Image Processing use Python find black contour - python

I have a problem Please help me if I have an image multi 16 in 1 image I wanna find black contour in an image just one show YES if find black contour What should I do? in Image Processing use Python!

Python Image Library can give RGB data of an image. You can get RGB data simply by using
import Image
pic = Image.open('/path/to/file')
rgbdata = pic.load()
width, height = pic.size
def identify_black():
for i in range(width):
for j in range(height):
if rgbdata[i,j] == (0,0,0):
#print rgbdata[i,j]
print "Yes"
return True
break
identify_black()
You can view the data purely in terms of RGB values of ijth pixel in rgbdata[i,j]. width and height help you define the blocks.
RGB value for black is (0,0,0). So if in your image list, a block of pixels give you (0,0,0) you can use that i, j th number to find in which block you have black! In fact, you identify any color!
Hope this helps.

A very simple solution is thresholding, just set any non black pixel(0,0,0) to (255,255,255) and you will have all the contours in an image.

Related

How to remove the empty images using python [duplicate]

Using the Python Imaging Library PIL how can someone detect if an image has all it's pixels black or white?
~Update~
Condition: Not iterate through each pixel!
if not img.getbbox():
... will test to see whether an image is completely black. (Image.getbbox() returns the falsy None if there are no non-black pixels in the image, otherwise it returns a tuple of points, which is truthy.) To test whether an image is completely white, invert it first:
if not ImageChops.invert(img).getbbox():
You can also use img.getextrema(). This will tell you the highest and lowest values within the image. To work with this most easily you should probably convert the image to grayscale mode first (otherwise the extrema might be an RGB or RGBA tuple, or a single grayscale value, or an index, and you have to deal with all those).
extrema = img.convert("L").getextrema()
if extrema == (0, 0):
# all black
elif extrema == (1, 1):
# all white
The latter method will likely be faster, but not so you'd notice in most applications (both will be quite fast).
A one-line version of the above technique that tests for either black or white:
if sum(img.convert("L").getextrema()) in (0, 2):
# either all black or all white
Expanding on Kindall:
if you look at an image called img with:
extrema = img.convert("L").getextrema()
It gives you a range of the values in the images. So an all black image would be (0,0) and an all white image is (255,255). So you can look at:
if extrema[0] == extrema[1]:
return("This image is one solid color, so I won't use it")
else:
# do something with the image img
pass
Useful to me when I was creating a thumbnail from some data and wanted to make sure it was reading correctly.
from PIL import Image
img = Image.open("test.png")
clrs = img.getcolors()
clrs contains [("num of occurences","color"),...]
By checking for len(clrs) == 1 you can verify if the image contains only one color and by looking at the second element of the first tuple in clrs you can infer the color.
In case the image contains multiple colors, then by taking the number of occurences into account you can also handle almost-completly-single-colored images if 99% of the pixles share the same color.
I tried the Kindall solution ImageChops.invert(img).getbbox() without success, my test images failed.
I had noticed a problem, white should be 255 BUT I have found white images where numeric extrema are (0,0).. why? See the update below.
I have changed Kindall second solution (getextrema), that works right, in a way that doesn't need image conversion, I wrote a function and verified that works with Grayscale and RGB images both:
def is_monochromatic_image(img):
extr = img.getextrema()
a = 0
for i in extr:
if isinstance(i, tuple):
a += abs(i[0] - i[1])
else:
a = abs(extr[0] - extr[1])
break
return a == 0
The img argument is a PIL Image object.
You can also check, with small modifications, if images are black or white.. but you have to decide if "white" is 0 or 255, perhaps you have the definitive answer, I have not. :-)
Hope useful
UPDATE: I suppose that white images with zeros inside.. may be PNG or other image format with transparency.

How to analyze only a part of an image?

I want to analyse a specific part of an image, as an example I'd like to focus on the bottom right 200x200 section and count all the black pixels, so far I have:
im1 = Image.open(path)
rgb_im1 = im1.convert('RGB')
for pixel in rgb_im1.getdata():
Whilst you could do this with cropping and a pair of for loops, that is really slow and not ideal.
I would suggest you use Numpy as it is very commonly available, very powerful and very fast.
Here's a 400x300 black rectangle with a 1-pixel red border:
#!/usr/bin/env python3
import numpy as np
from PIL import Image
# Open the image and make into Numpy array
im = Image.open('image.png')
ni = np.array(im)
# Declare an ROI - Region of Interest as the bottom-right 200x200 pixels
# This is called "Numpy slicing" and is near-instantaneous https://www.tutorialspoint.com/numpy/numpy_indexing_and_slicing.htm
ROI = ni[-200:,-200:]
# Calculate total area of ROI and subtract non-zero pixels to get number of zero pixels
# Numpy.count_nonzero() is highly optimised and extremely fast
black = 200*200 - np.count_nonzero(ROI)
print(f'Black pixel total: {black}')
Sample Output
Black pixel total: 39601
Yes, you can make it shorter, for example:
h, w = 200,200
im = np.array(Image.open('image.png'))
black = h*w - np.count_nonzero(ni[-h:,-w:])
If you want to debug it, you can take the ROI and make it into a PIL Image which you can then display. So just use this line anywhere after you make the ROI:
# Display image to check
Image.fromarray(ROI).show()
You can try cropping the Image to the specific part that you want:-
img = Image.open(r"Image_location")
x,y = img.size
img = img.crop((x-200, y-200, x, y))
The above code takes an input image, and crops it to its bottom right 200x200 pixels. (make sure the image dimensions are more then 200x200, otherwise an error will occur)
Original Image:-
Image after Cropping:-
You can then use this cropped image, to count the number of black pixels, where it depends on your use case what you consider as a BLACK pixel (a discrete value like (0, 0, 0) or a range/threshold (0-15, 0-15, 0-15)).
P.S.:- The final Image will always have a dimension of 200x200 pixels.
from PIL import Image
img = Image.open("ImageName.jpg")
crop_area = (a,b,c,d)
cropped_img = img.crop(crop_area)

Substitute pixels of an image with other images yet retaining the image

I have seen an image of a girl which is made up of multiple images of her.So I want to achieve the same thing using a python script.(I am completely new to image processing)
I am using pil library for this script.
import sys,os
from PIL import Image
img = Image.open("DSC_0149.jpg")
pixels = img.load()
for i in range(img.size[0]):
for j in range(img.size[1]):
pixels[i,j] = (i, j, 100) # I will change this to some pic image.
img.show()
I am trying first just to change the colour of pixel retaining the pic,But this code dint work.
Can anyone guide me how to achieve it.
Edit : I want to fill the picture with multiple pictures and yet RETAIN the original picture.
Something like this : http://www.photoshopessentials.com/photo-effects/photo-fill/ but in a much better way.
So first you need to edit each pixel with this to change the color:
If it is rgb:
img.putpixel((10,15),(r,g,b))
or
faster: pixels[1, 1] = (r, g, b)
otherwise:
Is it possible to change the color of one individual pixel in Python?
After knowing how to edit each pixel you have to create a small copy of your image with a resize like this:
Copy Image:
// Not tested : Make sure it's rgb
img = Image.new( 'RGB', (img.size[0],(img.size[1]), "black") # create a new black image
pixels = img.load() # create the pixel map
for i in range(img.size[0]): # for every pixel:
for j in range(img.size[1]):
pixels[i,j] = other_image_pixel[i,j] # set the colour accordingly
https://opensource.com/life/15/2/resize-images-python
Apply a Color filter to each small image to match the area color you will replace with this image.
The best way to understand the whole process is to take time to read this code in the same language, it's around 200 lines:
https://github.com/codebox/mosaic
Hope it solve your problems

Detect white background on images using python

Is there a way to tell whether an image as a white background using python and what could be a good strategy to get a "percentage of confidence" about this question? Seems like the literature on internet doesn't cover exactly this case and I can't find anything strictly related.
The images I want to analyze are typical e-commerce website product pictures, so they should have a single focused object in the middle and white background only at the borders.
Another information that could be available is the max percentage of image space the object should occupy.
I would go with something like this.
Reduce the contrast of the image by making the brightest, whitest pixel something like 240 instead of 255 so that the whites generally found within the image and within parts of the product are no longer pure white.
Put a 1 pixel wide white border around your image - that will allow the floodfill in the next step to "flow" all the way around the edge (even if the "product" touches the edges of the frame) and "seep" into the image from all borders/edges.
Floofdill your image starting at the top-left corner (which is necessarily pure white after step 2) and allow a tolerance of 10-20% when matching the white in case the background is off-white or slightly shadowed, and the white will flow into your image all around the edges until it reaches the product in the centre.
See how many pure white pixels you have now - these are the background ones. The percentage of pure white pixels will give you an indicator of confidence in the image being a product on a whitish background.
I would use ImageMagick from the command line like this:
convert product.jpg +level 5% -bordercolor white -border 1 \
-fill white -fuzz 25% -draw "color 0,0 floodfill" result.jpg
I will put a red border around the following 2 pictures just so you can see the edges on StackOverflow's white background, and show you the before and after images - look at the amount of white in the resulting images (there is none in the second one because it didn't have a white background) and also at the shadow under the router to see the effect of the -fuzz.
Before
After
If you want that as a percentage, you can make all non-white pixels black and then calculate the percentage of white pixels like this:
convert product.jpg -level 5% \
-bordercolor white -border 1 \
-fill white -fuzz 25% -draw "color 0,0 floodfill" -shave 1 \
-fuzz 0 -fill black +opaque white -format "%[fx:int(mean*100)]" info:
62
Before
After
ImageMagick has Python bindings so you could do the above in Python - or you could use OpenCV and Python to implement the same algorithm.
This question may be years ago but I just had a similar task recently. Sharing my answer here might help others that will encounter the same task too and I might also improve my answer by having the community look at it.
import cv2 as cv
import numpy as np
THRESHOLD_INTENSITY = 230
def has_white_background(img):
# Read image into org_img variable
org_img = cv.imread(img, cv.IMREAD_GRAYSCALE)
# cv.imshow('Original Image', org_img)
# Create a black blank image for the mask
mask = np.zeros_like(org_img)
# Create a thresholded image, I set my threshold to 200 as this is the value
# I found most effective in identifying light colored object
_, thres_img = cv.threshold(org_img, 200, 255, cv.THRESH_BINARY_INV)
# Find the most significant contours
contours, hierarchy = cv.findContours(thres_img, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE)
# Get the outermost contours
outer_contours_img = max(contours, key=cv.contourArea)
# Get the bounding rectangle of the contours
x,y,w,h = cv.boundingRect(outer_contours_img)
# Draw a rectangle base on the bounding rectangle of the contours to our mask
cv.rectangle(mask,(x,y),(x+w,y+h),(255,255,255),-1)
# Invert the mask so that we create a hole for the detected object in our mask
mask = cv.bitwise_not(mask)
# Apply mask to the original image to subtract it and retain only the bg
img_bg = cv.bitwise_and(org_img, org_img, mask=mask)
# If the size of the mask is similar to the size of the image then the bg is not white
if h == org_img.shape[0] and w == org_img.shape[1]:
return False
# Create a np array of the
np_array = np.array(img_bg)
# Remove the zeroes from the "remaining bg image" so that we dont consider the black part,
# and find the average intensity of the remaining pixels
ave_intensity = np_array[np.nonzero(np_array)].mean()
if ave_intensity > THRESHOLD_INTENSITY:
return True
else:
return False
These are the images of the steps from the code above:
Here is the Original Image. No copyright infringement intended.
(Cant find the url of the actual imagem from unsplash)
First step is to convert the image to grayscale.
Apply thresholding to the image.
Get the contours of the "thresholded" image and get the contours. Drawing the contours is optional only.
From the contours, get the values of the outer contour and find its bounding rectangle. Optionally draw the rectangle to the image so that you'll see if your assumed thresholding value fits the object in the rectangle.
Create a mask out of the bounding rectangle.
Lastly, subtract the mask to the greyscale image. What will remain is the background image minus the mask.
To Finally identify if the background is white, find the average intensity values of the background image excluding the 0 values of the image array. And base on a certain threshold value, categorize it if its white or not.
Hope this helps. If you think it can still be improve, or if there are flaws with my solution pls comment below.
The most popular image format is .png. PNG image can have a transparent color (alpha). Often match with the white background page. With pillow is easy to find out which pixels are transparent.
A good starting point:
from PIL import Image
img = Image.open('image.png')
img = img.convert("RGBA")
pixdata = img.load()
for y in xrange(img.size[1]):
for x in xrange(img.size[0]):
pixel = pixdata[x, y]
if pixel[3] == 255:
# tranparent....
Or maybe it's enough if you check if top-left pixel it's white:
pixel = pixdata[0, 0]
if item[0] == 255 and item[1] == 255 and item[2] == 255:
# it's white

Blurring a picture (Python, Jython, picture editing)

Trying to blur a picture in Jython. What I have does run but does not return a blurred picture. I'm kinda at a loss of what is wrong with it.
FINAL (WORKING) CODE EDITED IN BELOW. THANKS FOR HELP GUYS!
def main():
pic= makePicture( pickAFile() )
show( pic )
blurAmount=10
makeBlurredPicture(pic,blurAmount)
show(makeBlurredPicture(pic,blurAmount))
def makeBlurredPicture(pic,blurAmount):
w=getWidth(pic)
h=getHeight(pic)
blurPic= makeEmptyPicture( w-blurAmount, h )
for px in getPixels(blurPic):
x=getX(px)
y=getY(px)
if (x+blurAmount<w):
rTotal=0
gTotal=0
bTotal=0
for i in range(0,blurAmount):
origpx=getPixel(pic,x+i,y)
rTotal=rTotal+getRed(origpx)
gTotal=gTotal+getGreen(origpx)
bTotal=bTotal+getBlue(origpx)
rAverage=(rTotal/blurAmount)
gAverage=(gTotal/blurAmount)
bAverage=(bTotal/blurAmount)
setRed(px,rAverage)
setGreen(px,gAverage)
setBlue(px,bAverage)
return blurPic
The pseudo-code was as such : makeBlurredPicture(picture, blur_amount)
get width and height of picture and make an empty picture with the dimensions
(w-blur_amount, h ) call this blurPic
for loop, looping through all the pixels (in blurPic)
get and save x and y locations of the pixel
#make sure you are not too close to edge (x+blur) is less than width
Intialize rTotal, gTotal, and bTotal to 0
# add up the rgb values for all the pixels in the blur
For loop that loops (blur_amount) times
rTotal= rTotal +the red pixel amount of the picture (input argument) at the location (x+loop number,y) then same for green and blue
find the average of red,green, blue values, this is just rTotal/blur_amount (same for green, and blue)
set the red value of blurPic pixel to the redAverage (same for green and blue)
return blurPic
The problem is that you are overwriting the variable px from the outer loop which is the pixel in the blurred image with a pixel value from the original image.
So just replace your inner loop with:
for i in range(0,blurAmount):
origPx=getPixel(pic,x+i,y)
rTotal=rTotal+getRed(origPx)
gTotal=gTotal+getGreen(origPx)
bTotal=bTotal+getBlue(origPx)
In order to show the blurred picture change the last line in you main to
show( makeBlurredPicture(pic,blurAmount) )
Here is the simple way to do it:
import ImageFilter
def filterBlur(im):
im1 = im.filter(ImageFilter.BLUR)
im1.save("BLUR" + ext)
filterBlur(im1)
For a complete reference to the Image Library See: http://www.riisen.dk/dop/pil.html
def blur_image(image, radius):
blur = image.filter(ImageFilter.GaussianBlur(radius))
image.paste(blur,(0,0))
return image

Categories