes(inspect.currentframe())[1][4][0]
calling_code = calling_code[calling_code.index('autodict'):]
for garbage in get_rid_of:
calling_code = calling_code.replace(garbage, '')
var_names, var_values = calling_code.split(), args
dyn_dict = {var_name: var_value for var_name, var_value in
zip(var_names, var_values)}
return dyn_dict
The action happens in the line with inspect.getouterframes, which returns the string within the code that called autodict.
The obvious downside to this sort of magic is that it makes assumptions about how the source code is structured. And of course, it won't work at all if it's run inside the interpreter.
This function will print variable name with its value:
import inspect
def print_this(var):
callers_local_vars = inspect.currentframe().f_back.f_locals.items()
print(str([k for k, v in callers_local_vars if v is var][0])+': '+str(var))
***Input & Function call:***
my_var = 10
print_this(my_var)
***Output**:*
my_var: 10
>>> locals()['foo']
{}
>>> globals()['foo']
{}
If you wanted to write your own function, it could be done such that you could check for a variable defined in locals then check globals. If nothing is found you could compare on id() to see if the variable points to the same location in memory.
If your variable is in a class, you could use className.dict.keys() or vars(self) to see if your variable has been defined.
I have a method, and while not the most efficient...it works! (and it doesn't involve any fancy modules).
Basically it compares your Variable's ID to globals() Variables' IDs, then returns the match's name.
def getVariableName(variable, globalVariables=globals().copy()):
""" Get Variable Name as String by comparing its ID to globals() Variables' IDs
args:
variable(var): Variable to find name for (Obviously this variable has to exist)
kwargs:
globalVariables(dict): Copy of the globals() dict (Adding to Kwargs allows this function to work properly when imported from another .py)
"""
for globalVariable in globalVariables:
if id(variable) == id(globalVariables[globalVariable]): # If our Variable's ID matches this Global Variable's ID...
return globalVariable # Return its name from the Globals() dict
In Python, the def and class keywords will bind a specific name to the object they define (function or class). Similarly, modules are given a name by virtue of being called something specific in the filesystem. In all three cases, there's an obvious way to assign a "canonical" name to the object in question.
However, for other kinds of objects, such a canonical name may simply not exist. For example, consider the elements of a list. The elements in the list are not individually named, and it is entirely possible that the only way to refer to them in a program is by using list indices on the containing list. If such a list of objects was passed into your function, you could not possibly assign meaningful identifiers to the values.
Python doesn't save the name on the left hand side of an assignment into the assigned object because:
It would require figuring out which name was "canonical" among multiple conflicting objects,
It would make no sense for objects which are never assigned to an explicit variable name,
It would be extremely inefficient,
Literally no other language in existence does that.
So, for example, functions defined using lambda will always have the "name" <lambda>, rather than a specific function name.
The best approach would be simply to ask the caller to pass in an (optional) list of names. If typing the '...','...' is too cumbersome, you could accept e.g. a single string containing a comma-separated list of names (like namedtuple does).
I think it's so difficult to do this in Python because of the simple fact that you never will not know the name of the variable you're using. So, in his example, you could do:
Instead of:
list_of_dicts = [n_jobs, users, queues, priorities]
dict_of_dicts = {"n_jobs" : n_jobs, "users" : users, "queues" : queues, "priorities" : priorities}
Many of the answers return just one variable name. But that won't work well if more than one variable have the same value. Here's a variation of Amr Sharaki's answer which returns multiple results if more variables have the same value.
def getVariableNames(variable):
results = []
globalVariables=globals().copy()
for globalVariable in globalVariables:
if id(variable) == id(globalVariables[globalVariable]):
results.append(globalVariable)
return results
a = 1
b = 1
getVariableNames(a)
# ['a', 'b']
just another way to do this based on the content of input variable:
(it returns the name of the first variable that matches to the input variable, otherwise None. One can modify it to get all variable names which are having the same content as input variable)
def retrieve_name(x, Vars=vars()):
for k in Vars:
if isinstance(x, type(Vars[k])):
if x is Vars[k]:
return k
return None
If the goal is to help you keep track of your variables, you can write a simple function that labels the variable and returns its value and type. For example, suppose i_f=3.01 and you round it to an integer called i_n to use in a code, and then need a string i_s that will go into a report.
def whatis(string, x):
print(string+' value=',repr(x),type(x))
return string+' value='+repr(x)+repr(type(x))
i_f=3.01
i_n=int(i_f)
i_s=str(i_n)
i_l=[i_f, i_n, i_s]
i_u=(i_f, i_n, i_s)
## make report that identifies all types
report='\n'+20*'#'+'\nThis is the report:\n'
report+= whatis('i_f ',i_f)+'\n'
report+=whatis('i_n ',i_n)+'\n'
report+=whatis('i_s ',i_s)+'\n'
report+=whatis('i_l ',i_l)+'\n'
report+=whatis('i_u ',i_u)+'\n'
print(report)
This prints to the window at each call for debugging purposes and also yields a string for the written report. The only downside is that you have to type the variable twice each time you call the function.
I am a Python newbie and found this very useful way to log my efforts as I program and try to cope with all the objects in Python. One flaw is that whatis() fails if it calls a function described outside the procedure where it is used. For example, int(i_f) was a valid function call only because the int function is known to Python. You could call whatis() using int(i_f**2), but if for some strange reason you choose to define a function called int_squared it must be declared inside the procedure where whatis() is used.
Maybe this could be useful:
def Retriever(bar):
return (list(globals().keys()))[list(map(lambda x: id(x), list(globals().values()))).index(id(bar))]
The function goes through the list of IDs of values from the global scope (the namespace could be edited), finds the index of the wanted/required var or function based on its ID, and then returns the name from the list of global names based on the acquired index.
Whenever I have to do it, mostly while communicating json schema and constants with the frontend I define a class as follows
class Param:
def __init__(self, name, value):
self.name = name
self.value = value
Then define the variable with name and value.
frame_folder_count = Param({'name':'frame_folder_count', 'value':10})
Now you can access the name and value using the object.
>>> frame_folder_count.name
'frame_folder_count'
>>> def varname(v, scope=None):
d = globals() if not scope else vars(scope); return [k for k in d if d[k] == v]
...
>>> d1 = {'a': 'ape'}; d2 = {'b': 'bear'}; d3 = {'c': 'cat'}
>>> ld = [d1, d2, d3]
>>> [varname(d) for d in ld]
[['d1'], ['d2'], ['d3']]
>>> d5 = d3
>>> [varname(d) for d in ld]
[['d1'], ['d2'], ['d3', 'd5']]
>>> def varname(v, scope=None):
d = globals() if not scope else vars(scope); return [k for k in d if d[k] is v]
...
>>> [varname(d) for d in ld]
[['d1'], ['d2'], ['d3', 'd5']]
As you see and is noted here, there can be multiple variables with the same value or even address, so using a wrapper to keep the names with the data is best.
Following method will not return the name of variable but using this method you can create data frame easily if variable is available in global scope.
class CustomDict(dict):
def __add__(self, other):
return CustomDict({**self, **other})
class GlobalBase(type):
def __getattr__(cls, key):
return CustomDict({key: globals()[key]})
def __getitem__(cls, keys):
return CustomDict({key: globals()[key] for key in keys})
class G(metaclass=GlobalBase):
pass
x, y, z = 0, 1, 2
print('method 1:', G['x', 'y', 'z']) # Outcome: method 1: {'x': 0, 'y': 1, 'z': 2}
print('method 2:', G.x + G.y + G.z) # Outcome: method 2: {'x': 0, 'y': 1, 'z': 2}
A = [0, 1]
B = [1, 2]
pd.DataFrame(G.A + G.B) # It will return a data frame with A and B columns
Some of the previous cases would fail if there are two variables with the same value. So it is convenient to alert it:
Defining function:
# Variable to string of variable name
def var_name(variable,i=0):
results = []
for name in globals():
if eval(name) == variable:
results.append(name)
if len(results) > 1:
print('Warning:' )
print(' var_name() has found',len(results), 'possible outcomes.')
print(' Please choose the suitable parameter "i". Where "i" is the index')
print(' that matches your choice from the list below.')
print(' ',results) ; print('')
return results[i]
Use:
var_1 = 10
var_name(var_1) # Output will be "var_1"
If you have 2 variables with the same value like var_1 = 8 and var_2 = 8, then a warning will appear.
var_1 = 8
var_2 = 8
var_name(var_2) # Output will be "var_1" too but Warning will appear
You can get your variable as kwargs and return it as string:
var=2
def getVarName(**kwargs):
return list(kwargs.keys())[0]
print (getVarName(var = var))
Note: variable name must be equal to itself.
I try to get name from inspect locals, but it cann't process var likes a[1], b.val.
After it, I got a new idea --- get var name from the code, and I try it succ!
code like below:
#direct get from called function code
def retrieve_name_ex(var):
stacks = inspect.stack()
try:
func = stacks[0].function
code = stacks[1].code_context[0]
s = code.index(func)
s = code.index("(", s + len(func)) + 1
e = code.index(")", s)
return code[s:e].strip()
except:
return ""
You can try the following to retrieve the name of a function you defined (does not work for built-in functions though):
import re
def retrieve_name(func):
return re.match("<function\s+(\w+)\s+at.*", str(func)).group(1)
def foo(x):
return x**2
print(retrieve_name(foo))
# foo
When finding the name of a variable from its value,
you may have several variables equal to the same value,
for example var1 = 'hello' and var2 = 'hello'.
My solution:
def find_var_name(val):
dict_list = []
global_dict = dict(globals())
for k, v in global_dict.items():
dict_list.append([k, v])
return [item[0] for item in dict_list if item[1] == val]
var1 = 'hello'
var2 = 'hello'
find_var_name('hello')
Outputs
['var1', 'var2']
Compressed version of iDilip's answer:
import inspect
def varname(x):
return [k for k,v in inspect.currentframe().f_back.f_locals.items() if v is x][0]
hi = 123
print(varname(hi))
It's totally possible to get the name of an instance variable, so long as it is the property of a class.
I got this from Effective Python by Brett Slatkin. Hope it helps someone:
The class must implement the get, set, and set_name dunder methods, which are part of the "Descriptor Protocol"
This worked when I ran it:
class FieldThatKnowsItsName():
def __init__(self):
self.name = None
self._value= None
self.owner = None
def __set_name__(self, owner, name):
self.name = name
self.owner = owner
self.owner.fields[self.name] = self
def __get__(self, instance, instance_type):
return self
def __set__(self, instance, value):
self = value
class SuperTable:
fields = {}
field_1=FieldThatKnowsItsName()
field_2=FieldThatKnowsItsName()
table = SuperTable()
print(table.field_1.name)
print(table.field_2.name)
You can then add methods and or extend your datatype as you like.
As a bonus, the set_name(self, owner, name) dunder also passes the parent instance, so the Field class instance can register itself with the parent.
I got this from Effective Python by Brett Slatkin. It took a while to figure out how to implement.
How can I do the same for a variable? As opposed to functions, Python variables do not have the __name__ attribute.
The problem comes up because you are confused about terminology, semantics or both.
"variables" don't belong in the same category as "functions". A "variable" is not a thing that takes up space in memory while the code is running. It is just a name that exists in your source code - so that when you're writing the code, you can explain which thing you're talking about. Python uses names in the source code to refer to (i.e., give a name to) values. (In many languages, a variable is more like a name for a specific location in memory where the value will be stored. But Python's names actually name the thing in question.)
In Python, a function is a value. (In some languages, this is not the case; although there are bytes of memory used to represent the actual executable code, it isn't a discrete chunk of memory that your program logic gets to interact with directly.) In Python, every value is an object, meaning that you can assign names to it freely, pass it as an argument, return it from a function, etc. (In many languages, this is not the case.) Objects in Python have attributes, which are the things you access using the . syntax. Functions in Python have a __name__ attribute, which is assigned when the function is created. Specifically, when a def statement is executed (in most languages, creation of a function works quite differently), the name that appears after def is used as a value for the __name__ attribute, and also, independently, as a variable name that will get the function object assigned to it.
But most objects don't have an attribute like that.
In other words, if I have a variable such as:
That's the thing: you don't "have" the variable in the sense that you're thinking of. You have the object that is named by that variable. Anything else depends on the information incidentally being stored in some other object - such as the locals() of the enclosing function. But it would be better to store the information yourself. Instead of relying on a variable name to carry information for you, explicitly build the mapping between the string name you want to use for the object, and the object itself.

Is **kwargs in Python eager or lazy?

I'm trying to execute a Django query:
#att.name is a string
kwargs = {att.name : F('node__product__' + att.name) }
temps = Temp.objects.exclude(**kwargs)
I'm wondering if this is correct. All the examples I've seen so far use strings in the values, but what if the value is a function, should I make the value a string, like this?
kwargs = {att.name : 'F('node__product__' + att.name)' }
Does the function in the value get executed eagerly in the argument list or does it wait until it's needed?
In python, expressions are always evaluated eagerly. There is no lazy evaluation in python. Some libraries get around the absence of this useful feature by allowing values that should be of some specific type to instead be a string, which it later evals. You can declare some parts of a django model this way (so that you can declare mutually referential foreign key relationships), but django's query interface does not. You wouldn't normally be able to use this kind of technique when a string is "expected", because you'd have no way to distinguish string values from strings that should be evaled.
Only the first one is correct:
kwargs = {att.name : F('node__product__' + att.name) }
temps = Temp.objects.exclude(**kwargs)
I don't understand how lazy/eager is related to this question.
Function arguments are evaluated before the function is called:
>>> def foo(x): return x
...:
>>> foo(sum(range(10)))
<<< 45
When you create a dict everything is evaluated at that moment:
>>> kwargs = {'key': sum(range(10))}
>>> kwargs
<<< {'key': 45}
So...
>>> def foo(**kwargs): return kwargs
...:
>>> foo(**kwargs)
<<< {'key': 45}
I am not sure if this question is because you are curious or if you are trying to find ways to load querys. So I will take a guess:
I would be using the Q() function and maybe load them on args to later use a for to set them on the Temp.objects.exclude, would be something like this:
def mylolfunc(self, *args,**kwargs):
queryset = Q()
for query in args:
queryset |= query
return Temp.objects.filter(queryset)
Where query is a Q(att.name = F('node_product_' + att.name)) or a lot more of Q objects.
Here is the documentation if you want to check it out.
This query will not execute until you ask for information, so it would be lazy. by that I mean until you do something like
myquery = mylolfunc(*args)
myquery[0] #-----> executes query here

Categories