I would like to add style to my geojson through Python. The current features currently do not have any style elements. I want to append style and then fill. However, when I do, nothing is added to the file. It is the same as before
import json
with open('test.json') as f:
data = json.load(f)
for feature in data['features']:
feature.append("style")
feature["style"].append({"fill":color})
Sample GeoJson
{
"type": "FeatureCollection",
"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } },
"features": [
{ "type": "Feature", "properties": { "STATEFP": "17", "COUNTYFP": "019", "TRACTCE": "005401", "BLKGRPCE": "2", "GEOID": "170190054012", "NAMELSAD": "Block Group 2", "MTFCC": "G5030", "FUNCSTAT": "S", "ALAND": 574246.000000, "AWATER": 4116.000000, "INTPTLAT": "+40.1238204", "INTPTLON": "-088.2038105", "GISJOIN": "G17001900054012", "STUSPS": "IL", "SHAPE_AREA": 578361.706954, "SHAPE_LEN": 3489.996273, "census_block_income_YEAR": "2009-2013", "census_block_income_STATE": "Illinois", "census_block_income_STATEA": 17, "census_block_income_COUNTY": "Champaign County"}}]}
I'm trying to get the end results to be:
{
"type": "FeatureCollection",
"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } },
"features": [
{ "type": "Feature", "properties": { "STATEFP": "17", "COUNTYFP": "019", "TRACTCE": "005401", "BLKGRPCE": "2", "GEOID": "170190054012", "NAMELSAD": "Block Group 2", "MTFCC": "G5030", "FUNCSTAT": "S", "ALAND": 574246.000000, "AWATER": 4116.000000, "INTPTLAT": "+40.1238204", "INTPTLON": "-088.2038105", "GISJOIN": "G17001900054012", "STUSPS": "IL", "SHAPE_AREA": 578361.706954, "SHAPE_LEN": 3489.996273, "census_block_income_YEAR": "2009-2013", "census_block_income_STATE": "Illinois", "census_block_income_STATEA": 17, "census_block_income_COUNTY": "Champaign County"},"style"{fill:"red"}}]}
When you type
for feature in data['features']:
every feature will be an item of the list that is data['features']. Each item there is a dictionary, so you are calling the wrong method (append is a method of lists).
You could write
for feature in data['features']:
feature.update({"style": {"fill": "red"}})
Finally, if you want the file from which you got the initial json structure to be altered, make sure to write the now updated data structure back to a file:
with open('output2.json', 'w') as f:
json.dump(data, f)
You are working with list of dictionaries here, dictionary hasn't method append, you can create new key like here:
for feature in data['features']:
feature["style"] = {"fill":color}
Seems that you need rewrite file with JSON:
with open('test.json', 'w') as f:
json.dump(data, f)
There is no append method in a dictionary. One should use update.
import pprint as pp
for feature in data['features']:
feature.update({'style':{'fill': 'red'}})
pp.pprint(data)
Output:
{'crs': {'properties': {'name': 'urn:ogc:def:crs:OGC:1.3:CRS84'},
'type': 'name'},
'features': [{'properties': {'ALAND': 574246.0,
'AWATER': 4116.0,
'BLKGRPCE': '2',
'COUNTYFP': '019',
'FUNCSTAT': 'S',
'GEOID': '170190054012',
'GISJOIN': 'G17001900054012',
'INTPTLAT': '+40.1238204',
'INTPTLON': '-088.2038105',
'MTFCC': 'G5030',
'NAMELSAD': 'Block Group 2',
'SHAPE_AREA': 578361.706954,
'SHAPE_LEN': 3489.996273,
'STATEFP': '17',
'STUSPS': 'IL',
'TRACTCE': '005401',
'census_block_income_COUNTY': 'Champaign County',
'census_block_income_STATE': 'Illinois',
'census_block_income_STATEA': 17,
'census_block_income_YEAR': '2009-2013'},
'style': {'fill': 'red'},
'type': 'Feature'}],
'type': 'FeatureCollection'}
You never write your changes back to the file. Add the following to the end of your code:
with open('test.json','w') as f:
json.dump(data, f)
Related
I have a csv file with some "id". I imported a json file and I needed to filter from this Json only the ids that are in the worksheet
Does anyone knows how to do that? I have no idea, I am very new in python. I am usin Jupyter notebook
How to filter data fetching from variable var_filter
import json
import pandas as pd
from IPython.display import display
# read csv with ids
var_filter = pd.read_csv('file.csv')
display(act_filter)
# Load json
with open('file.json') as f:
data = json.load(f)
print(data)
The json structure is:
[
{
"id": "179328741654819",
"t_values": [
{
"t_id": "963852456741",
"value": "499.66",
"date_timestamp": "2020-09-22T15:18:17",
"type": "in"
},
{
"t_id": "852951753456",
"value": "1386.78",
"date_timestamp": "2020-10-31T14:46:44",
"type": "in"
}
]
},
{
"id": "823971648264792",
"t_values": [
{
"t_id": "753958561456",
"value": "672.06",
"date_timestamp": "2020-03-16T22:41:16",
"type": "in"
},
{
"t_id": "321147951753",
"value": "773.88",
"date_timestamp": "2020-05-08T18:29:31",
"type": "out"
},
{
"t_id": "258951753852",
"value": "733.13",
"date_timestamp": null,
"type": "in"
}
]
}
]
You can iterate over the elements in the data variable and check if its id value is in the dataframe's id column. Simple method below, see this article for other methods
Note that I convert the value of the JSONs id to an int as that is what pandas is using as value type for the column
code
import json
from pprint import pprint
import pandas as pd
var_filter = pd.read_csv("id.csv")
# Load json
with open("data.json") as f:
data = json.load(f)
result = []
for elem in data:
if int(elem["id"]) in var_filter["id"].values:
result.append(elem)
pprint(result)
id.csv
id
823971648264792
output
[{'id': '823971648264792',
't_values': [{'date_timestamp': '2020-03-16T22:41:16',
't_id': '753958561456',
'type': 'in',
'value': '672.06'},
{'date_timestamp': '2020-05-08T18:29:31',
't_id': '321147951753',
'type': 'out',
'value': '773.88'},
{'date_timestamp': None,
't_id': '258951753852',
'type': 'in',
'value': '733.13'}]}]
{
"currency": {
"Wpn": {
"units": "KB_per_sec",
"type": "scalar",
"value": 528922.0,
"direction": "up"
}
},
"catalyst": {
"Wpn": {
"units": "ns",
"type": "scalar",
"value": 70144.0,
"direction": "down"
}
},
"common": {
"Wpn": {
"units": "ns",
"type": "scalar",
"value": 90624.0,
"direction": "down"
}
}
}
So I have to basically convert nested json into excel, for which my approach was to flatten json file using json_normalise , but as I am new to all these...I always seem to end up in KeyError...
Here's my code so far , assuming that the file is named as json.json
import requests
from pandas import json_normalize
with open('json.json', 'r') as f:
data = json.load(f)
df = pd.DataFrame(sum([i[['Wpn'], ['value']] for i in data], []))
df.to_excel('Ai.xlsx')
I'm trying to get output on an excel sheet consisting of currency and common along with their resp. values as an output
I know , there are alot of similar questions , but trust me I have tried most of them and yet I didn't get any desirable output... Plz just help me in this
Try:
import json
import pandas as pd
with open('json.json', 'r') as f: data = json.load(f)
data = [{'key': k, 'wpn_value': v['Wpn']['value']} for k, v in data.items()]
print(data)
# here, the variable data looks like
# [{'key': 'currency', 'wpn_value': 528922.0}, {'key': 'catalyst', 'wpn_value': 70144.0}, {'key': 'common', 'wpn_value': 90624.0}]
df = pd.DataFrame(data).set_index('key') # set_index() optional
df.to_excel('Ai.xlsx')
The result looks like
key
wpn_value
currency
528922
catalyst
70144
common
90624
I have a json file with players structured as so
[
{
"Player_Name": "Rory McIlroy",
"Tournament": [
{
"Name": "Arnold Palmer Invitational presented by Mastercard",
"Points": "68.10",
"Salary": "12200.00"
},
{
"Name": "World Golf Championships-Mexico Championship",
"Points": "103.30",
"Salary": "12200.00"
},
{
"Name": "The Genesis Invitational",
"Points": "88.60",
"Salary": "12200.00"
},
{
"Name": "Farmers Insurance Open",
"Points": "107.30",
"Salary": "12200.00"
},
{
"Name": "World Golf Championships-HSBC Champions",
"Points": "138.70",
"Salary": "12400.00"
},
{
"Name": "The ZOZO Championship",
"Points": "103.40",
"Salary": "12300.00"
}
]
}]
When I run this code
import json
import numpy as np
import pandas as pd
from itertools import groupby
# using json open the player objects file and set it equal to data
with open('Active_PGA_Player_Objects.json') as json_file:
data = json.load(json_file)
with open('Players_DK.json') as json_file:
Players_DK = json.load(json_file)
results = []
for k,g in groupby(sorted(data, key=lambda x:x['Player_Name']), lambda x:x['Player_Name']):
results.append({'Player_Name':k, 'Tournament':[i['Tournament'][0] for i in g]})
for obj in results:
for x in Players_DK:
if obj['Player_Name'] == x['Name']:
obj['Average'] = x['AvgPointsPerGame']
i = 0
points_results = []
while i < len(results):
j = 0
while j < len(results[i]['Tournament']):
difference = (int(float(results[i]['Tournament'][j]['Points'])) - (results[i]['Average']))
points_results.append(round(difference,2))
j += 1
i += 1
with open('PGA_Player_Objects_w_Average.json', 'w') as my_file:
json.dump(results, my_file)
my list comes back like this
[{
"Player_Name": "Rory McIlroy",
"Tournament": [
{
"Name": "Arnold Palmer Invitational presented by Mastercard",
"Points": "68.10",
"Salary": "12200.00"
}
],
"Average": 96.19
}]
Can someone explain to me why when I update the specific dictionary it deletes all but the first value from the nested Tournament list? My goal here is to add each players average to their corresponding dictionary so that I can take each average and subtract it from each score. When I try to do this though I'm only able to perform it on the one value left in the list.
Just for what it's worth, I'd go back and really think about what each line is really doing. You're also making things harder on yourself by calling variables obj or x. Calculating the average can be done like:
for player in data: # data is poorly named, try players or players_data
player['Average'] = sum(float(tourny['Points']) for tourny in player['Tournament']) / len(player['Tournament'])
for tourny in player['Tournament']:
tourny['Difference'] = float(tourny['Points']) - float(player['Average'])
leaving you with:
{'Player_Name': 'Rory McIlroy',
'Tournament': [{
'Name': 'Arnold Palmer Invitational presented by Mastercard',
'Points': '68.10',
'Salary': '12200.00',
'Difference': -33.46666666666667},
{
'Name': 'World Golf Championships-Mexico Championship',
'Points': '103.30',
'Salary': '12200.00',
'Difference': 1.7333333333333343}, # .....etc
'Average': 101.566666666666666
}
When you use names in your code that describe what they're representing, a huge number of optimizations become immediately obvious. Give it a go!
I'm having trouble to generate a well formatted CSV file out of some data i fetched from the leadfeeder API. In the csv file that is currently being created, not all values are in one row, id and leads are one column higher then the rest. Like here:
CSV Output
I later also like to load another json file and use it to map some values over the id and then put also the visits per lead into my csv file.
Do you also have some advice for this?
This is my code so far:
import json
import csv
csv_columns = ['name', 'industry', 'website_url', 'status', 'crm_lead_id', 'crm_organization_id', 'employee_count', 'id', 'type' ]
with open('data.json', 'r') as d:
d = json.load(d)
csv_file = 'lead_daten.csv'
try:
with open('leads.csv', 'w', newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=csv_columns, extrasaction='ignore')
writer.writeheader()
for item in d['data']:
writer.writerow(item)
writer.writerow(item['attributes'])
except IOError:
print("I/O error")
My json data has the following structure:
I need also some of the nested values like the id in relationships!
{
"data": [
{
"attributes": {
"crm_lead_id": null,
"crm_organization_id": null,
"employee_count": 5000,
"facebook_url": null,
"first_visit_date": "2019-01-31",
"industry": "Furniture",
"last_visit_date": "2019-01-31",
"linkedin_url": null,
"name": "Example Inc",
"phone": null,
"status": "new",
"twitter_handle": "example",
"website_url": "http://www.example.com"
},
"id": "s7ybF6VxqhQqVM1m1BCnZT_8SRo9XnuoxSUP5ChvERZS9",
"relationships": {
"location": {
"data": {
"id": "8SRo9XnuoxSUP5ChvERZS9",
"type": "locations"
}
}
},
"type": "leads"
},
{
"attributes": {
"crm_lead_id": null,
When you write to a csv, you must write one full row at a time. You current code writes one row with only id and type, and then a different row with the other fields.
The correct way is to first fully build a dictionary containing all the fields and only then write it in one single operation. Code could be:
...
writer.writeheader()
for item in d['data']:
item.update(item["attributes"])
writer.writerow(item)
...
I have a simple Json file
input.json
[
{
"title": "Person",
"type": "object",
"required": "firstName",
"min_max": "200/600"
},
{
"title": "Person1",
"type": "object2",
"required": "firstName1",
"min_max": "230/630"
},
{
"title": "Person2",
"type": "object2",
"required": "firstName2",
"min_max": "201/601"
},
{
"title": "Person3",
"type": "object3",
"required": "firstName3",
"min_max": "2000/6000"
},
{
"title": "Person4",
"type": "object4",
"required": "firstName4",
"min_max": "null"
},
{
"title": "Person4",
"type": "object4",
"required": "firstName4",
"min_max": "1024 / 256"
},
{
"title": "Person4",
"type": "object4",
"required": "firstName4",
"min_max": "0"
}
]
I am trying to create a new json file with new data. I would like to split "min_max" into two different fields ie., min and max. Below is the code written in python.
import json
input=open('input.json', 'r')
output=open('test.json', 'w')
json_decode=json.load(input)
result = []
for item in json_decode:
my_dict={}
my_dict['title']=item.get('title')
my_dict['min']=item.get('min_max')
my_dict['max']=item.get('min_max')
result.append(my_dict)
data=json.dumps(result, output)
output.write(data)
output.close()
How do I split the string into two different values. Also, is there any possibility of printing the json output in order.
Your JSON file seems to be written wrong (the example one). It is not a list. It is just a single associated array (or dictionary, in Python). Additionally, you don't seem to be using json.dumps properly. It only takes 1 argument. I also figured it would be easier to just create the dictionary inline. And you don't seem to be splitting the min_max properly.
Here's the correct input:
[{
"title": "Person",
"type": "object",
"required": "firstName",
"min_max": "20/60"
}]
Here's your new code:
import json
with open('input.json', 'r') as inp, open('test.json', 'w') as outp:
json_decode=json.load(inp)
result = []
for temp in json_decode:
minMax = temp["min_max"].split("/")
result.append({
"title":temp["title"],
"min":minMax[0],
"max":minMax[1]
})
data=json.dumps(result)
outp.write(data)
Table + Python == Pandas
import pandas as pd
# Read old json to a dataframe
df = pd.read_json("input.json")
# Create two new columns based on min_max
# Removes empty spaces with strip()
# Returns [None,None] if length of split is not equal to 2
df['min'], df['max'] = (zip(*df['min_max'].apply
(lambda x: [i.strip() for i in x.split("/")]
if len(x.split("/"))== 2 else [None,None])))
# 'delete' (drop) min_max column
df.drop('min_max', axis=1, inplace=True)
# output to json again
df.to_json("test.json",orient='records')
Result:
[{'max': '600',
'min': '200',
'required': 'firstName',
'title': 'Person',
'type': 'object'},
{'max': '630',
'min': '230',
'required': 'firstName1',
'title': 'Person1',
'type': 'object2'},
{'max': '601',
'min': '201',
'required': 'firstName2',
'title': 'Person2',
'type': 'object2'},
{'max': '6000',
'min': '2000',
'required': 'firstName3',
'title': 'Person3',
'type': 'object3'},
{'max': None,
'min': None,
...
You can do something like this:
import json
nl=[]
for di in json.loads(js):
min_,sep,max_=map(lambda s: s.strip(), di['min_max'].partition('/'))
if sep=='/':
del di['min_max']
di['min']=min_
di['max']=max_
nl.append(di)
print json.dumps(nl)
This keeps the "min_max" values that cannot be separated into two values unchanged.