I've got the following problem:
I have two different classes; let's call them the interface and worker. The interface is supposed to accept requests from outside, and multiplexes them to several workers.
Contrary to almost every example I have found, I have several peculiarities:
The workers are not supposed to be recreated for every request.
The workers are different; a request for workers[0] cannot be answered by workers[1]. This multiplexing is done in interface.
I have a number of function-like calls which are difficult to model via events or simple queues.
There are a few different requests, which would make one queue per request difficult.
For example, assume that each worker is storing a single integer number (let's say the number of calls this worker received). In non-parallel processing, I'd use something like this:
class interface(object):
workers = None #set somewhere else.
def get_worker_calls(self, worker_id):
return self.workers[worker_id].get_calls()
class worker(object)
calls = 0
def get_calls(self):
self.calls += 1
return self.calls
This, obviously, doesn't work. What does?
Or, maybe more relevantly, I don't have experience with multiprocessing. Is there a design paradigm I'm missing that would easily solve the above?
Thanks!
For reference, I have considered several approaches, and I was unable to find a good one:
Use one request and answer queue. I've discarded this idea since that'd either block interface'for the answer-time of the current worker (making it badly scalable), or would require me sending around extra information.
Use of one request queue. Each message contains a pipe to return the answer to that request. After fixing the issue with being unable to send pipes via pipes, I've run into problems with pipe closing unless sending both ends over the connection.
Use of one request queue. Each message contains a queue to return the answer to that request. Fails since I cannot send queues via queues, but the reduction trick doesn't work.
The above also applies to the respective Manager-generated objects.
Multiprocessing means you have 2+ separated processes running. There is no way to access memory from one process to another directly (as with multithreading).
Your best shot is to use some kind of external Queue mechanism, you can start with Celery or RQ. RQ is simpler but celery has built-in monitoring.
But you have to know that Multiprocessing will work only if Celery/RQ are able to "pack" the needed functions/classes and send them to other process. Therefore you have to use __main__ level functions (that are in top of file, not belongs to any class).
You can always implement it yourself, Redis is very simple, ZeroMQ and RabbitMQ are also good.
Beaver library is good example of how to deal with multiprocessing in python using ZeroMQ queue.
Related
Is it OK to run certain pieces of code asynchronously in a Django web app. If so how?
For example:
I have a search algorithm that returns hundreds or thousands of results. I want to enter into the database that these items were the result of the search, so I can see what users are searching most. I don't want the client to have to wait an extra hundred or thousand more database inserts. Is there a way I can do this asynchronously? Is there any danger in doing so? Is there a better way to achieve this?
As far as Django is concerned yes.
The bigger concern is your web server and if it plays nice with threading. For instance, the sync workers of gunicorn are single threads, but there are other engines, such as greenlet. I'm not sure how well they play with threads.
Combining threading and multiprocessing can be an issue if you're forking from threads:
Status of mixing multiprocessing and threading in Python
http://bugs.python.org/issue6721
That being said, I know of popular performance analytics utilities that have been using threads to report on metrics, so seems to be an accepted practice.
In sum, seems safest to use the threading.Thread object from the standard library, so long as whatever you do in it doesn't fork (python's multiprocessing library)
https://docs.python.org/2/library/threading.html
Offloading requests from the main thread is a common practice; as the end goal is to return a result to the client (browser) as quickly as possible.
As I am sure you are aware, HTTP is blocking - so until you return a response, the client cannot do anything (it is blocked, in a waiting state).
The de-facto way of offloading requests is through celery which is a task queuing system.
I highly recommend you read the introduction to celery topic, but in summary here is what happens:
You mark certain pieces of codes as "tasks". These are usually functions that you want to run asynchronously.
Celery manages workers - you can think of them as threads - that will run these tasks.
To communicate with the worker a message queue is required. RabbitMQ is the one often recommended.
Once you have all the components running (it takes but a few minutes); your workflow goes like this:
In your view, when you want to offload some work; you will call the function that does that work with the .delay() option. This will trigger the worker to start executing the method in the background.
Your view then returns a response immediately.
You can then check for the result of the task, and take appropriate actions based on what needs to be done. There are ways to track progress as well.
It is also good practice to include caching - so that you are not executing expensive tasks unnecessarily. For example, you might choose to offload a request to do some analytics on search keywords that will be placed in a report.
Once the report is generated, I would cache the results (if applicable) so that the same report can be displayed if requested later - rather than be generated again.
I'm currently learning Python (from a Java background), and I have a question about something I would have used threads for in Java.
My program will use workers to read from some web-service some data periodically. Each worker will call on the web-service at various times periodically.
From what I have read, it's preferable to use the multiprocessing module and set up the workers as independent processes that get on with their data-gathering tasks. On Java I would have done something conceptually similar, but using threads. While it appears I can use threads in Python, I'll lose out on multi-cpu utilisation.
Here's the guts of my question: The web-service is throttled, viz., the workers must not call on it more than x times per second. What is the best way for the workers to check on whether they may request data?
I'm confused as to whether this should be achieved using:
Pipes as a way to communicate to some other 'managing object', which monitors the total calls per second.
Something along the lines of nmap, to share some data/value between the processes that describes if they may call the web-service.
A Manager() object that monitors the calls per seconds and informs workers if they have permission to make their calls.
Of course, I guess this may come down to how I keep track of the calls per second. I suppose one option would be for the workers to call a function on some other object, which makes the call to the web-service and records the current number of calls/sec. Another option would be for the function that calls the web-service to live within each worker, and for them to message a managing object every time they make a call to the web-service.
Thoughts welcome!
Delegate the retrieval to a separate process which queues the requests until it is their turn.
I think that you'll find that the multiprocessing module will provide you with some fairly familiar constructs.
You might find that multiprocessing.Queue is useful for connecting your worker threads back to a managing thread that could provide monitoring or throttling.
Not really an answer to your question, but an alternative approach to your problem: You could get rid of synchronization issues when doing requests event driven, e.g. by using the Python async module or Twisted. You wouldn't benefit from multiple CPUs/cores, but in context of network communication that's usually negligible.
I'm trying to write a Python 2.6 (OSX) program using multiprocessing, and I want to populate a Queue with more than the default of 32767 items.
from multiprocessing import Queue
Queue(2**15) # raises OSError
Queue(32767) works fine, but any higher number (e.g. Queue(32768)) fails with OSError: [Errno 22] Invalid argument
Is there a workaround for this issue?
One approach would be to wrap your multiprocessing.Queue with a custom class (just on the producer side, or transparently from the consumer perspective). Using that you would queue up items to be dispatched to the Queue object that you're wrapping, and only feed things from the local queue (Python list() object) into the multiprocess.Queue as space becomes available, with exception handling to throttle when the Queue is full.
That's probably the easiest approach since it should have the minimum impact on the rest of your code. The custom class should behave just like a Queue while hiding the underlying multiprocessing.Queue behind your abstraction.
(One approach might be to have your producer use threads, one thread to manage the dispatch from a threading Queue to your multiprocessing.Queue and any other threads actually just feeding the threading Queue).
I've already answered the original question but I do feel like adding that Redis lists are quite reliable and the Python module's support for them are extremely easy to use for implementing a Queue like object. These have the advantage of allowing one to scale out over multiple nodes (across a network) as well as just over multiple processes.
Basically to use those you'd just pick a key (string) for your queue name have your producers push into it and have your workers (task consumers) loop on blocking pops from that key.
The Redis BLPOP, and BRPOP commands all take a list of keys (lists/queues) and an optional timeout value. They return a tuple (key,value) or None (on timeout). So you can easily write up an event driven system that's very similar to the familiar structure of select() (but at a much higher level). The only thing you have to watch for are missing keys and invalid key types (just wrap your queue operations with exception handlers, of course). (If some other application stops on your shared Redis server removing keys or replacing keys that you were using as queues with string/integer or other types of values ... well, you have a different problem at that point). :)
Another advantage of this model is that Redis does persist its data to the disk. So your work queue could survive system restarts if you chose to allow it.
(Of course you could implement a simple Queue as a table in SQLlite or any other SQL system if you really wanted to do so; just using some sort of auto-incrementing index for the sequencing and a column to mark each item has having been "done" (consumed); but that does involve somewhat more complexity than using what Redis gives you "out of the box").
Working for me on MacOSX
>>> import Queue
>>> Queue.Queue(30000000)
<Queue.Queue instance at 0x1006035f0>
I'm learning to use the Queue module, and am a bit confused about how a queue consumer thread can be made to know that the queue is complete. Ideally I'd like to use get() from within the consumer thread and have it throw an exception if the queue has been marked "done". Is there a better way to communicate this than by appending a sentinel value to mark the last item in the queue?
original (most of this has changed; see updates below)
Based on some of the suggestions (thanks!) of Glenn Maynard and others, I decided to roll up a descendant of Queue.Queue that implements a close method. It's available in the form of a primitive (unpackaged) module. I'll clean this up a bit and package it properly when I have a bit more time. For now the module only contains the CloseableQueue class and the Closed exception class. I'm planning to expand it to also include subclasses of Queue.LifoQueue and Queue.PriorityQueue.
It's in a pretty preliminary state currently, which is to say that although it passes its test suite, I haven't actually used it for anything yet. Your mileage may vary. I'll keep this answer updated with exciting news.
The CloseableQueue class differs a bit from Glenn's suggestion in that closing the queue will prevent future puts, but not prevent future gets until the queue is emptied. This made the most sense to me; it seemed like functionality to clear the queue could be added as a separate mixin* that would be orthogonal to the closeability functionality. So basically with CloseableQueue, by closing the queue you indicate that the last element has been put. There's also an option to do this atomically by passing last=True to the final put call. Subsequent calls to put, and subsequent calls to get once the queue is emptied, as well as outstanding blocked calls matching those descriptions, will raise the Closed exception.
This is mostly useful for situations where a single producer is generating data for one or more consumers, but it could also be useful for a multi-multi arrangement where consumers are waiting for a particular item or set of items. In particular it doesn't provide a way to determine that all of a number of producers have finished production. Getting that working would entail the provision of some way to register producers (.open()?), as well as a way to indicate that producer registration is itself closed.
Suggestions and/or code reviews are quite welcome. I haven't written a whole lot of concurrency code, but hopefully the test suite is thorough enough that the fact that the code passes it is an indication of the code's quality, rather than the suite's lack thereof. I was able to reuse a bunch of the code from the Queue module's test suite: the file itself is included in this module and used as a basis for various subclasses and routines, including regression testing. This probably (hopefully) helped to avoid complete ineptitude in the testing department. The code itself just overrides Queue.get and Queue.put with fairly minimal changes, and adds the close and closed methods.
I've sort of intentionally avoided using any new-fangled fanciness like context managers in both the code itself and in the test suite in an effort to keep the code as backwards-compatible as is the Queue module itself, which is considerably backwards indeed. I'll probably add __enter__ and __exit__ methods at some point; otherwise, the contextlib's closing function should be applicable to a CloseableQueue instance.
*: Here I use the term "mixin" loosely. As the Queue module's classes are old-style, mixins would need to be mixed using class factory functions; some restrictions apply; offer void where prohibited by Guido.
update
The CloseableQueue module now provides CloseableLifoQueue and CloseablePriorityQueue classes. I've also added some convenience functions to support iteration. Still need to rework it as a proper package. There's a class factory function to allow for convenient subclassing of other Queue.Queue-derived classes.
update 2
CloseableQueue is now available via PyPI, e.g. with
$ easy_install CloseableQueue
Comments and criticism are welcome, especially from this answer's anonymous downvoter.
Queue's don't inherently have the idea of being complete or done. They can be used indefinitely. To close it up when you are done, you will indeed need to put None or some other magic value at the end and write the logic to check for it, as you described. The ideal way would probably be subclassing the Queue object.
See http://en.wikipedia.org/wiki/Queue_(data_structure) to learn more about queue in general.
A sentinel is a natural way to shut down a queue, but there are a couple things to watch out for.
First, remember that you may have more than one consumer, so you need to send a sentinel once for each running consumer, and guarantee that each consumer will only consume one sentinel, to ensure that each consumer receives its shutdown sentinel.
Second, remember that Queue defines an interface, and that when possible, code should behave regardless of the underlying Queue. You might have a PriorityQueue, or you might have some other class that exposes the same interface and returns values in some other order.
Unfortunately, it's hard to deal with both of these. To deal with the general case of different queues, a consumer that's shutting down must continue to consume values after receiving its shutdown sentinel until the queue is empty. That means that it may consume another thread's sentinel. This is a weakness of the Queue interface: it should have a Queue.shutdown call to cause an exception to be thrown by all consumers, but that's missing.
So, in practice:
if you're sure you're only ever using a regular Queue, simply send one sentinel per thread.
if you may be using a PriorityQueue, ensure that the sentinel has the lowest priority.
Queue is a FIFO (first in first out) register so remember that the consumer can be faster than producer. When consumers thread detect that the queue is empty normally realise one of following actions:
Send to API: switch to next thread.
Send to API: sleep some ms and than check again the queue.
Send to API: wait on event (like new message in queue).
If you wont that consumers thread terminate after job is complete than put in queue a sentinel value to terminate task.
The best practice way of doing this would be to have the queue itself notify a client that it has reached the 'done' state. The client can then take any action that is appropriate.
What you have suggested; checking the queue to see if it is done periodically, would be highly undesirable. Polling is an antipattern in multithreaded programming, you should always be using notifications.
EDIT:
So your saying that the queue itself knows that it's 'done' based on some criteria and needs to notify the clients of that fact. I think you are correct and the best way to do this is by throwing when a client calls get() and the queue is in the done state. If your throwing this would negate the need for a sentinel value on the client side. Internally the queue can detect that it is 'done' in any way it pleases e.g. queue is empty, it's state was set to done etc I don't see any need for a sentinel value.
My question is: which python framework should I use to build my server?
Notes:
This server talks HTTP with it's clients: GET and POST (via pyAMF)
Clients "submit" "tasks" for processing and, then, sometime later, retrieve the associated "task_result"
submit and retrieve might be separated by days - different HTTP connections
The "task" is a lump of XML describing a problem to be solved, and a "task_result" is a lump of XML describing an answer.
When a server gets a "task", it queues it for processing
The server manages this queue and, when tasks get to the top, organises that they are processed.
the processing is performed by a long running (15 mins?) external program (via subprocess) which is feed the task XML and which produces a "task_result" lump of XML which the server picks up and stores (for later Client retrieval).
it serves a couple of basic HTML pages showing the Queue and processing status (admin purposes only)
I've experimented with twisted.web, using SQLite as the database and threads to handle the long running processes.
But I can't help feeling that I'm missing a simpler solution. Am I? If you were faced with this, what technology mix would you use?
I'd recommend using an existing message queue. There are many to choose from (see below), and they vary in complexity and robustness.
Also, avoid threads: let your processing tasks run in a different process (why do they have to run in the webserver?)
By using an existing message queue, you only need to worry about producing messages (in your webserver) and consuming them (in your long running tasks). As your system grows you'll be able to scale up by just adding webservers and consumers, and worry less about your queuing infrastructure.
Some popular python implementations of message queues:
http://code.google.com/p/stomper/
http://code.google.com/p/pyactivemq/
http://xph.us/software/beanstalkd/
I'd suggest the following. (Since it's what we're doing.)
A simple WSGI server (wsgiref or werkzeug). The HTTP requests coming in will naturally form a queue. No further queueing needed. You get a request, you spawn the subprocess as a child and wait for it to finish. A simple list of children is about all you need.
I used a modification of the main "serve forever" loop in wsgiref to periodically poll all of the children to see how they're doing.
A simple SQLite database can track request status. Even this may be overkill because your XML inputs and results can just lay around in the file system.
That's it. Queueing and threads don't really enter into it. A single long-running external process is too complex to coordinate. It's simplest if each request is a separate, stand-alone, child process.
If you get immense bursts of requests, you might want a simple governor to prevent creating thousands of children. The governor could be a simple queue, built using a list with append() and pop(). Every request goes in, but only requests that fit will in some "max number of children" limit are taken out.
My reaction is to suggest Twisted, but you've already looked at this. Still, I stick by my answer. Without knowing you personal pain-points, I can at least share some things that helped me reduce almost all of the deferred-madness that arises when you have several dependent, blocking actions you need to perform for a client.
Inline callbacks (lightly documented here: http://twistedmatrix.com/documents/8.2.0/api/twisted.internet.defer.html) provide a means to make long chains of deferreds much more readable (to the point of looking like straight-line code). There is an excellent example of the complexity reduction this affords here: http://blog.mekk.waw.pl/archives/14-Twisted-inlineCallbacks-and-deferredGenerator.html
You don't always have to get your bulk processing to integrate nicely with Twisted. Sometimes it is easier to break a large piece of your program off into a stand-alone, easily testable/tweakable/implementable command line tool and have Twisted invoke this tool in another process. Twisted's ProcessProtocol provides a fairly flexible way of launching and interacting with external helper programs. Furthermore, if you suddenly decide you want to cloudify your application, it is not all that big of a deal to use a ProcessProtocol to simply run your bulk processing on a remote server (random EC2 instances perhaps) via ssh, assuming you have the keys setup already.
You can have a look at celery
It seems any python web framework will suit your needs. I work with a similar system on a daily basis and I can tell you, your solution with threads and SQLite for queue storage is about as simple as you're going to get.
Assuming order doesn't matter in your queue, then threads should be acceptable. It's important to make sure you don't create race conditions with your queues or, for example, have two of the same job type running simultaneously. If this is the case, I'd suggest a single threaded application to do the items in the queue one by one.