Changing the colour of a boxplot when its paired - python

I want to change the colour of the boxplots according to what they represent, this are grouped in pairs, so my question is:
How can i change the colour of the boxplots when they are paired?
Considering that the first boxplot of each pair should be blue and the second one red.
This is the code, sorry if it's messy:
def obtenerBoxplotsAnuales(self, directorioEntrada, directorioSalida):
meses = ["Enero","Febrero","Marzo","Abril","Mayo","Junio", "Julio", "Agosto","Septie.","Octubre","Noviem.","Diciem."]
ciudades = ["CO","CR"]
anios = ["2011", "2012", "2013"]
boxPlotMensual = []
fig = plt.figure()
fig.set_size_inches(14.3, 9)
ax = plt.axes()
plt.hold(True)
for anio in anios:
boxPlotAnual = []
i=0
ticks = []
for mes in range(len(meses)):
data1 = getSomeData()
data2 = getSomeData()
data = [ [int(float(data1[2])), int(float(data1[0])), int(float(data1[1]))],
[int(float(data2[2])), int(float(data2[0])), int(float(data2[1]))] ]
plt.boxplot(data, positions=[i,i+1], widths=0.5)
ticks.append(i+0.5)
i=i+2
hB, = plt.plot([1,1],'b-')
hR, = plt.plot([1,1],'r-')
plt.legend((hB, hR),('Caleta', 'Comodoro'))
hB.set_visible(False)
hR.set_visible(False)
ax.set_xticklabels(meses)
ax.set_xticks(ticks)
plt.savefig(directorioSalida+"/asdasd"+str(anio)+".ps", orientation='landscape', papertype='A4' )
This is what i get:
I've read that the solution is related with the fact that plt.boxplot(...) returns a kind of dict object that contains a list of the lines created so the way to modify the colour of each boxplot would be access to the indexes? How for this case?

You can set the colour of the return dict from boxplot as follows,
import matplotlib.pyplot as plt
import numpy as np
nboxes = 10
# fake up some data
spread= np.random.rand(50,nboxes) * 100
center = np.ones((25,nboxes)) * 50
flier_high = np.random.rand(10,nboxes) * 100 + 100
flier_low = np.random.rand(10,nboxes) * -100
data =np.concatenate((spread, center, flier_high, flier_low), 0)
# plot figure
plt.figure()
bp = plt.boxplot(data)
for i, box in enumerate(bp['boxes']):
#Colour alternate boxes blue and red
if i%2:
box.set_color('blue')
else:
box.set_color('red')
plt.show()
Where you loop through all boxes in bp['boxes'] and use the method set_color (you can also box.set_markerfacecolor and other standard matplotlib artist attributes). The bp dict also contains ['boxes', 'fliers', 'medians', 'means', 'whiskers', 'caps'] which can also be changed as required.

Related

Using a loop to plot labels on a scatter plot based on their value

Hi I'm new to python and would like to plot the names of the footballers on my scatterplot as labels if their Goals or npxG are greater than the average values i have calculated.
I wondered whether I could use a for/while loop to go through the data and plot the relevant players names?
I've struggled to figure out the most efficient way for this to be done.
Please see the scatter plot and code below for additional context. Any help would be greatly appreciated, Thanks.
df = pd.read_csv('C:/Users/alexo/Documents/Data/football data/shooting_top5_leagues_21_22.csv',encoding = 'ISO-8859-1')
striker_df = df.loc[(df['Pos']=='FW') & (df['90s']>= 15)]
sns.set_style('darkgrid')
sns.set(rc = {'figure.figsize':(15,8)})
graph = sns.scatterplot(striker_df.Gls,striker_df.npxG_p90,hue=striker_df.League,size=striker_df.npxG_pSh,edgecolor = 'black')
# averageline x axis
graph.axvline(9.751677852348994,c='grey',ls='--')
# average line yaxis
graph.axhline(0.34438111920973147,c='grey',ls='--')
#adding label names for specific players
#title
plt.title('Best Strikers across Europes Top 5 leagues 21/22',size=17,c='black')
# add credits
Notes = 'By Alex Orlandini'
CREDIT_1 = "data: statsbomb via fbref"
graph.text(
36, 0.1, f"{Notes}\n{CREDIT_1}", size=10,
color="#000000",
ha="right");
enter image description here
Yes, you can loop through specific players and add the arrow and text.
Just a matter of getting the x, y coordinate of the data point, then deciding where to place the label. I had to pull my own data since you didn't share yours.
I would also avoid hard coding that average. I'd have that as a calculated variable.
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#df = pd.read_csv('C:/Users/alexo/Documents/Data/football data/shooting_top5_leagues_21_22.csv',encoding = 'ISO-8859-1')
df = pd.read_html('https://fbref.com/en/comps/Big5/shooting/players/Big-5-European-Leagues-Stats', header=1)[0]
df = df[df['Rk'].ne('Rk')]
df['npxG'] = df['npxG'].astype(float)
df['90s'] = df['90s'].astype(float)
df['npxG/Sh'] = df['npxG/Sh'].astype(float)
df['Gls'] = df['Gls'].astype(int)
df['npxG_p90'] = df['npxG'] / df['90s']
df['League'] = df['Comp'].str.split(' ',1, expand=True)[1]
df = df.rename(columns={'npxG/Sh':'npxG_pSh'})
striker_df = df.loc[(df['Pos']=='FW') & (df['90s']>= 15)]
sns.set_style('darkgrid')
sns.set(rc = {'figure.figsize':(15,8)})
x_axis_column = 'Gls'
y_axis_column = 'npxG_p90'
graph = sns.scatterplot(x = striker_df[x_axis_column],
y = striker_df[y_axis_column],
hue = striker_df.League,
size = striker_df.npxG_pSh,
edgecolor = 'black')
# averageline x axis
avgX = striker_df[x_axis_column].mean()
graph.axvline(avgX, c='grey', ls='--')
# average line yaxis
avgY = striker_df[y_axis_column].mean()
graph.axhline(avgY, c='grey', ls='--')
xOffset = (striker_df[x_axis_column].max() - striker_df[x_axis_column].min()) *.10
yOffset = (striker_df[y_axis_column].max() - striker_df[y_axis_column].min()) *.10
#adding label names for specific players
for player in ['Robert Lewandowski', 'Kylian Mbappé', 'Patrik Schick', 'Arnaut Groeneveld']:
# Label coordinate, Custom arrow
x = striker_df[striker_df['Player'] == player].iloc[0][x_axis_column]
y = striker_df[striker_df['Player'] == player].iloc[0][y_axis_column]
plt.annotate(player, xy=(x, y),xytext=(x + xOffset, y + yOffset) ,
horizontalalignment="center",
arrowprops=dict(arrowstyle='->', lw=2, color='black')
)
#title
plt.title('Best Strikers across Europes Top 5 leagues 21/22',size=17,c='black')
# add credits
Notes = 'By Alex Orlandini'
CREDIT_1 = "data: statsbomb via fbref"
graph.text(
36, 0.1, f"{Notes}\n{CREDIT_1}", size=10,
color="#000000",
ha="right");
Output:
Or you can iterate through a dataframe:
#adding label names for specific players
striker_df['calc'] = striker_df[x_axis_column] + striker_df[y_axis_column]
striker_df = striker_df.sort_values('calc', ascending = False)
top_players = striker_df.head(8)
for idx, row in top_players.iterrows():
# Label coordinate, Custom arrow
player = row['Player']
x = row[x_axis_column]
y = row[y_axis_column]
plt.annotate(player, xy=(x, y),xytext=(x + xOffset, y) ,
horizontalalignment="center",
arrowprops=dict(arrowstyle='->', lw=2, color='black')
)
To get something like this:

How do I plot a categorical bar chart with different classes for each category in Matplotlib?

I was trying to reproduce this plot with Matplotlib:
So, by looking at the documentation, I found out that the closest thing is a grouped bar chart. The problem is that I have a different number of "bars" for each category (subject, illumination, ...) compared to the example provided by matplotlib that instead only has 2 classes (M, F) for each category (G1, G2, G3, ...). I don't know exactly from where to start, does anyone here has any clue? I think in this case the trick they made to specify bars location:
x = np.arange(len(labels)) # the label locations
width = 0.35 # the width of the bars
fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, men_means, width, label='Men')
rects2 = ax.bar(x + width/2, women_means, width, label='Women')
does not work at all as in the second class (for example) there is a different number of bars. It would be awesome if anyone could give me an idea. Thank you in advance!
Supposing the data resides in a dataframe, the bars can be generated by looping through the categories:
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
# first create some test data, similar in structure to the question's
categories = ['Subject', 'Illumination', 'Location', 'Daytime']
df = pd.DataFrame(columns=['Category', 'Class', 'Value'])
for cat in categories:
for _ in range(np.random.randint(2, 7)):
df = df.append({'Category': cat,
'Class': "".join(np.random.choice([*'tuvwxyz'], 10)),
'Value': np.random.uniform(10, 17)}, ignore_index=True)
fig, ax = plt.subplots()
start = 0 # position for first label
gap = 1 # gap between labels
labels = [] # list for all the labels
label_pos = np.array([]) # list for all the label positions
# loop through the categories of the dataframe
# provide a list of colors (at least as long as the expected number of categories)
for (cat, df_cat), color in zip(df.groupby('Category', sort=False), ['navy', 'orange'] * len(df)):
num_in_cat = len(df_cat)
# add a text for the category, using "axes coordinates" for the y-axis
ax.text(start + num_in_cat / 2, 0.95, cat, ha='center', va='top', transform=ax.get_xaxis_transform())
# positions for the labels of the current category
this_label_pos = np.arange(start, start + num_in_cat)
# create bars at the desired positions
ax.bar(this_label_pos, df_cat['Value'], color=color)
# store labels and their positions
labels += df_cat['Class'].to_list()
label_pos = np.append(label_pos, this_label_pos)
start += num_in_cat + gap
# set the positions for the labels
ax.set_xticks(label_pos)
# set the labels
ax.set_xticklabels(labels, rotation=30)
# optionally set a new lower position for the y-axis
ax.set_ylim(ymin=9)
# optionally reduce the margin left and right
ax.margins(x=0.01)
plt.tight_layout()
plt.show()

Adding a colorbar whose color corresponds to the different lines in an existing plot

My dataset is in the form of :
Data[0] = [headValue,x0,x1,..xN]
Data[1] = [headValue_ya,ya0,ya1,..yaN]
Data[2] = [headValue_yb,yb0,yb1,..ybN]
...
Data[n] = [headvalue_yz,yz0,yz1,..yzN]
I want to plot f(y*) = x, so I can visualize all Lineplots in the same figure with different colors, each color determined by the headervalue_y*.
I also want to add a colorbar whose color matching the lines and therefore the header values, so we can link visually which header value leads to which behaviour.
Here is what I am aiming for :(Plot from Lacroix B, Letort G, Pitayu L, et al. Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing. Dev Cell. 2018;45(4):496–511.e6. doi:10.1016/j.devcel.2018.04.022)
I have trouble adding the colorbar, I have tried to extract N colors from a colormap (N is my number of different headValues, or column -1) and then adding for each line plot the color corresponding here is my code to clarify:
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
Data = [['Time',0,0.33,..200],[0.269,4,4.005,...11],[0.362,4,3.999,...16.21],...[0.347,4,3.84,...15.8]]
headValues = [0.269,0.362,0.335,0.323,0.161,0.338,0.341,0.428,0.245,0.305,0.305,0.314,0.299,0.395,0.32,0.437,0.203,0.41,0.392,0.347]
# the differents headValues_y* of each column here in a list but also in Data
# with headValue[0] = Data[1][0], headValue[1] = Data[2][0] ...
cmap = mpl.cm.get_cmap('rainbow') # I choose my colormap
rgba = [] # the color container
for value in headValues:
rgba.append(cmap(value)) # so rgba will contain a different color for each headValue
fig, (ax,ax1) = plt.subplots(2,1) # creating my figure and two axes to put the Lines and the colorbar
c = 0 # index for my colors
for i in range(1, len(Data)):
ax.plot( Data[0][1:], Data[i][1:] , color = rgba[c])
# Data[0][1:] is x, Data[i][1:] is y, and the color associated with Data[i][0]
c += 1
fig.colorbar(mpl.cm.ScalarMappable(cmap= mpl.colors.ListedColormap(rgba)), cax=ax1, orientation='horizontal')
# here I create my scalarMappable for my lineplot and with the previously selected colors 'rgba'
plt.show()
The current result:
How to add the colorbar on the side or the bottom of the first axis ?
How to properly add a scale to this colorbar correspondig to different headValues ?
How to make the colorbar scale and colors match to the different lines on the plot with the link One color = One headValue ?
I have tried to work with scatterplot which are more convenient to use with scalarMappable but no solution allows me to do all these things at once.
Here is a possible approach. As the 'headValues' aren't sorted, nor equally spaced and one is even used twice, it is not fully clear what the most-desired result would be.
Some remarks:
The standard way of creating a colorbar in matplotlib doesn't need a separate subplot. Matplotlib will reduce the existing plot a bit and put the colorbar next to it (or below for a vertical bar).
Converting the 'headValues' to a numpy array allows for compact code, e.g. writing rgba = cmap(headValues) directly calculates the complete array.
Calling cmap on unchanged values will map 0 to the lowest color and 1 to the highest color, so for values only between 0.16 and 0.44 they all will be mapped to quite similar colors. One approach is to create a norm to map 0.16 to the lowest color and 0.44 to the highest. In code: norm = plt.Normalize(headValues.min(), headValues.max()) and then calculate rgba = cmap(norm(headValues)).
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
headValues = np.array([0.269, 0.362, 0.335, 0.323, 0.161, 0.338, 0.341, 0.428, 0.245, 0.305, 0.305, 0.314, 0.299, 0.395, 0.32, 0.437, 0.203, 0.41, 0.392, 0.347])
x = np.linspace(0, 200, 500)
# create Data similar to the data in the question
Data = [['Time'] + list(x)] + [[val] + list(np.sqrt(4 * x) * val + 4) for val in headValues]
headValues = np.array([d[0] for d in Data[1:]])
order = np.argsort(headValues)
inverse_order = np.argsort(order)
cmap = mpl.cm.get_cmap('rainbow')
rgba = cmap(np.linspace(0, 1, len(headValues))) # evenly spaced colors
fig, ax = plt.subplots(1, 1)
for i in range(1, len(Data)):
ax.plot(Data[0][1:], Data[i][1:], color=rgba[inverse_order[i-1]])
# Data[0][1:] is x, Data[i][1:] is y, and the color associated with Data[i-1][0]
cbar = fig.colorbar(mpl.cm.ScalarMappable(cmap=mpl.colors.ListedColormap(rgba)), orientation='vertical',
ticks=np.linspace(0, 1, len(rgba) * 2 + 1)[1::2])
cbar.set_ticklabels(headValues[order])
plt.show()
Alternatively, the colors can be assigned using their position in the colormap, but without creating
cmap = mpl.cm.get_cmap('rainbow')
norm = plt.Normalize(headValues.min(), headValues.max())
fig, ax = plt.subplots(1, 1)
for i in range(1, len(Data)):
ax.plot(Data[0][1:], Data[i][1:], color=cmap(norm(Data[i][0])))
cbar = fig.colorbar(mpl.cm.ScalarMappable(cmap=cmap, norm=norm))
To get ticks for each of the 'headValues', these ticks can be set explicitly. As putting a label for each tick will result in overlapping text, labels that are too close to other labels can be replaced by an empty string:
headValues.sort()
cbar2 = fig.colorbar(mpl.cm.ScalarMappable(cmap=cmap, norm=norm), ticks=headValues)
cbar2.set_ticklabels([val if val < next - 0.007 else '' for val, next in zip(headValues[:-1], headValues[1:])]
+ [headValues[-1]])
At the left the result of the first approach (colors in segments), at the right the alternative colorbars (color depending on value):

Python/Matplotlib - Find the highest value of a group of bars

I have this image from Matplotlib :
I would like to write for each category (cat i with i in [1-10] in the figure) the highest value and its corresponding legend on the graphic.
Below you can find visually what I would like to achieve :
The thing is the fact that I don't know if it is possible because of the way of plotting from matplotlib.
Basically, this is the part of the code for drawing multiple bars :
# create plot
fig, ax = plt.subplots(figsize = (9,9))
index = np.arange(len_category)
if multiple:
bar_width = 0.3
else :
bar_width = 1.5
opacity = 1.0
#test_array contains test1 and test2
cmap = get_cmap(len(test_array))
for i in range(len(test_array)):
count = count + 1
current_label = test_array[i]
rects = plt.bar(index-0.2+bar_width*i, score_array[i], bar_width, alpha=opacity, color=np.random.rand(3,1),label=current_label )
plt.xlabel('Categories')
plt.ylabel('Scores')
plt.title('Scores by Categories')
plt.xticks(index + bar_width, categories_array)
plt.legend()
plt.tight_layout()
plt.show()
and this is the part I have added in order to do what I would like to achieve. But it searches the max across all the bars in the graphics. For example, the max of test1 will be in cat10 and the max of test2 will be cat2. Instead, I would like to have the max for each category.
for i in range(len(test_array)):
count = count + 1
current_label = test_array[i]
rects = plt.bar(index-0.2+bar_width*i, score_array[i], bar_width,alpha=opacity,color=np.random.rand(3,1),label=current_label )
max_score_current = max(score_array[i])
list_rect = list()
max_height = 0
#The id of the rectangle who get the highest score
max_idx = 0
for idx,rect in enumerate(rects):
list_rect.append(rect)
height = rect.get_height()
if height > max_height:
max_height = height
max_idx = idx
highest_rect = list_rect[max_idx]
plt.text(highest_rect.get_x() + highest_rect.get_width()/2.0, max_height, str(test_array[i]),color='blue', fontweight='bold')
del list_rect[:]
Do you have an idea about how I can achieve that ?
Thank you
It usually better to keep data generation and visualization separate. Instead of looping through the bars themselves, just get the necessary data prior to plotting. This makes everything a lot more simple.
So first create a list of labels to use and then loop over the positions to annotate then. In the code below the labels are created by mapping the argmax of a column array to the test set via a dictionary.
import numpy as np
import matplotlib.pyplot as plt
test1 = [6,4,5,8,3]
test2 = [4,5,3,4,6]
labeldic = {0:"test1", 1:"test2"}
a = np.c_[test1,test2]
maxi = np.max(a, axis=1)
l = ["{} {}".format(i,labeldic[j]) for i,j in zip(maxi, np.argmax(a, axis=1))]
for i in range(a.shape[1]):
plt.bar(np.arange(a.shape[0])+(i-1)*0.3, a[:,i], width=0.3, align="edge",
label = labeldic[i])
for i in range(a.shape[0]):
plt.annotate(l[i], xy=(i,maxi[i]), xytext=(0,10),
textcoords="offset points", ha="center")
plt.margins(y=0.2)
plt.legend()
plt.show()
From your question it is not entirely clear what you want to achieve, but assuming that you want the relative height of each bar in one group printed above that bar, here is one way to achieve that:
from matplotlib import pyplot as plt
import numpy as np
score_array = np.random.rand(2,10)
index = np.arange(score_array.shape[1])
test_array=['test1','test2']
opacity = 1
bar_width = 0.25
for i,label in enumerate(test_array):
rects = plt.bar(index-0.2+bar_width*i, score_array[i], bar_width,alpha=opacity,label=label)
heights = [r.get_height() for r in rects]
print(heights)
rel_heights = [h/max(heights) for h in heights]
idx = heights.index(max(heights))
for i,(r,h, rh) in enumerate(zip(rects, heights, rel_heights)):
plt.text(r.get_x() + r.get_width()/2.0, h, '{:.2}'.format(rh), color='b', fontweight ='bold', ha='center')
plt.show()
The result looks like this:

How to label the bars of a stacked bar plot from a pandas DataFrame? [duplicate]

I am trying to replicate the following image in matplotlib and it seems barh is my only option. Though it appears that you can't stack barh graphs so I don't know what to do
If you know of a better python library to draw this kind of thing, please let me know.
This is all I could come up with as a start:
import matplotlib.pyplot as plt; plt.rcdefaults()
import numpy as np
import matplotlib.pyplot as plt
people = ('A','B','C','D','E','F','G','H')
y_pos = np.arange(len(people))
bottomdata = 3 + 10 * np.random.rand(len(people))
topdata = 3 + 10 * np.random.rand(len(people))
fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111)
ax.barh(y_pos, bottomdata,color='r',align='center')
ax.barh(y_pos, topdata,color='g',align='center')
ax.set_yticks(y_pos)
ax.set_yticklabels(people)
ax.set_xlabel('Distance')
plt.show()
I would then have to add labels individually using ax.text which would be tedious. Ideally I would like to just specify the width of the part to be inserted then it updates the center of that section with a string of my choosing. The labels on the outside (e.g. 3800) I can add myself later, it is mainly the labeling over the bar section itself and creating this stacked method in a nice way I'm having problems with. Can you even specify a 'distance' i.e. span of color in any way?
Edit 2: for more heterogeneous data. (I've left the above method since I find it more usual to work with the same number of records per series)
Answering the two parts of the question:
a) barh returns a container of handles to all the patches that it drew. You can use the coordinates of the patches to aid the text positions.
b) Following these two answers to the question that I noted before (see Horizontal stacked bar chart in Matplotlib), you can stack bar graphs horizontally by setting the 'left' input.
and additionally c) handling data that is less uniform in shape.
Below is one way you could handle data that is less uniform in shape is simply to process each segment independently.
import numpy as np
import matplotlib.pyplot as plt
# some labels for each row
people = ('A','B','C','D','E','F','G','H')
r = len(people)
# how many data points overall (average of 3 per person)
n = r * 3
# which person does each segment belong to?
rows = np.random.randint(0, r, (n,))
# how wide is the segment?
widths = np.random.randint(3,12, n,)
# what label to put on the segment (xrange in py2.7, range for py3)
labels = range(n)
colors ='rgbwmc'
patch_handles = []
fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111)
left = np.zeros(r,)
row_counts = np.zeros(r,)
for (r, w, l) in zip(rows, widths, labels):
print r, w, l
patch_handles.append(ax.barh(r, w, align='center', left=left[r],
color=colors[int(row_counts[r]) % len(colors)]))
left[r] += w
row_counts[r] += 1
# we know there is only one patch but could enumerate if expanded
patch = patch_handles[-1][0]
bl = patch.get_xy()
x = 0.5*patch.get_width() + bl[0]
y = 0.5*patch.get_height() + bl[1]
ax.text(x, y, "%d%%" % (l), ha='center',va='center')
y_pos = np.arange(8)
ax.set_yticks(y_pos)
ax.set_yticklabels(people)
ax.set_xlabel('Distance')
plt.show()
Which produces a graph like this , with a different number of segments present in each series.
Note that this is not particularly efficient since each segment used an individual call to ax.barh. There may be more efficient methods (e.g. by padding a matrix with zero-width segments or nan values) but this likely to be problem-specific and is a distinct question.
Edit: updated to answer both parts of the question.
import numpy as np
import matplotlib.pyplot as plt
people = ('A','B','C','D','E','F','G','H')
segments = 4
# generate some multi-dimensional data & arbitrary labels
data = 3 + 10* np.random.rand(segments, len(people))
percentages = (np.random.randint(5,20, (len(people), segments)))
y_pos = np.arange(len(people))
fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111)
colors ='rgbwmc'
patch_handles = []
left = np.zeros(len(people)) # left alignment of data starts at zero
for i, d in enumerate(data):
patch_handles.append(ax.barh(y_pos, d,
color=colors[i%len(colors)], align='center',
left=left))
# accumulate the left-hand offsets
left += d
# go through all of the bar segments and annotate
for j in range(len(patch_handles)):
for i, patch in enumerate(patch_handles[j].get_children()):
bl = patch.get_xy()
x = 0.5*patch.get_width() + bl[0]
y = 0.5*patch.get_height() + bl[1]
ax.text(x,y, "%d%%" % (percentages[i,j]), ha='center')
ax.set_yticks(y_pos)
ax.set_yticklabels(people)
ax.set_xlabel('Distance')
plt.show()
You can achieve a result along these lines (note: the percentages I used have nothing to do with the bar widths, as the relationship in the example seems unclear):
See Horizontal stacked bar chart in Matplotlib for some ideas on stacking horizontal bar plots.
Imports and Test DataFrame
Tested in python 3.10, pandas 1.4.2, matplotlib 3.5.1, seaborn 0.11.2
For vertical stacked bars see Stacked Bar Chart with Centered Labels
import pandas as pd
import numpy as np
# create sample data as shown in the OP
np.random.seed(365)
people = ('A','B','C','D','E','F','G','H')
bottomdata = 3 + 10 * np.random.rand(len(people))
topdata = 3 + 10 * np.random.rand(len(people))
# create the dataframe
df = pd.DataFrame({'Female': bottomdata, 'Male': topdata}, index=people)
# display(df)
Female Male
A 12.41 7.42
B 9.42 4.10
C 9.85 7.38
D 8.89 10.53
E 8.44 5.92
F 6.68 11.86
G 10.67 12.97
H 6.05 7.87
Updated with matplotlib v3.4.2
Use matplotlib.pyplot.bar_label
See How to add value labels on a bar chart for additional details and examples with .bar_label.
labels = [f'{v.get_width():.2f}%' if v.get_width() > 0 else '' for v in c ] for python < 3.8, without the assignment expression (:=).
Plotted using pandas.DataFrame.plot with kind='barh'
ax = df.plot(kind='barh', stacked=True, figsize=(8, 6))
for c in ax.containers:
# customize the label to account for cases when there might not be a bar section
labels = [f'{w:.2f}%' if (w := v.get_width()) > 0 else '' for v in c ]
# set the bar label
ax.bar_label(c, labels=labels, label_type='center')
# uncomment and use the next line if there are no nan or 0 length sections; just use fmt to add a % (the previous two lines of code are not needed, in this case)
# ax.bar_label(c, fmt='%.2f%%', label_type='center')
# move the legend
ax.legend(bbox_to_anchor=(1.025, 1), loc='upper left', borderaxespad=0.)
# add labels
ax.set_ylabel("People", fontsize=18)
ax.set_xlabel("Percent", fontsize=18)
plt.show()
Using seaborn
sns.barplot does not have an option for stacked bar plots, however, sns.histplot and sns.displot can be used to create horizontal stacked bars.
seaborn typically requires the dataframe to be in a long, instead of wide, format, so use pandas.DataFrame.melt to reshape the dataframe.
Reshape dataframe
# convert the dataframe to a long form
df = df.reset_index()
df = df.rename(columns={'index': 'People'})
dfm = df.melt(id_vars='People', var_name='Gender', value_name='Percent')
# display(dfm)
People Gender Percent
0 A Female 12.414557
1 B Female 9.416027
2 C Female 9.846105
3 D Female 8.885621
4 E Female 8.438872
5 F Female 6.680709
6 G Female 10.666258
7 H Female 6.050124
8 A Male 7.420860
9 B Male 4.104433
10 C Male 7.383738
11 D Male 10.526158
12 E Male 5.916262
13 F Male 11.857227
14 G Male 12.966913
15 H Male 7.865684
sns.histplot: axes-level plot
fig, axe = plt.subplots(figsize=(8, 6))
sns.histplot(data=dfm, y='People', hue='Gender', discrete=True, weights='Percent', multiple='stack', ax=axe)
# iterate through each set of containers
for c in axe.containers:
# add bar annotations
axe.bar_label(c, fmt='%.2f%%', label_type='center')
axe.set_xlabel('Percent')
plt.show()
sns.displot: figure-level plot
g = sns.displot(data=dfm, y='People', hue='Gender', discrete=True, weights='Percent', multiple='stack', height=6)
# iterate through each facet / supbplot
for axe in g.axes.flat:
# iteate through each set of containers
for c in axe.containers:
# add the bar annotations
axe.bar_label(c, fmt='%.2f%%', label_type='center')
axe.set_xlabel('Percent')
plt.show()
Original Answer - before matplotlib v3.4.2
The easiest way to plot a horizontal or vertical stacked bar, is to load the data into a pandas.DataFrame
This will plot, and annotate correctly, even when all categories ('People'), don't have all segments (e.g. some value is 0 or NaN)
Once the data is in the dataframe:
It's easier to manipulate and analyze
It can be plotted with the matplotlib engine, using:
pandas.DataFrame.plot.barh
label_text = f'{width}' for annotations
pandas.DataFrame.plot.bar
label_text = f'{height}' for annotations
SO: Vertical Stacked Bar Chart with Centered Labels
These methods return a matplotlib.axes.Axes or a numpy.ndarray of them.
Using the .patches method unpacks a list of matplotlib.patches.Rectangle objects, one for each of the sections of the stacked bar.
Each .Rectangle has methods for extracting the various values that define the rectangle.
Each .Rectangle is in order from left the right, and bottom to top, so all the .Rectangle objects, for each level, appear in order, when iterating through .patches.
The labels are made using an f-string, label_text = f'{width:.2f}%', so any additional text can be added as needed.
Plot and Annotate
Plotting the bar, is 1 line, the remainder is annotating the rectangles
# plot the dataframe with 1 line
ax = df.plot.barh(stacked=True, figsize=(8, 6))
# .patches is everything inside of the chart
for rect in ax.patches:
# Find where everything is located
height = rect.get_height()
width = rect.get_width()
x = rect.get_x()
y = rect.get_y()
# The height of the bar is the data value and can be used as the label
label_text = f'{width:.2f}%' # f'{width:.2f}' to format decimal values
# ax.text(x, y, text)
label_x = x + width / 2
label_y = y + height / 2
# only plot labels greater than given width
if width > 0:
ax.text(label_x, label_y, label_text, ha='center', va='center', fontsize=8)
# move the legend
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0.)
# add labels
ax.set_ylabel("People", fontsize=18)
ax.set_xlabel("Percent", fontsize=18)
plt.show()
Example with Missing Segment
# set one of the dataframe values to 0
df.iloc[4, 1] = 0
Note the annotations are all in the correct location from df.
For this case, the above answers work perfectly. The issue I had, and didn't find a plug-and-play solution online, was that I often have to plot stacked bars in multi-subplot figures, with many values, which tend to have very non-homogenous amplitudes.
(Note: I work usually with pandas dataframes, and matplotlib. I couldn't make the bar_label() method of matplotlib to work all the times.)
So, I just give a kind of ad-hoc, but easily generalizable solution. In this example, I was working with single-row dataframes (for power-exchange monitoring purposes per hour), so, my dataframe (df) had just one row.
(I provide an example figure to show how this can be useful in very densely-packed plots)
[enter image description here][1]
[1]: https://i.stack.imgur.com/9akd8.png
'''
This implementation produces a stacked, horizontal bar plot.
df --> pandas dataframe. Columns are used as the iterator, and only the firs value of each column is used.
waterfall--> bool: if True, apart from the stack-direction, also a perpendicular offset is added.
cyclic_offset_x --> list (of any length) or None: loop through these values to use as x-offset pixels.
cyclic_offset_y --> list (of any length) or None: loop through these values to use as y-offset pixels.
ax --> matplotlib Axes, or None: if None, creates a new axis and figure.
'''
def magic_stacked_bar(df, waterfall=False, cyclic_offset_x=None, cyclic_offset_y=None, ax=None):
if isinstance(cyclic_offset_x, type(None)):
cyclic_offset_x = [0, 0]
if isinstance(cyclic_offset_y, type(None)):
cyclic_offset_y = [0, 0]
ax0 = ax
if isinstance(ax, type(None)):
fig, ax = plt.subplots()
fig.set_size_inches(19, 10)
cycler = 0;
prev = 0 # summation variable to make it stacked
for c in df.columns:
if waterfall:
y = c ; label = "" # bidirectional stack
else:
y = 0; label = c # unidirectional stack
ax.barh(y=y, width=df[c].values[0], height=1, left=prev, label = label)
prev += df[c].values[0] # add to sum-stack
offset_x = cyclic_offset_x[divmod(cycler, len(cyclic_offset_x))[1]]
offset_y = cyclic_offset_y[divmod(cycler, len(cyclic_offset_y))[1]]
ax.annotate(text="{}".format(int(df[c].values[0])), xy=(prev - df[c].values / 2, y),
xytext=(offset_x, offset_y), textcoords='offset pixels',
ha='center', va='top', fontsize=8,
arrowprops=dict(facecolor='black', shrink=0.01, width=0.3, headwidth=0.3),
bbox=dict(boxstyle='round', facecolor='grey', alpha=0.5))
cycler += 1
if not waterfall:
ax.legend() # if waterfall, the index annotates the columns. If
# waterfall ==False, the legend annotates the columns
if isinstance(ax0, type(None)):
ax.set_title("Voi la")
ax.set_xlabel("UltraWatts")
plt.show()
else:
return ax
''' (Sometimes, it is more tedious and requires some custom functions to make the labels look alright.
'''
A, B = 80,80
n_units = df.shape[1]
cyclic_offset_x = -A*np.cos(2*np.pi / (2*n_units) *np.arange(n_units))
cyclic_offset_y = B*np.sin(2*np.pi / (2*n_units) * np.arange(n_units)) + B/2

Categories