python axhline label not showing up in plot - python

I have the following little function:
def plotresults(freqs,power,prob,title,sigP):
pl.suptitle(title)
ax1 = pl.subplot(2,1,1)
ax1.axhline(y=sigP, color='r', ls='--',label='p=0.05')
pl.plot(freqs,power)
ax1.set_ylabel('Spectral Power')
ax2 = pl.subplot(2,1,2)
ax2.axhline(y=0.05, color='r', ls='--', label='p=0.05')
pl.semilogy(freqs,prob)
ax2.set_xlabel(r'Frequency (years$^{-1}$)')
ax2.set_ylabel('p-value')
pl.savefig('lsfast/figs/'+title+'.png')
pl.close()
It plots fine and draws the lines where they should be, but the line labels don't appear anywhere. What am I doing wrong? AN example of the output is attached:

The label kwarg for plot sets the label that's used by legend. To display it you can add a legend to your plot. Alternately, you might want to use annotate instead.

I don't think attaching a label to a line is meant to draw this label to the plot, it just associates this label with the line and can be used to create a legend.

Related

How i can delete xlabel of plot? [duplicate]

I'm trying to plot a figure without tickmarks or numbers on either of the axes (I use axes in the traditional sense, not the matplotlib nomenclature!). An issue I have come across is where matplotlib adjusts the x(y)ticklabels by subtracting a value N, then adds N at the end of the axis.
This may be vague, but the following simplified example highlights the issue, with '6.18' being the offending value of N:
import matplotlib.pyplot as plt
import random
prefix = 6.18
rx = [prefix+(0.001*random.random()) for i in arange(100)]
ry = [prefix+(0.001*random.random()) for i in arange(100)]
plt.plot(rx,ry,'ko')
frame1 = plt.gca()
for xlabel_i in frame1.axes.get_xticklabels():
xlabel_i.set_visible(False)
xlabel_i.set_fontsize(0.0)
for xlabel_i in frame1.axes.get_yticklabels():
xlabel_i.set_fontsize(0.0)
xlabel_i.set_visible(False)
for tick in frame1.axes.get_xticklines():
tick.set_visible(False)
for tick in frame1.axes.get_yticklines():
tick.set_visible(False)
plt.show()
The three things I would like to know are:
How to turn off this behaviour in the first place (although in most cases it is useful, it is not always!) I have looked through matplotlib.axis.XAxis and cannot find anything appropriate
How can I make N disappear (i.e. X.set_visible(False))
Is there a better way to do the above anyway? My final plot would be 4x4 subplots in a figure, if that is relevant.
Instead of hiding each element, you can hide the whole axis:
frame1.axes.get_xaxis().set_visible(False)
frame1.axes.get_yaxis().set_visible(False)
Or, you can set the ticks to an empty list:
frame1.axes.get_xaxis().set_ticks([])
frame1.axes.get_yaxis().set_ticks([])
In this second option, you can still use plt.xlabel() and plt.ylabel() to add labels to the axes.
If you want to hide just the axis text keeping the grid lines:
frame1 = plt.gca()
frame1.axes.xaxis.set_ticklabels([])
frame1.axes.yaxis.set_ticklabels([])
Doing set_visible(False) or set_ticks([]) will also hide the grid lines.
If you are like me and don't always retrieve the axes, ax, when plotting the figure, then a simple solution would be to do
plt.xticks([])
plt.yticks([])
I've colour coded this figure to ease the process.
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
You can have full control over the figure using these commands, to complete the answer I've add also the control over the spines:
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# X AXIS -BORDER
ax.spines['bottom'].set_visible(False)
# BLUE
ax.set_xticklabels([])
# RED
ax.set_xticks([])
# RED AND BLUE TOGETHER
ax.axes.get_xaxis().set_visible(False)
# Y AXIS -BORDER
ax.spines['left'].set_visible(False)
# YELLOW
ax.set_yticklabels([])
# GREEN
ax.set_yticks([])
# YELLOW AND GREEN TOGHETHER
ax.axes.get_yaxis().set_visible(False)
I was not actually able to render an image without borders or axis data based on any of the code snippets here (even the one accepted at the answer). After digging through some API documentation, I landed on this code to render my image
plt.axis('off')
plt.tick_params(axis='both', left=False, top=False, right=False, bottom=False, labelleft=False, labeltop=False, labelright=False, labelbottom=False)
plt.savefig('foo.png', dpi=100, bbox_inches='tight', pad_inches=0.0)
I used the tick_params call to basically shut down any extra information that might be rendered and I have a perfect graph in my output file.
Somewhat of an old thread but, this seems to be a faster method using the latest version of matplotlib:
set the major formatter for the x-axis
ax.xaxis.set_major_formatter(plt.NullFormatter())
One trick could be setting the color of tick labels as white to hide it!
plt.xticks(color='w')
plt.yticks(color='w')
or to be more generalized (#Armin Okić), you can set it as "None".
When using the object oriented API, the Axes object has two useful methods for removing the axis text, set_xticklabels() and set_xticks().
Say you create a plot using
fig, ax = plt.subplots(1)
ax.plot(x, y)
If you simply want to remove the tick labels, you could use
ax.set_xticklabels([])
or to remove the ticks completely, you could use
ax.set_xticks([])
These methods are useful for specifying exactly where you want the ticks and how you want them labeled. Passing an empty list results in no ticks, or no labels, respectively.
You could simply set xlabel to None, straight in your axis. Below an working example using seaborn
from matplotlib import pyplot as plt
import seaborn as sns
tips = sns.load_dataset("tips")
ax = sns.boxplot(x="day", y="total_bill", data=tips)
ax.set(xlabel=None)
plt.show()
Just do this in case you have subplots
fig, axs = plt.subplots(1, 2, figsize=(16, 8))
ax[0].set_yticklabels([]) # x-axis
ax[0].set_xticklabels([]) # y-axis

Remove text from figure when using dataframe.boxplot(by=...) [duplicate]

I'm trying to plot a figure without tickmarks or numbers on either of the axes (I use axes in the traditional sense, not the matplotlib nomenclature!). An issue I have come across is where matplotlib adjusts the x(y)ticklabels by subtracting a value N, then adds N at the end of the axis.
This may be vague, but the following simplified example highlights the issue, with '6.18' being the offending value of N:
import matplotlib.pyplot as plt
import random
prefix = 6.18
rx = [prefix+(0.001*random.random()) for i in arange(100)]
ry = [prefix+(0.001*random.random()) for i in arange(100)]
plt.plot(rx,ry,'ko')
frame1 = plt.gca()
for xlabel_i in frame1.axes.get_xticklabels():
xlabel_i.set_visible(False)
xlabel_i.set_fontsize(0.0)
for xlabel_i in frame1.axes.get_yticklabels():
xlabel_i.set_fontsize(0.0)
xlabel_i.set_visible(False)
for tick in frame1.axes.get_xticklines():
tick.set_visible(False)
for tick in frame1.axes.get_yticklines():
tick.set_visible(False)
plt.show()
The three things I would like to know are:
How to turn off this behaviour in the first place (although in most cases it is useful, it is not always!) I have looked through matplotlib.axis.XAxis and cannot find anything appropriate
How can I make N disappear (i.e. X.set_visible(False))
Is there a better way to do the above anyway? My final plot would be 4x4 subplots in a figure, if that is relevant.
Instead of hiding each element, you can hide the whole axis:
frame1.axes.get_xaxis().set_visible(False)
frame1.axes.get_yaxis().set_visible(False)
Or, you can set the ticks to an empty list:
frame1.axes.get_xaxis().set_ticks([])
frame1.axes.get_yaxis().set_ticks([])
In this second option, you can still use plt.xlabel() and plt.ylabel() to add labels to the axes.
If you want to hide just the axis text keeping the grid lines:
frame1 = plt.gca()
frame1.axes.xaxis.set_ticklabels([])
frame1.axes.yaxis.set_ticklabels([])
Doing set_visible(False) or set_ticks([]) will also hide the grid lines.
If you are like me and don't always retrieve the axes, ax, when plotting the figure, then a simple solution would be to do
plt.xticks([])
plt.yticks([])
I've colour coded this figure to ease the process.
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
You can have full control over the figure using these commands, to complete the answer I've add also the control over the spines:
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# X AXIS -BORDER
ax.spines['bottom'].set_visible(False)
# BLUE
ax.set_xticklabels([])
# RED
ax.set_xticks([])
# RED AND BLUE TOGETHER
ax.axes.get_xaxis().set_visible(False)
# Y AXIS -BORDER
ax.spines['left'].set_visible(False)
# YELLOW
ax.set_yticklabels([])
# GREEN
ax.set_yticks([])
# YELLOW AND GREEN TOGHETHER
ax.axes.get_yaxis().set_visible(False)
I was not actually able to render an image without borders or axis data based on any of the code snippets here (even the one accepted at the answer). After digging through some API documentation, I landed on this code to render my image
plt.axis('off')
plt.tick_params(axis='both', left=False, top=False, right=False, bottom=False, labelleft=False, labeltop=False, labelright=False, labelbottom=False)
plt.savefig('foo.png', dpi=100, bbox_inches='tight', pad_inches=0.0)
I used the tick_params call to basically shut down any extra information that might be rendered and I have a perfect graph in my output file.
Somewhat of an old thread but, this seems to be a faster method using the latest version of matplotlib:
set the major formatter for the x-axis
ax.xaxis.set_major_formatter(plt.NullFormatter())
One trick could be setting the color of tick labels as white to hide it!
plt.xticks(color='w')
plt.yticks(color='w')
or to be more generalized (#Armin Okić), you can set it as "None".
When using the object oriented API, the Axes object has two useful methods for removing the axis text, set_xticklabels() and set_xticks().
Say you create a plot using
fig, ax = plt.subplots(1)
ax.plot(x, y)
If you simply want to remove the tick labels, you could use
ax.set_xticklabels([])
or to remove the ticks completely, you could use
ax.set_xticks([])
These methods are useful for specifying exactly where you want the ticks and how you want them labeled. Passing an empty list results in no ticks, or no labels, respectively.
You could simply set xlabel to None, straight in your axis. Below an working example using seaborn
from matplotlib import pyplot as plt
import seaborn as sns
tips = sns.load_dataset("tips")
ax = sns.boxplot(x="day", y="total_bill", data=tips)
ax.set(xlabel=None)
plt.show()
Just do this in case you have subplots
fig, axs = plt.subplots(1, 2, figsize=(16, 8))
ax[0].set_yticklabels([]) # x-axis
ax[0].set_xticklabels([]) # y-axis

Matplotlib pyplot - Plot graph with framelines [duplicate]

I want to get both horizontal and vertical grid lines on my plot but only the horizontal grid lines are appearing by default. I am using a pandas.DataFrame from an sql query in python to generate a line plot with dates on the x-axis. I'm not sure why they do not appear on the dates and I have tried to search for an answer to this but couldn't find one.
All I have used to plot the graph is the simple code below.
data.plot()
grid('on')
data is the DataFrame which contains the dates and the data from the sql query.
I have also tried adding the code below but I still get the same output with no vertical grid lines.
ax = plt.axes()
ax.yaxis.grid() # horizontal lines
ax.xaxis.grid() # vertical lines
Any suggestions?
You may need to give boolean arg in your calls, e.g. use ax.yaxis.grid(True) instead of ax.yaxis.grid(). Additionally, since you are using both of them you can combine into ax.grid, which works on both, rather than doing it once for each dimension.
ax = plt.gca()
ax.grid(True)
That should sort you out.
plt.gca().xaxis.grid(True) proved to be the solution for me
According to matplotlib documentation, The signature of the Axes class grid() method is as follows:
Axes.grid(b=None, which='major', axis='both', **kwargs)
Turn the axes grids on or off.
which can be ‘major’ (default), ‘minor’, or ‘both’ to control whether
major tick grids, minor tick grids, or both are affected.
axis can be ‘both’ (default), ‘x’, or ‘y’ to control which set of
gridlines are drawn.
So in order to show grid lines for both the x axis and y axis, we can use the the following code:
ax = plt.gca()
ax.grid(which='major', axis='both', linestyle='--')
This method gives us finer control over what to show for grid lines.
Short answer (read below for more info):
ax.grid(axis='both', which='both')
What you do is correct and it should work.
However, since the X axis in your example is a DateTime axis the Major tick-marks (most probably) are appearing only at the both ends of the X axis. The other visible tick-marks are Minor tick-marks.
The ax.grid() method, by default, draws grid lines on Major tick-marks.
Therefore, nothing appears in your plot.
Use the code below to highlight the tick-marks. Majors will be Blue while Minors are Red.
ax.tick_params(which='both', width=3)
ax.tick_params(which='major', length=20, color='b')
ax.tick_params(which='minor', length=10, color='r')
Now to force the grid lines to be appear also on the Minor tick-marks, pass the which='minor' to the method:
ax.grid(b=True, which='minor', axis='x', color='#000000', linestyle='--')
or simply use which='both' to draw both Major and Minor grid lines.
And this a more elegant grid line:
ax.grid(b=True, which='minor', axis='both', color='#888888', linestyle='--')
ax.grid(b=True, which='major', axis='both', color='#000000', linestyle='-')
maybe this can solve the problem:
matplotlib, define size of a grid on a plot
ax.grid(True, which='both')
The truth is that the grid is working, but there's only one v-grid in 00:00 and no grid in others. I meet the same problem that there's only one grid in Nov 1 among many days.
For only horizontal lines
ax = plt.axes()
ax.yaxis.grid() # horizontal lines
This worked
Try:
plt.grid(True)
This turns on both horizontal and vertical grids for date series with major tick marks in the right place.
Using Python3 / MatPlotLib 3.4.3

Why will my legend not move in Python

I had to create a simple graph to learn the properties of graphing making in python. One of those properties is legend placement. The code for such is ax.legend(loc="some number"). The different numbers you put in that piece of code I mention determine where the legend is placed. However, no matter what number I put, my legend never changes position. Is there a deeper issue that I am missing or could there just be something wrong with my program?
def line_plot():
x=np.linspace(-np.pi,np.pi,30)
cosx=np.cos(x)
sinx=np.sin(x)
fig1, ax1 = plt.subplots()
ax1.plot(x,np.sin(x), c='r', lw=3)
ax1.plot(x,np.cos(x), c='b', lw=3)
ax1.set_xlabel('x')
ax1.set_ylabel('y')
ax1.legend(["cos","sin"])
ax1.legend(loc=0);
ax1.set_xlim([-3.14, 3.14])
ax1.set_xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi])
ax1.grid(True)
ax1.set_xticklabels(['-'+r'$\pi$', '-'+r'$\pi$'+'/2',0, r'$\pi$'+'/2', r'$\pi$'])
plt.show()
return
if __name__ == "__main__":
line_plot()
When you plot your data you need to give them a label in order for the legend to appear. If you do not do this then you get UserWarning: No labelled objects found. Use label='...' kwarg on individual plots. and you wont be able to move your legend. So you can easily change this by doing the following:
def line_plot():
x=np.linspace(-np.pi,np.pi,30)
cosx=np.cos(x)
sinx=np.sin(x)
fig1, ax1 = plt.subplots()
ax1.plot(x,np.sin(x), c='r', lw=3,label='cos') #added label here
ax1.plot(x,np.cos(x), c='b', lw=3,label='sin') #added label here
ax1.set_xlabel('x')
ax1.set_ylabel('y')
#ax1.legend(["cos","sin"]) #don't need this as the plots are already labelled now
ax1.legend(loc=0);
ax1.set_xlim([-3.14, 3.14])
ax1.set_xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi])
ax1.grid(True)
ax1.set_xticklabels(['-'+r'$\pi$', '-'+r'$\pi$'+'/2',0, r'$\pi$'+'/2', r'$\pi$'])
plt.show()
return
if __name__ == "__main__":
line_plot()
This gives the plot below. Now changing the value of loc changes the position of the legend.
EDIT:
1) I gave each set of data you plotted their own label. Then when you get to the line ax1.legend(loc=0) matplotlib then sets the legend to include these labels on the legend. This is the most 'pythonic' way of plotting the legend.

Legend stylings

One on the nuances of legend stylings is that with the histogram legend call, such as:
axHistogram.legend(loc='upper left', prop={'family':'serif', 'size':'x-small'}, frameon=False)
We have boxes rather than lines.
Also, with the scatter legend styling, we have three dots offset:
axHistogram.legend(loc='upper left', prop={'family':'serif', 'size':'x-small'}, frameon=False)
Here is a image of what I mean:
How do I style these so that I have lines rather than boxes and just one dot rather than three offset?
You can use proxy artists to create the legend entries you want, for example remove the label= keyword from your call to hist, and do something like,
axHistogram.plot(np.NaN, np.NaN, label='AGN', color='b', linewidth=1)
Then when you create your legend the entry will be a line rather than a box.
You can use the numpoints and scatterpoints input option to legend to control the number of points that are in the legend.

Categories