I made the following MRE to illustrate my problem. My Python code is taking a string, encrypting it with an ad-hoc created key and posting it to a Node server that is supposed to use the provided key for decryption.
Using the console output I can see that the Python output (key and encrypted message) are the same on both systems (after base64 conversion for transfer).
Also from another post on stackoverflow, I understand that the key generated by Pyhon is already base64 encoded and the decoded value needs to be split to extract the iv and key respectively.
However, I get an error saying that the iv length is invalid. I am not sure what I am doing wrong. Thanks for your hints.
Python Code fernet.py (Python 3.10.5 on Windows 11)
import requests
import base64
from cryptography.fernet import Fernet
def get_key():
key = Fernet.generate_key()
return key
def enc(input, key):
f = Fernet(key)
encrypted = f.encrypt(input.encode())
return encrypted
msg = "hello world"
key = get_key()
cypher = enc(msg, key)
print("msg: " + msg)
print("key: " + key.decode())
print("cyp: " + cypher.decode())
url='http://.../test'
headers = {'Content-type': 'application/json'}
r = requests.post(url, data={"key": key, "msg": base64.b64encode(cypher)})
Output:
msg: hello world
key: bOe3HCoveTPhHi04FvvG697O2rEkwF9vuXeZcGgbu9k=
cyp: gAAAAABi0WYLxwlMG7RGKqISZABsPlmenUmN8Ii81rJBIQdSPGzi1-IHss4atZuGp4eZIdaiR7mpBah6cQmlXxw2DzY3Ct9d7A==
Here is my node server (12.22.09 running on a Ubuntu 22.04 VM)
const express = require('express');
const url = require('url');
const crypto = require('crypto');
const app = express();
const port = 8088;
app.use(express.urlencoded({extended: true, limit:'100mb', parameterLimit:1000000}));
app.disable('x-powered-by');
function decrypt(message, fernet) {
let iv = Buffer.from(fernet, 'base64').toString('binary', 0, 16)
let key = Buffer.from(fernet, 'base64').toString('binary', 16,32);
let decoded_msg = Buffer.from(message, 'base64').toString('utf8');
let decipher = crypto.createDecipheriv('aes-128-cbc', key, iv);
let decrypted = decipher.update(decoded_msg, 'binary', 'utf8') + decipher.final('utf8');
console.log(decrypted);
return decrypted
}
app.post("/test", function(req, res) {
let fernet = req.body.key;
let message = req.body.msg;
console.log("key: " + fernet);
console.log("msg: " + Buffer.from(message, 'base64').toString('utf8'));
let dec = decrypt(message, fernet);
console.log("dec: " + dec);
res.writeHead(200, {"Content-Type": "application/json"});
res.end(JSON.stringify({"status": "OK"}));
});
app.listen(port, () => {
console.log("Listening on localhost:" + port);
});
Output:
key: bOe3HCoveTPhHi04FvvG697O2rEkwF9vuXeZcGgbu9k=
msg: gAAAAABi0WYLxwlMG7RGKqISZABsPlmenUmN8Ii81rJBIQdSPGzi1-IHss4atZuGp4eZIdaiR7mpBah6cQmlXxw2DzY3Ct9d7A==
Error: Invalid IV length
at Decipheriv.createCipherBase (internal/crypto/cipher.js:103:19)
at Decipheriv.createCipherWithIV (internal/crypto/cipher.js:121:20)
at new Decipheriv (internal/crypto/cipher.js:262:22)
at Object.createDecipheriv (crypto.js:131:10)
at decrypt (/.../app.js:55:24)
I am currently trying to use AES cryptography to encrypt and decrypt a string that always has a length of 9 characters. What I am trying to do is to encrypt the string in swift and then decrypt that encrypted string in python. I am using AES encryption with CryptoSwift and decrypting with PyCryptodome.
This is what my function in swift looks like:
import CryptoSwift
func crypto_testing() {
print("Cryptography!")
let ivString = "0000000000000000"
let keyString = "This is a key123"
let key = [UInt8](keyString.utf8)
let iv = [UInt8](ivString.utf8)
let stringToEncrypt = "123456789"
let enc = try! aesEncrypt(stringToEncrypt: stringToEncrypt, key: key, iv: iv)
print("ENCRYPT:",enc)
}
func aesEncrypt(stringToEncrypt: String, key: Array<UInt8>, iv: Array<UInt8>) throws -> String {
let data = stringToEncrypt.data(using: String.Encoding.utf8)
let encrypted = try AES(key: key, blockMode: CFB(iv: iv), padding: .noPadding).encrypt((data?.bytes)!)
return encrypted.toHexString() //result
}
The result I get from running the crypto_testing function is:
Cryptography!
ENCRYPT: 5d02105a49e55d2ff7
Furthermore, this is what my decryption function looks like in python:
import binascii
from Crypto.Cipher import AES
KEY = b'This is a key123'
IV = b'0000000000000000'
MODE = AES.MODE_CFB
def decrypt(key, iv, encrypted_text):
aes = AES.new(key, MODE, iv)
encrypted_text_bytes = binascii.a2b_hex(encrypted_text)
decrypted_text = aes.decrypt(encrypted_text_bytes)
return decrypted_text
decrypted_text = decrypt(KEY, IV, encrypted_text)
print(decrypted_text)
And the result from plugging in the encrypted message into the decrypt function like so:
>>> decrypt(b'This is a key123', b'0000000000000000', '5d02105a49e55d2ff7')
b'1%\xdc\xc8\xa0\r\xbd\xb8\xf0'
If anyone has any clue as to what is going wrong here that would be a great help.
Try this:
let stringToEncrypt = "123456789"
var aes: AES
var encrypted: [UInt8]
do {
aes = try AES(key: key, blockMode: CBC(iv: iv), padding: . noPadding)
encrypted = try aes.encrypt(stringToEncrypt.bytes)
}
let base64Encypted = encrypted.toBase64()```
Having a bit of trouble getting a AES cipher text to decrypt.
In this particular scenario, I am encrypting data on the client side with Crypto-JS and decrypting it back on a python server with PyCrypto.
encrypt.js:
var password = 'BJhtfRjKnTDTtPXUBnErKDxfkiMCOLyP';
var data = 'mytext';
var masterKey = CryptoJS.SHA256(password).toString();
// Derive keys for AES and HMAC
var length = masterKey.toString().length / 2
var encryptionKey = masterKey.substr(0, length);
var hmacKey = masterKey.substr(length);
var iv = CryptoJS.lib.WordArray.random(64/8);
var encrypted = CryptoJS.AES.encrypt(
data,
encryptionKey,
{
iv: iv,
mode: CryptoJS.mode.CFB
}
);
var concat = iv + encrypted;
// Calculate HMAC using iv and cipher text
var hash = CryptoJS.HmacSHA256(concat, hmacKey);
// Put it all together
var registrationKey = iv + encrypted + hash;
// Encode in Base64
var basemessage = btoa(registrationKey);
decrypt.py:
class AESCipher:
def __init__(self, key):
key_hash = SHA256.new(key).hexdigest()
# Derive keys
encryption_key = key_hash[:len(key_hash)/2]
self.key = encryption_key
self.hmac_key = key_hash[len(key_hash)/2:]
def verify_hmac(self, input_cipher, hmac_key):
# Calculate hash using inputted key
new_hash = HMAC.new(hmac_key, digestmod=SHA256)
new_hash.update(input_cipher)
digest = new_hash.hexdigest()
# Calculate hash using derived key from local password
local_hash = HMAC.new(self.hmac_key, digestmod=SHA256)
local_hash.update(input_cipher)
local_digest = local_hash.hexdigest()
return True if digest == local_digest else False
def decrypt(self, enc):
enc = base64.b64decode(enc)
iv = enc[:16]
hmac = enc[60:]
cipher_text = enc[16:60]
# Verify HMAC using concatenation of iv + cipher like in js
verified_hmac = self.verify_hmac((iv+cipher_text), self.hmac_key)
if verified_hmac:
cipher = AES.new(self.key, AES.MODE_CFB, iv)
return cipher.decrypt(cipher_text)
password = 'BJhtfRjKnTDTtPXUBnErKDxfkiMCOLyP'
input = 'long base64 registrationKey...'
cipher = AESCipher(password)
decrypted = cipher.decrypt(input)
I'm successful in re-calculating the HMAC but when I try and then decrypt the cipher I get something that seems encrypted with �'s in the result.
I was getting errors about input length of cipher text but when I switched to CFB mode that fixed it so I don't think it's a padding issue.
There are many problems with your code.
Client (JavaScript):
AES has a block size of 128 bit and CFB mode expects a full block for the IV. Use
var iv = CryptoJS.lib.WordArray.random(128/8);
The iv and hash variables are WordArray objects, but encrypted is not. When you force them to be converted to strings by concatenating them (+), iv and hash are Hex-encoded, but encrypted is formatted in an OpenSSL compatible format and Base64-encoded. You need to access the ciphertext property to get the encrypted WordArray:
var concat = iv + encrypted.ciphertext;
and
var registrationKey = iv + encrypted.ciphertext + hash;
registrationKey is hex-encoded. There is no need to encode it again with Base64 and bloat it even more:
var basemessage = registrationKey;
If you want to convert the hex encoded registrationKey to base64 encoding, use:
var basemessage = CryptoJS.enc.Hex.parse(registrationKey).toString(CryptoJS.enc.Base64);
concat is a hex-encoded string of the IV and ciphertext, because you forced the stringification by "adding" (+) iv and encrypted. The HmacSHA256() function takes either a WordArray object or a string. When you pass a string in, as you do, it will assume that the data is UTF-8 encoded and try to decode it as UTF-8. You need to parse the data yourself into a WordArray:
var hash = CryptoJS.HmacSHA256(CryptoJS.enc.Hex.parse(concat), hmacKey);
The CryptoJS.AES.encrypt() and CryptoJS.HmacSHA256() expect the key either as a WordArray object or as a string. As before, if the key is supplied as a string, a UTF-8 encoding is assumed which is not the case here. You better parse the strings into WordArrays yourself:
var encryptionKey = CryptoJS.enc.Hex.parse(masterKey.substr(0, length));
var hmacKey = CryptoJS.enc.Hex.parse(masterKey.substr(length));
Server (Python):
You're not verifying anything in verify_hmac(). You hash the same data with the same key twice. What you need to do is hash the IV+ciphertext and compare the result with the hash (called tag or HMAC-tag) that you slice off the full ciphertext.
def verify_hmac(self, input_cipher, mac):
# Calculate hash using derived key from local password
local_hash = HMAC.new(self.hmac_key, digestmod=SHA256)
local_hash.update(input_cipher)
local_digest = local_hash.digest()
return mac == local_digest
And later in decrypt():
verified_hmac = self.verify_hmac((iv+cipher_text), hmac)
You need to correctly slice off the MAC. The 60 that is hardcoded is a bad idea. Since you're using SHA-256 the MAC is 32 bytes long, so you do this
hmac = enc[-32:]
cipher_text = enc[16:-32]
The CFB mode is actually a set of similar modes. The actual mode is determined by the segment size. CryptoJS only supports segments of 128 bit. So you need tell pycrypto to use the same mode as in CryptoJS:
cipher = AES.new(self.key, AES.MODE_CFB, iv, segment_size=128)
If you want to use CFB mode with a segment size of 8 bit (default of pycrypto), you can use a modified version of CFB in CryptoJS from my project: Extension for CryptoJS
Full client code:
var password = 'BJhtfRjKnTDTtPXUBnErKDxfkiMCOLyP';
var data = 'mytext';
var masterKey = CryptoJS.SHA256(password).toString();
var length = masterKey.length / 2
var encryptionKey = CryptoJS.enc.Hex.parse(masterKey.substr(0, length));
var hmacKey = CryptoJS.enc.Hex.parse(masterKey.substr(length));
var iv = CryptoJS.lib.WordArray.random(128/8);
var encrypted = CryptoJS.AES.encrypt(
data,
encryptionKey,
{
iv: iv,
mode: CryptoJS.mode.CFB
}
);
var concat = iv + encrypted.ciphertext;
var hash = CryptoJS.HmacSHA256(CryptoJS.enc.Hex.parse(concat), hmacKey);
var registrationKey = iv + encrypted.ciphertext + hash;
console.log(CryptoJS.enc.Hex.parse(registrationKey).toString(CryptoJS.enc.Base64));
Full server code:
from Crypto.Cipher import AES
from Crypto.Hash import HMAC, SHA256
import base64
import binascii
class AESCipher:
def __init__(self, key):
key_hash = SHA256.new(key).hexdigest()
self.hmac_key = binascii.unhexlify(key_hash[len(key_hash)/2:])
self.key = binascii.unhexlify(key_hash[:len(key_hash)/2])
def verify_hmac(self, input_cipher, mac):
local_hash = HMAC.new(self.hmac_key, digestmod=SHA256)
local_hash.update(input_cipher)
local_digest = local_hash.digest()
return SHA256.new(mac).digest() == SHA256.new(local_digest).digest() # more or less constant-time comparison
def decrypt(self, enc):
enc = base64.b64decode(enc)
iv = enc[:16]
hmac = enc[-32:]
cipher_text = enc[16:-32]
verified_hmac = self.verify_hmac((iv+cipher_text), hmac)
if verified_hmac:
cipher = AES.new(self.key, AES.MODE_CFB, iv, segment_size=128)
return cipher.decrypt(cipher_text)
else:
return 'Bad Verify'
password = 'BJhtfRjKnTDTtPXUBnErKDxfkiMCOLyP'
input = "btu0CCFbvdYV4B/j7hezAra6Q6u6KB8n5QcyA32JFLU8QRd+jLGW0GxMQsTqxaNaNkcU2I9r1ls4QUPUpaLPQg=="
obj = AESCipher(password)
decryption = obj.decrypt(input)
print 'Decrypted message:', decryption
I'm trying to user CryptoJS under node to decrypt messages. I've got working Python code for decrypting the messages, but I need to run this under nodejs and would rather not call out to python for every message.
from Crypto.Cipher import AES
from Crypto import Random
import base64
encrypted='tBIFLLdvl/Bp8XAwXBYatbJSYkNTl9/dXkHZd4OjbZ0I9Jg6xrAx/bxuQHuZrNSzYZOBEKbyMlTTT8nQEDza8wQ22mrRaZlQqT3aWpdZe6aiWAEIvTHoQPglgVbz1HnYOHfZtGmu3a3cwfpFMK+ouczTWM545nWvG/I4zV4uFgna1rW9sznxumN/3RKSbC1USZ2TM9PrG967M5Mu+riQfh9i/yt6ubwj3kln2+C0WsRRr44ELyDKGdS69YExa535z42bfXTORjvaiMvizvkz55c343s0G4ziT6tLfDCGELsrAu/2NViKxJZZRg8Dmm0FnchB9OQ4ujVCBoDUXvfx3iHjzquC+OftbOovQUecoXb7UfuwIxMekgSJnonLC45S'
key = '22<\\09\\8e.==\\4#{{+!%i=]%Y/upi8!Z'
iv = '{+!%i=]%Y/upi8!Z'
cipher = AES.new(key, AES.MODE_CBC, iv)
print cipher.decrypt(base64.b64decode(encrypted))
This prints out my decrypted string from python. I'm sure my CryptoJS version is completely wrong at this point.
var node_cryptojs = require('node-cryptojs-aes');
var CryptoJS = node_cryptojs.CryptoJS;
var key = CryptoJS.enc.Latin1.parse('22<\\09\\8e.==\\4#{{+!%i=]%Y/upi8!Z');
var iv = CryptoJS.enc.Latin1.parse('{+!%i=]%Y/upi8!Z');
var encrypted = 'tBIFLLdvl/Bp8XAwXBYatbJSYkNTl9/dXkHZd4OjbZ0I9Jg6xrAx/bxuQHuZrNSzYZOBEKbyMlTTT8nQEDza8wQ22mrRaZlQqT3aWpdZe6aiWAEIvTHoQPglgVbz1HnYOHfZtGmu3a3cwfpFMK+ouczTWM545nWvG/I4zV4uFgna1rW9sznxumN/3RKSbC1USZ2TM9PrG967M5Mu+riQfh9i/yt6ubwj3kln2+C0WsRRr44ELyDKGdS69YExa535z42bfXTORjvaiMvizvkz55c343s0G4ziT6tLfDCGELsrAu/2NViKxJZZRg8Dmm0FnchB9OQ4ujVCBoDUXvfx3iHjzquC+OftbOovQUecoXb7UfuwIxMekgSJnonLC45S';
var plaintextArray = CryptoJS.AES.decrypt({ ciphertext: encrypted }, key, { iv: iv } );
console.log(CryptoJS.enc.Latin1.stringify(plaintextArray));
All I get out of this version is a bunch of garbled text such as
{)¬L¶u[?®º[ «)þd0³(Á¨ÕßgÙä Þ¨Þêâí99dáb*¦ÿßqf pr£Æ(> þ?C×$ÀM#<o¬_±À¥s=ê,)u<¯XÚîDÊP¢q|f̽^IiaJÂ__NîjbÉâïðp8å.º}ÜucósLÈqÁè&ô£LYLüâÙháë
Turns out I was one encoding away from correct. The Latin1 parses are correct. It was just the decode from base64 on the input that was missing. Must have missed that combination earlier.
var node_cryptojs = require('node-cryptojs-aes');
var CryptoJS = node_cryptojs.CryptoJS;
var key = CryptoJS.enc.Latin1.parse('22<\\09\\8e.==\\4#{{+!%i=]%Y/upi8!Z');
var iv = CryptoJS.enc.Latin1.parse('{+!%i=]%Y/upi8!Z');
var encrypted = 'tBIFLLdvl/Bp8XAwXBYatbJSYkNTl9/dXkHZd4OjbZ0I9Jg6xrAx/bxuQHuZrNSzYZOBEKbyMlTTT8nQEDza8wQ22mrRaZlQqT3aWpdZe6aiWAEIvTHoQPglgVbz1HnYOHfZtGmu3a3cwfpFMK+ouczTWM545nWvG/I4zV4uFgna1rW9sznxumN/3RKSbC1USZ2TM9PrG967M5Mu+riQfh9i/yt6ubwj3kln2+C0WsRRr44ELyDKGdS69YExa535z42bfXTORjvaiMvizvkz55c343s0G4ziT6tLfDCGELsrAu/2NViKxJZZRg8Dmm0FnchB9OQ4ujVCBoDUXvfx3iHjzquC+OftbOovQUecoXb7UfuwIxMekgSJnonLC45S';
var plaintextArray = CryptoJS.AES.decrypt({ ciphertext: CryptoJS.enc.Base64.parse(encrypted) }, key, { iv: iv } );
console.log(CryptoJS.enc.Latin1.stringify(plaintextArray));
I'm trying to encrypt some content in Python and decrypt it in a nodejs application.
I'm struggling to get the two AES implementations to work together though. Here is where I am at.
In node:
var crypto = require('crypto');
var password = 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa';
var input = 'hello world';
var encrypt = function (input, password, callback) {
var m = crypto.createHash('md5');
m.update(password)
var key = m.digest('hex');
m = crypto.createHash('md5');
m.update(password + key)
var iv = m.digest('hex');
// add padding
while (input.length % 16 !== 0) {
input += ' ';
}
var data = new Buffer(input, 'utf8').toString('binary');
var cipher = crypto.createCipheriv('aes-256-cbc', key, iv.slice(0,16));
var encrypted = cipher.update(data, 'binary') + cipher.final('binary');
var encoded = new Buffer(encrypted, 'binary').toString('base64');
callback(encoded);
};
var decrypt = function (input, password, callback) {
// Convert urlsafe base64 to normal base64
var input = input.replace('-', '+').replace('/', '_');
// Convert from base64 to binary string
var edata = new Buffer(input, 'base64').toString('binary')
// Create key from password
var m = crypto.createHash('md5');
m.update(password)
var key = m.digest('hex');
// Create iv from password and key
m = crypto.createHash('md5');
m.update(password + key)
var iv = m.digest('hex');
// Decipher encrypted data
var decipher = crypto.createDecipheriv('aes-256-cbc', key, iv.slice(0,16));
var decrypted = decipher.update(edata, 'binary') + decipher.final('binary');
var plaintext = new Buffer(decrypted, 'binary').toString('utf8');
callback(plaintext);
};
encrypt(input, password, function (encoded) {
console.log(encoded);
decrypt(encoded, password, function (output) {
console.log(output);
});
});
This produces the output:
BXSGjDAYKeXlaRXVVJGuREKTPiiXeam8W9e96Nknt3E=
hello world
In python
from Crypto.Cipher import AES
from hashlib import md5
import base64
password = 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa'
input = 'hello world'
def _encrypt(data, nonce, password):
m = md5()
m.update(password)
key = m.hexdigest()
m = md5()
m.update(password + key)
iv = m.hexdigest()
# pad to 16 bytes
data = data + " " * (16 - len(data) % 16)
aes = AES.new(key, AES.MODE_CBC, iv[:16])
encrypted = aes.encrypt(data)
return base64.urlsafe_b64encode(encrypted)
def _decrypt(edata, nonce, password):
edata = base64.urlsafe_b64decode(edata)
m = md5()
m.update(password)
key = m.hexdigest()
m = md5()
m.update(password + key)
iv = m.hexdigest()
aes = AES.new(key, AES.MODE_CBC, iv[:16])
return aes.decrypt(edata)
output = _encrypt(input, "", password)
print(output)
plaintext = _decrypt(output, "", password)
print(plaintext)
This produces the output
BXSGjDAYKeXlaRXVVJGuRA==
hello world
Clearly they are very close, but node seems to be padding the output with something. Any ideas how I can get the two to interoperate?
OK, I've figured it out, node uses OpenSSL which uses PKCS5 to do padding. PyCrypto doesn't handle the padding so I was doing it myself just add ' ' in both.
If I add PKCS5 padding in the python code and remove the padding in the node code, it works.
So updated working code.
Node:
var crypto = require('crypto');
var password = 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa';
var input = 'hello world';
var encrypt = function (input, password, callback) {
var m = crypto.createHash('md5');
m.update(password)
var key = m.digest('hex');
m = crypto.createHash('md5');
m.update(password + key)
var iv = m.digest('hex');
var data = new Buffer(input, 'utf8').toString('binary');
var cipher = crypto.createCipheriv('aes-256-cbc', key, iv.slice(0,16));
// UPDATE: crypto changed in v0.10
// https://github.com/joyent/node/wiki/Api-changes-between-v0.8-and-v0.10
var nodev = process.version.match(/^v(\d+)\.(\d+)/);
var encrypted;
if( nodev[1] === '0' && parseInt(nodev[2]) < 10) {
encrypted = cipher.update(data, 'binary') + cipher.final('binary');
} else {
encrypted = cipher.update(data, 'utf8', 'binary') + cipher.final('binary');
}
var encoded = new Buffer(encrypted, 'binary').toString('base64');
callback(encoded);
};
var decrypt = function (input, password, callback) {
// Convert urlsafe base64 to normal base64
var input = input.replace(/\-/g, '+').replace(/_/g, '/');
// Convert from base64 to binary string
var edata = new Buffer(input, 'base64').toString('binary')
// Create key from password
var m = crypto.createHash('md5');
m.update(password)
var key = m.digest('hex');
// Create iv from password and key
m = crypto.createHash('md5');
m.update(password + key)
var iv = m.digest('hex');
// Decipher encrypted data
var decipher = crypto.createDecipheriv('aes-256-cbc', key, iv.slice(0,16));
// UPDATE: crypto changed in v0.10
// https://github.com/joyent/node/wiki/Api-changes-between-v0.8-and-v0.10
var nodev = process.version.match(/^v(\d+)\.(\d+)/);
var decrypted, plaintext;
if( nodev[1] === '0' && parseInt(nodev[2]) < 10) {
decrypted = decipher.update(edata, 'binary') + decipher.final('binary');
plaintext = new Buffer(decrypted, 'binary').toString('utf8');
} else {
plaintext = (decipher.update(edata, 'binary', 'utf8') + decipher.final('utf8'));
}
callback(plaintext);
};
encrypt(input, password, function (encoded) {
console.log(encoded);
decrypt(encoded, password, function (output) {
console.log(output);
});
});
Python:
from Crypto.Cipher import AES
from hashlib import md5
import base64
password = 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa'
input = 'hello world'
BLOCK_SIZE = 16
def pad (data):
pad = BLOCK_SIZE - len(data) % BLOCK_SIZE
return data + pad * chr(pad)
def unpad (padded):
pad = ord(chr(padded[-1]))
return padded[:-pad]
def get_key_iv (password):
m = md5()
m.update(password.encode('utf-8'))
key = m.hexdigest()
m = md5()
m.update((password + key).encode('utf-8'))
iv = m.hexdigest()
return [key,iv]
def _encrypt(data, password):
key,iv = get_key_iv(password)
data = pad(data)
aes = AES.new(key, AES.MODE_CBC, iv[:16])
encrypted = aes.encrypt(data)
return base64.urlsafe_b64encode(encrypted)
def _decrypt(edata, password):
edata = base64.urlsafe_b64decode(edata)
key,iv = get_key_iv(password)
aes = AES.new(key, AES.MODE_CBC, iv[:16])
return unpad(aes.decrypt(edata))
output = _encrypt(input, password)
print(output)
plaintext = _decrypt(output, password)
print(plaintext)
while trying to run the Python script using Python 3.8 I encountered the following error:
m.update(password)
TypeError: Unicode-objects must be encoded before hashing
the password should be :
password = b'abcd'
I also got the following error :
m.update(password + key)
TypeError: can't concat str to bytes
I was able to fix it by adding the following line after key:
key = bytes.fromhex(key_)
The python script should work this way :
from Crypto.Cipher import AES
from hashlib import md5
import base64
password = b'abcd'
input = 'hello world'
BLOCK_SIZE = 16
def pad (data):
pad = BLOCK_SIZE - len(data) % BLOCK_SIZE
return data + pad * chr(pad)
def unpad (padded):
pad = ord(chr(padded[-1]))
return padded[:-pad]
def _encrypt(data, nonce, password):
m = md5()
m.update(password)
key_ = m.hexdigest()
key = bytes.fromhex(key_)
m = md5()
m.update(password + key)
iv = m.hexdigest()
iv = bytes.fromhex(iv)
data = pad(data)
aes = AES.new(key, AES.MODE_CBC, iv[:16])
encrypted = aes.encrypt(data.encode('utf-8'))
return base64.urlsafe_b64encode(encrypted)
def _decrypt(edata, nonce, password):
edata = base64.urlsafe_b64decode(edata)
m = md5()
m.update(password)
key = m.hexdigest()
key = bytes.fromhex(key)
m = md5()
m.update(password + key)
iv = m.hexdigest()
iv = bytes.fromhex(iv)
aes = AES.new(key, AES.MODE_CBC, iv[:16])
return unpad(aes.decrypt(edata))
output = _encrypt(input, "", password)
print(output)
plaintext = _decrypt(output, "", password)
print(plaintext)
Just for any one that is similar to me, who was finding a simple way to do the encryption and decryption for AES in python that is doing the same thing in node.js. The class here supports different bits of AES and both hex and base64 encoding that produces same result in node.js.
Also noted that if you are missing the package Crypto, you can simply install it by
pip install pycrypto
The code for python is as follows:
import base64
import hashlib
from Crypto.Cipher import AES
class AESCrypto(object):
def __init__(self, algorithm, password):
self.algorithm = filter(lambda x: not x.isdigit(), algorithm).lower()
self.bits = int(filter(str.isdigit, algorithm))
self.bs = 16
if not self.algorithm == 'aes':
raise Exception('Only AES crypto is supported')
if not self.bits % 8 == 0:
raise Exception('Bits of crypto must be a multiply of 8.')
self.bytes = self.bits / 8
self.password = password
self.generateKeyAndIv()
def generateKeyAndIv(self):
last = ''
allBytes = ''
maxBytes = self.bytes + self.bs
while len(allBytes) < maxBytes:
last = hashlib.md5(last + self.password).digest()
allBytes += last
self.key = allBytes[:self.bytes]
self.iv = allBytes[self.bytes:maxBytes]
def encrypt(self, raw, outputEncoding):
outputEncoding = outputEncoding.lower()
raw = self._pad(raw)
cipher = AES.new(self.key, AES.MODE_CBC, self.iv)
encrypted = cipher.encrypt(raw)
if outputEncoding == 'hex':
return encrypted.encode('hex')
elif outputEncoding == 'base64':
return base64.b64encode(encrypted)
else:
raise Exception('Encoding is not supported.')
def decrypt(self, data, inputEncoding):
inputEncoding = inputEncoding.lower()
if inputEncoding == 'hex':
data = ''.join(map(chr, bytearray.fromhex(data)))
elif inputEncoding == 'base64':
data = base64.b64decode(data)
cipher = AES.new(self.key, AES.MODE_CBC, self.iv)
return self._unpad(cipher.decrypt(data))
def _pad(self, data):
padding = self.bs - len(data) % self.bs
return data + padding * chr(padding)
#staticmethod
def _unpad(data):
return data[0:-ord(data[-1])]
The following are examples to use the class:
Encryption Example:
password = 'some_random_password'
content = 'content_to_be_encrypted'
cipher = AESCrypto('aes192', password)
encrypted = cipher.encrypt(content, 'hex')
Decryption Example:
password = 'some_random_password'
content = 'encrypted_content'
cipher = AESCrypto('aes192', password)
decrypted = cipher.decrypt(content, 'hex')
Because I spent way too much time on this with Python 3.10.7 and Node.js v18.6.0.
Here is a working code totally compatible between two languages with examples.
Only the secret is needed for getting same values as expected :)
Note pycryptodome is needed for Python. Code should be tweaked for supporting different algorithms.
const crypto = require('crypto')
function get_crypto(secret, encode) {
// Create hashed key from password/key
let m = crypto.createHash('md5').update(secret)
const key = m.digest('hex')
m = crypto.createHash('md5').update(secret + key)
const iv = m.digest('hex').slice(0, 16) // only in aes-256
return encode
? crypto.createCipheriv('aes-256-cbc', key, iv)
: crypto.createDecipheriv('aes-256-cbc', key, iv)
}
const secret = 'f8abb29f13cb932704badb0de414ab08ca9f6c63' // crypto.randomBytes(20).toString('hex')
const value = 'hello world'
const data = Buffer.from(value, 'utf8').toString('binary')
const cipher = get_crypto(secret, true)
const encrypted = Buffer.concat([cipher.update(data, 'utf8'), cipher.final()]).toString('binary')
const encoded = Buffer.from(encrypted, 'binary').toString('base64')
console.log('encoded:', encoded)
const edata = Buffer.from(encoded, 'base64').toString('binary')
const decipher = get_crypto(secret, false)
const decoded = Buffer.concat([decipher.update(edata, 'binary'), decipher.final()]).toString('utf-8')
console.log('decoded:', decoded)
# This script needs pycryptodome dependency
# pip install pycryptodome
from Crypto.Cipher import AES
from hashlib import md5
import base64
BLOCK_SIZE = AES.block_size
def get_aes(s):
m = md5()
m.update(s.encode('utf-8'))
key = m.hexdigest()
m = md5()
m.update((s + key).encode('utf-8'))
iv = m.hexdigest()
return AES.new(key.encode("utf8"), AES.MODE_CBC, iv.encode("utf8")[:BLOCK_SIZE])
# pkcs5 padding
def pad(byte_array):
pad_len = BLOCK_SIZE - len(byte_array) % BLOCK_SIZE
return byte_array + (bytes([pad_len]) * pad_len)
# pkcs5 - unpadding
def unpad(byte_array):
return byte_array[:-ord(byte_array[-1:])]
def _encrypt(s, data):
data = pad(data.encode("UTF-8"))
aes = get_aes(s)
encrypted = aes.encrypt(data)
return base64.urlsafe_b64encode(encrypted).decode('utf-8')
def _decrypt(s, edata):
edata = base64.urlsafe_b64decode(edata)
aes = get_aes(s)
return unpad(aes.decrypt(edata)).decode('utf-8')
if __name__ == '__main__':
secret = 'f8abb29f13cb932704badb0de414ab08ca9f6c63'
value = 'hello world'
encoded = _encrypt(secret, value)
print('encoded:', encoded)
decoded = _decrypt(secret, encoded)
print('decoded:', decoded)
Help from:
Implementing AES/ECB/PKCS5 padding in Python
Node.js - Set padding in crypto module
Python Encrypting with PyCrypto AES