Why is (numpy.nan, 1) == (numpy.nan, 1)? - python

While numpy.nan is not equal to numpy.nan, and (float('nan'), 1) is not equal to float('nan', 1),
(numpy.nan, 1) == (numpy.nan, 1)
What could be the reason?
Does Python first check to see if the ids are identical?
If identity is checked first when comparing items of a tuple, then why isn't it checked when objects are compared directly?

When you do numpy.nan == numpy.nan it's numpy that is deciding whether the condition is true or not. When you compare tuples python is just checking if the tuples have the same objects which they do. You can make numpy have the decision by turning the tuples into numpy arrays.
np.array((1, numpy.nan)) == np.array((1,numpy.nan))
>>array([ True, False], dtype=bool)
The reason is when you do == with numpy objects you're calling the numpy function __eq__() that says specifically that nan != nan because mathematically speaking nan is undetermined (could be anything) so it makes sense that nan != nan. But when you do == with tuples you call the tuples __eq__() function that doesn't care about mathematics and only cares if python objects are the same or not. In case of (float('nan'),1)==(float('nan'),1) it returns False because each call of float('nan') allocates memory in a different place as you can check by doing float('nan') is float('nan').

Container objects are free to define what equality means for them, and for most that means one thing is really, really important:
for x in container:
assert x in container
So containers typically do an id check before an __eq__ check.

When comparing two objects in a tuple Python first check to see if they are the same.
Note that numpy.nan is numpy.nan, but float('nan') is not float('nan').
In Objects/tupleobject.c, the comparison is carried out like this:
for (i = 0; i < vlen && i < wlen; i++) {
int k = PyObject_RichCompareBool(vt->ob_item[i],
wt->ob_item[i], Py_EQ);
if (k < 0)
return NULL;
if (!k)
break;
}
And in PyObject_RichCompareBool, you can see the check for equality:
if (v == w) {
if (op == Py_EQ)
return 1;
else if (op == Py_NE)
return 0;
}
You can verify this with the following example:
class A(object):
def __eq__(self, other):
print "Checking equality with __eq__"
return True
a1 = A()
a2 = A()
If you try (a1, 1) == (a1, 1) nothing get printed, while (a1, 1) == (a2, 1) would use __eq__ and print our the message.
Now try a1 == a1 and see if it surprises you ;P

Tuples do check first with identity and then with equality if identity doesn't match.
(float('nan'),) == (float('nan'),)
is False simply because a different object instance is created... if you do instead:
x = float('nan')
print (x,) == (x,)
you will get True too because x == x is False, but x is x is True.
Numpy numpy.nan is a static instance and that's why it "doesn't work".
As a wild guess this "shortcut" of checking identity first is done for performance reasons.

Related

What's making the difference here? I just dont get behind it

So i made this code to check if to integers can be devided without a rest, and its working.
But I needed to make a change so it works. I really just want to understand why this little change completely inversed the outcome of my code. This is the working code
x = input("Erster Teiler")
y = input("Zweiter Teiler")
z = int(x)%int(y)
z1 =int(y)%int(x)
if z == 0 or z1 == 0:
print("teilbar")
else:
print("nicht teilbar")
my first attempt at this excercie is doing the exact oppossite. If i put in 2 numbers that you can not divide, it
says they are divisable.
I just want to know what makes the difference in these codes.
As you can see all i did was changing the premise for my first if-condition.
x = input("Erster Teiler")
y = input("Zweiter Teiler")
z = int(x)%int(y)
z1 =int(y)%int(x)
if z or z1 == 0:
print("teilbar")
else:
print("nicht teilbar")
Check out the section in python documentation on truth value testing
https://docs.python.org/3/library/stdtypes.html
Reproducing some of the documentation
Truth Value Testing
Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean operations below.
By default, an object is considered true unless its class defines either a __bool__() method that returns False or a __len__() method that returns zero, when called with the object. Here are most of the built-in objects considered false:
constants defined to be false: None and False.
zero of any numeric type: 0, 0.0, 0j, Decimal(0), Fraction(0, 1)
empty sequences and collections: '', (), [], {}, set(), range(0)
Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their operands.)
if z or z1 == 0:
is testing if z a numeric type any value other than 0 is evaluated to true.
I think your first code was right. In the second code z does not have any condition so that I can't return true or false to execute the if statement. The syntax is wrong

What is 'is' in Python? [duplicate]

This question's answers are a community effort. Edit existing answers to improve this post. It is not currently accepting new answers or interactions.
My Google-fu has failed me.
In Python, are the following two tests for equality equivalent?
n = 5
# Test one.
if n == 5:
print 'Yay!'
# Test two.
if n is 5:
print 'Yay!'
Does this hold true for objects where you would be comparing instances (a list say)?
Okay, so this kind of answers my question:
L = []
L.append(1)
if L == [1]:
print 'Yay!'
# Holds true, but...
if L is [1]:
print 'Yay!'
# Doesn't.
So == tests value where is tests to see if they are the same object?
is will return True if two variables point to the same object (in memory), == if the objects referred to by the variables are equal.
>>> a = [1, 2, 3]
>>> b = a
>>> b is a
True
>>> b == a
True
# Make a new copy of list `a` via the slice operator,
# and assign it to variable `b`
>>> b = a[:]
>>> b is a
False
>>> b == a
True
In your case, the second test only works because Python caches small integer objects, which is an implementation detail. For larger integers, this does not work:
>>> 1000 is 10**3
False
>>> 1000 == 10**3
True
The same holds true for string literals:
>>> "a" is "a"
True
>>> "aa" is "a" * 2
True
>>> x = "a"
>>> "aa" is x * 2
False
>>> "aa" is intern(x*2)
True
Please see this question as well.
There is a simple rule of thumb to tell you when to use == or is.
== is for value equality. Use it when you would like to know if two objects have the same value.
is is for reference equality. Use it when you would like to know if two references refer to the same object.
In general, when you are comparing something to a simple type, you are usually checking for value equality, so you should use ==. For example, the intention of your example is probably to check whether x has a value equal to 2 (==), not whether x is literally referring to the same object as 2.
Something else to note: because of the way the CPython reference implementation works, you'll get unexpected and inconsistent results if you mistakenly use is to compare for reference equality on integers:
>>> a = 500
>>> b = 500
>>> a == b
True
>>> a is b
False
That's pretty much what we expected: a and b have the same value, but are distinct entities. But what about this?
>>> c = 200
>>> d = 200
>>> c == d
True
>>> c is d
True
This is inconsistent with the earlier result. What's going on here? It turns out the reference implementation of Python caches integer objects in the range -5..256 as singleton instances for performance reasons. Here's an example demonstrating this:
>>> for i in range(250, 260): a = i; print "%i: %s" % (i, a is int(str(i)));
...
250: True
251: True
252: True
253: True
254: True
255: True
256: True
257: False
258: False
259: False
This is another obvious reason not to use is: the behavior is left up to implementations when you're erroneously using it for value equality.
Is there a difference between == and is in Python?
Yes, they have a very important difference.
==: check for equality - the semantics are that equivalent objects (that aren't necessarily the same object) will test as equal. As the documentation says:
The operators <, >, ==, >=, <=, and != compare the values of two objects.
is: check for identity - the semantics are that the object (as held in memory) is the object. Again, the documentation says:
The operators is and is not test for object identity: x is y is true
if and only if x and y are the same object. Object identity is
determined using the id() function. x is not y yields the inverse
truth value.
Thus, the check for identity is the same as checking for the equality of the IDs of the objects. That is,
a is b
is the same as:
id(a) == id(b)
where id is the builtin function that returns an integer that "is guaranteed to be unique among simultaneously existing objects" (see help(id)) and where a and b are any arbitrary objects.
Other Usage Directions
You should use these comparisons for their semantics. Use is to check identity and == to check equality.
So in general, we use is to check for identity. This is usually useful when we are checking for an object that should only exist once in memory, referred to as a "singleton" in the documentation.
Use cases for is include:
None
enum values (when using Enums from the enum module)
usually modules
usually class objects resulting from class definitions
usually function objects resulting from function definitions
anything else that should only exist once in memory (all singletons, generally)
a specific object that you want by identity
Usual use cases for == include:
numbers, including integers
strings
lists
sets
dictionaries
custom mutable objects
other builtin immutable objects, in most cases
The general use case, again, for ==, is the object you want may not be the same object, instead it may be an equivalent one
PEP 8 directions
PEP 8, the official Python style guide for the standard library also mentions two use-cases for is:
Comparisons to singletons like None should always be done with is or
is not, never the equality operators.
Also, beware of writing if x when you really mean if x is not None --
e.g. when testing whether a variable or argument that defaults to None
was set to some other value. The other value might have a type (such
as a container) that could be false in a boolean context!
Inferring equality from identity
If is is true, equality can usually be inferred - logically, if an object is itself, then it should test as equivalent to itself.
In most cases this logic is true, but it relies on the implementation of the __eq__ special method. As the docs say,
The default behavior for equality comparison (== and !=) is based on
the identity of the objects. Hence, equality comparison of instances
with the same identity results in equality, and equality comparison of
instances with different identities results in inequality. A
motivation for this default behavior is the desire that all objects
should be reflexive (i.e. x is y implies x == y).
and in the interests of consistency, recommends:
Equality comparison should be reflexive. In other words, identical
objects should compare equal:
x is y implies x == y
We can see that this is the default behavior for custom objects:
>>> class Object(object): pass
>>> obj = Object()
>>> obj2 = Object()
>>> obj == obj, obj is obj
(True, True)
>>> obj == obj2, obj is obj2
(False, False)
The contrapositive is also usually true - if somethings test as not equal, you can usually infer that they are not the same object.
Since tests for equality can be customized, this inference does not always hold true for all types.
An exception
A notable exception is nan - it always tests as not equal to itself:
>>> nan = float('nan')
>>> nan
nan
>>> nan is nan
True
>>> nan == nan # !!!!!
False
Checking for identity can be much a much quicker check than checking for equality (which might require recursively checking members).
But it cannot be substituted for equality where you may find more than one object as equivalent.
Note that comparing equality of lists and tuples will assume that identity of objects are equal (because this is a fast check). This can create contradictions if the logic is inconsistent - as it is for nan:
>>> [nan] == [nan]
True
>>> (nan,) == (nan,)
True
A Cautionary Tale:
The question is attempting to use is to compare integers. You shouldn't assume that an instance of an integer is the same instance as one obtained by another reference. This story explains why.
A commenter had code that relied on the fact that small integers (-5 to 256 inclusive) are singletons in Python, instead of checking for equality.
Wow, this can lead to some insidious bugs. I had some code that checked if a is b, which worked as I wanted because a and b are typically small numbers. The bug only happened today, after six months in production, because a and b were finally large enough to not be cached. – gwg
It worked in development. It may have passed some unittests.
And it worked in production - until the code checked for an integer larger than 256, at which point it failed in production.
This is a production failure that could have been caught in code review or possibly with a style-checker.
Let me emphasize: do not use is to compare integers.
== determines if the values are equal, while is determines if they are the exact same object.
What's the difference between is and ==?
== and is are different comparison! As others already said:
== compares the values of the objects.
is compares the references of the objects.
In Python names refer to objects, for example in this case value1 and value2 refer to an int instance storing the value 1000:
value1 = 1000
value2 = value1
Because value2 refers to the same object is and == will give True:
>>> value1 == value2
True
>>> value1 is value2
True
In the following example the names value1 and value2 refer to different int instances, even if both store the same integer:
>>> value1 = 1000
>>> value2 = 1000
Because the same value (integer) is stored == will be True, that's why it's often called "value comparison". However is will return False because these are different objects:
>>> value1 == value2
True
>>> value1 is value2
False
When to use which?
Generally is is a much faster comparison. That's why CPython caches (or maybe reuses would be the better term) certain objects like small integers, some strings, etc. But this should be treated as implementation detail that could (even if unlikely) change at any point without warning.
You should only use is if you:
want to check if two objects are really the same object (not just the same "value"). One example can be if you use a singleton object as constant.
want to compare a value to a Python constant. The constants in Python are:
None
True1
False1
NotImplemented
Ellipsis
__debug__
classes (for example int is int or int is float)
there could be additional constants in built-in modules or 3rd party modules. For example np.ma.masked from the NumPy module)
In every other case you should use == to check for equality.
Can I customize the behavior?
There is some aspect to == that hasn't been mentioned already in the other answers: It's part of Pythons "Data model". That means its behavior can be customized using the __eq__ method. For example:
class MyClass(object):
def __init__(self, val):
self._value = val
def __eq__(self, other):
print('__eq__ method called')
try:
return self._value == other._value
except AttributeError:
raise TypeError('Cannot compare {0} to objects of type {1}'
.format(type(self), type(other)))
This is just an artificial example to illustrate that the method is really called:
>>> MyClass(10) == MyClass(10)
__eq__ method called
True
Note that by default (if no other implementation of __eq__ can be found in the class or the superclasses) __eq__ uses is:
class AClass(object):
def __init__(self, value):
self._value = value
>>> a = AClass(10)
>>> b = AClass(10)
>>> a == b
False
>>> a == a
So it's actually important to implement __eq__ if you want "more" than just reference-comparison for custom classes!
On the other hand you cannot customize is checks. It will always compare just if you have the same reference.
Will these comparisons always return a boolean?
Because __eq__ can be re-implemented or overridden, it's not limited to return True or False. It could return anything (but in most cases it should return a boolean!).
For example with NumPy arrays the == will return an array:
>>> import numpy as np
>>> np.arange(10) == 2
array([False, False, True, False, False, False, False, False, False, False], dtype=bool)
But is checks will always return True or False!
1 As Aaron Hall mentioned in the comments:
Generally you shouldn't do any is True or is False checks because one normally uses these "checks" in a context that implicitly converts the condition to a boolean (for example in an if statement). So doing the is True comparison and the implicit boolean cast is doing more work than just doing the boolean cast - and you limit yourself to booleans (which isn't considered pythonic).
Like PEP8 mentions:
Don't compare boolean values to True or False using ==.
Yes: if greeting:
No: if greeting == True:
Worse: if greeting is True:
They are completely different. is checks for object identity, while == checks for equality (a notion that depends on the two operands' types).
It is only a lucky coincidence that "is" seems to work correctly with small integers (e.g. 5 == 4+1). That is because CPython optimizes the storage of integers in the range (-5 to 256) by making them singletons. This behavior is totally implementation-dependent and not guaranteed to be preserved under all manner of minor transformative operations.
For example, Python 3.5 also makes short strings singletons, but slicing them disrupts this behavior:
>>> "foo" + "bar" == "foobar"
True
>>> "foo" + "bar" is "foobar"
True
>>> "foo"[:] + "bar" == "foobar"
True
>>> "foo"[:] + "bar" is "foobar"
False
https://docs.python.org/library/stdtypes.html#comparisons
is tests for identity
== tests for equality
Each (small) integer value is mapped to a single value, so every 3 is identical and equal. This is an implementation detail, not part of the language spec though
Your answer is correct. The is operator compares the identity of two objects. The == operator compares the values of two objects.
An object's identity never changes once it has been created; you may think of it as the object's address in memory.
You can control comparison behaviour of object values by defining a __cmp__ method or a rich comparison method like __eq__.
Have a look at Stack Overflow question Python's “is” operator behaves unexpectedly with integers.
What it mostly boils down to is that "is" checks to see if they are the same object, not just equal to each other (the numbers below 256 are a special case).
In a nutshell, is checks whether two references point to the same object or not.== checks whether two objects have the same value or not.
a=[1,2,3]
b=a #a and b point to the same object
c=list(a) #c points to different object
if a==b:
print('#') #output:#
if a is b:
print('##') #output:##
if a==c:
print('###') #output:##
if a is c:
print('####') #no output as c and a point to different object
As the other people in this post answer the question in details the difference between == and is for comparing Objects or variables, I would emphasize mainly the comparison between is and == for strings which can give different results and I would urge programmers to carefully use them.
For string comparison, make sure to use == instead of is:
str = 'hello'
if (str is 'hello'):
print ('str is hello')
if (str == 'hello'):
print ('str == hello')
Out:
str is hello
str == hello
But in the below example == and is will get different results:
str2 = 'hello sam'
if (str2 is 'hello sam'):
print ('str2 is hello sam')
if (str2 == 'hello sam'):
print ('str2 == hello sam')
Out:
str2 == hello sam
Conclusion and Analysis:
Use is carefully to compare between strings.
Since is for comparing objects and since in Python 3+ every variable such as string interpret as an object, let's see what happened in above paragraphs.
In python there is id function that shows a unique constant of an object during its lifetime. This id is using in back-end of Python interpreter to compare two objects using is keyword.
str = 'hello'
id('hello')
> 140039832615152
id(str)
> 140039832615152
But
str2 = 'hello sam'
id('hello sam')
> 140039832615536
id(str2)
> 140039832615792
As John Feminella said, most of the time you will use == and != because your objective is to compare values. I'd just like to categorise what you would do the rest of the time:
There is one and only one instance of NoneType i.e. None is a singleton. Consequently foo == None and foo is None mean the same. However the is test is faster and the Pythonic convention is to use foo is None.
If you are doing some introspection or mucking about with garbage collection or checking whether your custom-built string interning gadget is working or suchlike, then you probably have a use-case for foo is bar.
True and False are also (now) singletons, but there is no use-case for foo == True and no use case for foo is True.
Most of them already answered to the point. Just as an additional note (based on my understanding and experimenting but not from a documented source), the statement
== if the objects referred to by the variables are equal
from above answers should be read as
== if the objects referred to by the variables are equal and objects belonging to the same type/class
. I arrived at this conclusion based on the below test:
list1 = [1,2,3,4]
tuple1 = (1,2,3,4)
print(list1)
print(tuple1)
print(id(list1))
print(id(tuple1))
print(list1 == tuple1)
print(list1 is tuple1)
Here the contents of the list and tuple are same but the type/class are different.

why is id(1) is id(1) returning False?

I know the is operator compares the id of the two, not the value
However when you evaluate id(1) and id(1), the object (which is an int) is equal to one another.
So why is it returning false?
id(1) # 27533656
id(1) is id(1) # False
type(id(1)) # int
so then, technically, deduce it to
id(1) is id(1)
27533656 is 27533656 # has to be True!
is checks for object identity whereas == checks object equality. The difference can be subtle, but is most easy to see when dealing with mutable objects like lists:
x = [1, 2, 3]
y = x[:] # copy, not the same list
x is y # False
x == y # True
If I add something to x, y won't see it:
x.append(4)
x == y # now False since they have diverged.
But, if I alias x and append to it, the alias will also see the changes:
z = x # alias `z` to `x`
x.append(5)
x == z # True
And the reason for this is because z is x.
z is x # True
In this case, the id of 1 is consistent because CPython1 caches small integers for efficiency (so the object literal 1 is always the same object -- and therefore the same Id). However, the return value of id can actually be a different instances of int that have equivalent values.
1This is a well known implementation detail for CPython. Other implementations (and future versions) are free behave differently so do not rely on this behaviour.
You're slightly misinterpreting what the is syntax does.
What you are doing with that bit of code is roughly:
id(id(1)) == id(id(1))
Because the value returned by the id function is not static and not guaranteed to be the same identity, they will most likely be different identities.
As proof, when I put those into a print statement I get:
print id(id(1)) # 4327028
print id(id(1)) # 4326968
Which are obviously not the same.
If you were to change the code to:
if 1 is 1: # basically in this case id(1) == id(1)
print "success"
You would find that the values are indeed the same id.
As noted in the comments. The x is x and id(x) == id(x) methods of determining equivalence are not always the same for all literal types.
In the specific case of this question they may be treated as equal.

How does Python 2.7 compare items inside a list

I came across this interesting example today
class TestableEq(object):
def __init__(self):
self.eq_run = False
def __eq__(self, other):
self.eq_run = True
if isinstance(other, TestableEq):
other.eq_run = True
return self is other
>>> eq = TestableEq()
>>> eq.eq_run
False
>>> eq == eq
True
>>> eq.eq_run
True
>>> eq = TestableEq()
>>> eq is eq
True
>>> eq.eq_run
False
>>> [eq] == [eq]
True
>>> eq.eq_run # Should be True, right?
False
>>> (eq,) == (eq,) # Maybe with tuples?
True
>>> eq.eq_run
False
>>> {'eq': eq} == {'eq': eq} # dicts?
True
>>> eq.eq_run
False
>>> import numpy as np # Surely NumPy works as expected
>>> np.array([eq]) == np.array([eq])
True
>>> eq.eq_run
False
So it seems that comparisons inside containers works differently in Python. I would expect that the call to == would use each object's implementation of __eq__, otherwise what's the point? Additionally
class TestableEq2(object):
def __init__(self):
self.eq_run = False
def __eq__(self, other):
self.eq_run = True
other.eq_run = True
return False
>>> eq = TestableEq2()
>>> [eq] == [eq]
True
>>> eq.eq_run
False
>>> eq == eq
False
>>> eq.eq_run
True
Does this mean that Python uses is from within container's implementations of __eq__ instead? Is there a way around this?
My use case is that I am building a data structure inheriting from some of the collections ABCs and I want to write tests to make sure my structure is behaving correctly. I figured it would be simple to inject a value that recorded when it was compared, but to my surprise the test failed when checking to ensure that comparison occurred.
EDIT: I should mention that this is on Python 2.7, but I see the same behavior on 3.3.
CPython's underlying implementation will skip the equality check (==) for items in a list if items are identical (is).
CPython uses this as an optimization assuming identity implies equality.
This is documented in PyObject_RichCompareBool, which is used to compare items:
Note: If o1 and o2 are the same object, PyObject_RichCompareBool() will always return 1 for Py_EQ and 0 for Py_NE.
From the listobject.c implementation:
/* Search for the first index where items are different */
for (i = 0; i < Py_SIZE(vl) && i < Py_SIZE(wl); i++) {
int k = PyObject_RichCompareBool(vl->ob_item[i],
wl->ob_item[i], Py_EQ);
// k is 1 if objects are the same
// because of RichCmopareBool's behaviour
if (k < 0)
return NULL;
if (!k)
break;
}
As you can see as long as RichCompareBool is 1 (True) the items are not checked.
And from object.c's implementation of PyObject_RichCompareBool:
/* Quick result when objects are the same.
Guarantees that identity implies equality. */
if (v == w) {
if (op == Py_EQ)
return 1;
else if (op == Py_NE)
return 0;
}
// ... actually deep-compare objects
To override this you'll have to compare the items manually.
Python's testing of equality for sequences goes as follows:
Lists identical?
/ \
Y N
/ \
Equal Same length?
/ \
Y N
/ \
Items identical? Not equal
/ \
Y N
/ \
Equal Items equal?
/ \
Y N
/ \
Equal Not equal
You can see that the equality of the items at each position is tested only if the two sequences are the same length but the items at each position are not identical. If you want to force equality checks to be used, you need e.g.:
all(item1 == item2 for item1, item2 in zip(list1, list2))
If x is y there is no reason to call x == y, by contract of ==. Python is taking this shortcut.
This can be verified/disprove this by creating an eq1 and an eq2 in the tests and then using [eq1] == [eq2].
Here is as example:
class TestableEq(object):
def __init__(self):
self.eq_run = False
def __eq__(self, other):
self.eq_run = True
return True # always assume equals for test
eq1 = TestableEq()
eq2 = TestableEq()
eq3 = TestableEq()
print [eq1] == [eq2] # True
print eq1.eq_run # True - implies e1 == e2
print eq2.eq_run # False - but NOT e2 == e1
print [eq3] == [eq3] # True
print eq3.eq_run # False - implies NO e3 == e3
When the items are is there is no == involved.
The difference with the dictionaries can be explained similarly.
When comparing two lists, the cPython implementation short-circuits member comparisons using object equality (obj1 is obj2), because, according to a comment in the code:
/* Quick result when objects are the same.
Guarantees that identity implies equality. */
If the two objects are not exactly the same object, then cPython does a rich compare, using __eq__ if implemented.

Is there a difference between "==" and "is"?

This question's answers are a community effort. Edit existing answers to improve this post. It is not currently accepting new answers or interactions.
My Google-fu has failed me.
In Python, are the following two tests for equality equivalent?
n = 5
# Test one.
if n == 5:
print 'Yay!'
# Test two.
if n is 5:
print 'Yay!'
Does this hold true for objects where you would be comparing instances (a list say)?
Okay, so this kind of answers my question:
L = []
L.append(1)
if L == [1]:
print 'Yay!'
# Holds true, but...
if L is [1]:
print 'Yay!'
# Doesn't.
So == tests value where is tests to see if they are the same object?
is will return True if two variables point to the same object (in memory), == if the objects referred to by the variables are equal.
>>> a = [1, 2, 3]
>>> b = a
>>> b is a
True
>>> b == a
True
# Make a new copy of list `a` via the slice operator,
# and assign it to variable `b`
>>> b = a[:]
>>> b is a
False
>>> b == a
True
In your case, the second test only works because Python caches small integer objects, which is an implementation detail. For larger integers, this does not work:
>>> 1000 is 10**3
False
>>> 1000 == 10**3
True
The same holds true for string literals:
>>> "a" is "a"
True
>>> "aa" is "a" * 2
True
>>> x = "a"
>>> "aa" is x * 2
False
>>> "aa" is intern(x*2)
True
Please see this question as well.
There is a simple rule of thumb to tell you when to use == or is.
== is for value equality. Use it when you would like to know if two objects have the same value.
is is for reference equality. Use it when you would like to know if two references refer to the same object.
In general, when you are comparing something to a simple type, you are usually checking for value equality, so you should use ==. For example, the intention of your example is probably to check whether x has a value equal to 2 (==), not whether x is literally referring to the same object as 2.
Something else to note: because of the way the CPython reference implementation works, you'll get unexpected and inconsistent results if you mistakenly use is to compare for reference equality on integers:
>>> a = 500
>>> b = 500
>>> a == b
True
>>> a is b
False
That's pretty much what we expected: a and b have the same value, but are distinct entities. But what about this?
>>> c = 200
>>> d = 200
>>> c == d
True
>>> c is d
True
This is inconsistent with the earlier result. What's going on here? It turns out the reference implementation of Python caches integer objects in the range -5..256 as singleton instances for performance reasons. Here's an example demonstrating this:
>>> for i in range(250, 260): a = i; print "%i: %s" % (i, a is int(str(i)));
...
250: True
251: True
252: True
253: True
254: True
255: True
256: True
257: False
258: False
259: False
This is another obvious reason not to use is: the behavior is left up to implementations when you're erroneously using it for value equality.
Is there a difference between == and is in Python?
Yes, they have a very important difference.
==: check for equality - the semantics are that equivalent objects (that aren't necessarily the same object) will test as equal. As the documentation says:
The operators <, >, ==, >=, <=, and != compare the values of two objects.
is: check for identity - the semantics are that the object (as held in memory) is the object. Again, the documentation says:
The operators is and is not test for object identity: x is y is true
if and only if x and y are the same object. Object identity is
determined using the id() function. x is not y yields the inverse
truth value.
Thus, the check for identity is the same as checking for the equality of the IDs of the objects. That is,
a is b
is the same as:
id(a) == id(b)
where id is the builtin function that returns an integer that "is guaranteed to be unique among simultaneously existing objects" (see help(id)) and where a and b are any arbitrary objects.
Other Usage Directions
You should use these comparisons for their semantics. Use is to check identity and == to check equality.
So in general, we use is to check for identity. This is usually useful when we are checking for an object that should only exist once in memory, referred to as a "singleton" in the documentation.
Use cases for is include:
None
enum values (when using Enums from the enum module)
usually modules
usually class objects resulting from class definitions
usually function objects resulting from function definitions
anything else that should only exist once in memory (all singletons, generally)
a specific object that you want by identity
Usual use cases for == include:
numbers, including integers
strings
lists
sets
dictionaries
custom mutable objects
other builtin immutable objects, in most cases
The general use case, again, for ==, is the object you want may not be the same object, instead it may be an equivalent one
PEP 8 directions
PEP 8, the official Python style guide for the standard library also mentions two use-cases for is:
Comparisons to singletons like None should always be done with is or
is not, never the equality operators.
Also, beware of writing if x when you really mean if x is not None --
e.g. when testing whether a variable or argument that defaults to None
was set to some other value. The other value might have a type (such
as a container) that could be false in a boolean context!
Inferring equality from identity
If is is true, equality can usually be inferred - logically, if an object is itself, then it should test as equivalent to itself.
In most cases this logic is true, but it relies on the implementation of the __eq__ special method. As the docs say,
The default behavior for equality comparison (== and !=) is based on
the identity of the objects. Hence, equality comparison of instances
with the same identity results in equality, and equality comparison of
instances with different identities results in inequality. A
motivation for this default behavior is the desire that all objects
should be reflexive (i.e. x is y implies x == y).
and in the interests of consistency, recommends:
Equality comparison should be reflexive. In other words, identical
objects should compare equal:
x is y implies x == y
We can see that this is the default behavior for custom objects:
>>> class Object(object): pass
>>> obj = Object()
>>> obj2 = Object()
>>> obj == obj, obj is obj
(True, True)
>>> obj == obj2, obj is obj2
(False, False)
The contrapositive is also usually true - if somethings test as not equal, you can usually infer that they are not the same object.
Since tests for equality can be customized, this inference does not always hold true for all types.
An exception
A notable exception is nan - it always tests as not equal to itself:
>>> nan = float('nan')
>>> nan
nan
>>> nan is nan
True
>>> nan == nan # !!!!!
False
Checking for identity can be much a much quicker check than checking for equality (which might require recursively checking members).
But it cannot be substituted for equality where you may find more than one object as equivalent.
Note that comparing equality of lists and tuples will assume that identity of objects are equal (because this is a fast check). This can create contradictions if the logic is inconsistent - as it is for nan:
>>> [nan] == [nan]
True
>>> (nan,) == (nan,)
True
A Cautionary Tale:
The question is attempting to use is to compare integers. You shouldn't assume that an instance of an integer is the same instance as one obtained by another reference. This story explains why.
A commenter had code that relied on the fact that small integers (-5 to 256 inclusive) are singletons in Python, instead of checking for equality.
Wow, this can lead to some insidious bugs. I had some code that checked if a is b, which worked as I wanted because a and b are typically small numbers. The bug only happened today, after six months in production, because a and b were finally large enough to not be cached. – gwg
It worked in development. It may have passed some unittests.
And it worked in production - until the code checked for an integer larger than 256, at which point it failed in production.
This is a production failure that could have been caught in code review or possibly with a style-checker.
Let me emphasize: do not use is to compare integers.
== determines if the values are equal, while is determines if they are the exact same object.
What's the difference between is and ==?
== and is are different comparison! As others already said:
== compares the values of the objects.
is compares the references of the objects.
In Python names refer to objects, for example in this case value1 and value2 refer to an int instance storing the value 1000:
value1 = 1000
value2 = value1
Because value2 refers to the same object is and == will give True:
>>> value1 == value2
True
>>> value1 is value2
True
In the following example the names value1 and value2 refer to different int instances, even if both store the same integer:
>>> value1 = 1000
>>> value2 = 1000
Because the same value (integer) is stored == will be True, that's why it's often called "value comparison". However is will return False because these are different objects:
>>> value1 == value2
True
>>> value1 is value2
False
When to use which?
Generally is is a much faster comparison. That's why CPython caches (or maybe reuses would be the better term) certain objects like small integers, some strings, etc. But this should be treated as implementation detail that could (even if unlikely) change at any point without warning.
You should only use is if you:
want to check if two objects are really the same object (not just the same "value"). One example can be if you use a singleton object as constant.
want to compare a value to a Python constant. The constants in Python are:
None
True1
False1
NotImplemented
Ellipsis
__debug__
classes (for example int is int or int is float)
there could be additional constants in built-in modules or 3rd party modules. For example np.ma.masked from the NumPy module)
In every other case you should use == to check for equality.
Can I customize the behavior?
There is some aspect to == that hasn't been mentioned already in the other answers: It's part of Pythons "Data model". That means its behavior can be customized using the __eq__ method. For example:
class MyClass(object):
def __init__(self, val):
self._value = val
def __eq__(self, other):
print('__eq__ method called')
try:
return self._value == other._value
except AttributeError:
raise TypeError('Cannot compare {0} to objects of type {1}'
.format(type(self), type(other)))
This is just an artificial example to illustrate that the method is really called:
>>> MyClass(10) == MyClass(10)
__eq__ method called
True
Note that by default (if no other implementation of __eq__ can be found in the class or the superclasses) __eq__ uses is:
class AClass(object):
def __init__(self, value):
self._value = value
>>> a = AClass(10)
>>> b = AClass(10)
>>> a == b
False
>>> a == a
So it's actually important to implement __eq__ if you want "more" than just reference-comparison for custom classes!
On the other hand you cannot customize is checks. It will always compare just if you have the same reference.
Will these comparisons always return a boolean?
Because __eq__ can be re-implemented or overridden, it's not limited to return True or False. It could return anything (but in most cases it should return a boolean!).
For example with NumPy arrays the == will return an array:
>>> import numpy as np
>>> np.arange(10) == 2
array([False, False, True, False, False, False, False, False, False, False], dtype=bool)
But is checks will always return True or False!
1 As Aaron Hall mentioned in the comments:
Generally you shouldn't do any is True or is False checks because one normally uses these "checks" in a context that implicitly converts the condition to a boolean (for example in an if statement). So doing the is True comparison and the implicit boolean cast is doing more work than just doing the boolean cast - and you limit yourself to booleans (which isn't considered pythonic).
Like PEP8 mentions:
Don't compare boolean values to True or False using ==.
Yes: if greeting:
No: if greeting == True:
Worse: if greeting is True:
They are completely different. is checks for object identity, while == checks for equality (a notion that depends on the two operands' types).
It is only a lucky coincidence that "is" seems to work correctly with small integers (e.g. 5 == 4+1). That is because CPython optimizes the storage of integers in the range (-5 to 256) by making them singletons. This behavior is totally implementation-dependent and not guaranteed to be preserved under all manner of minor transformative operations.
For example, Python 3.5 also makes short strings singletons, but slicing them disrupts this behavior:
>>> "foo" + "bar" == "foobar"
True
>>> "foo" + "bar" is "foobar"
True
>>> "foo"[:] + "bar" == "foobar"
True
>>> "foo"[:] + "bar" is "foobar"
False
https://docs.python.org/library/stdtypes.html#comparisons
is tests for identity
== tests for equality
Each (small) integer value is mapped to a single value, so every 3 is identical and equal. This is an implementation detail, not part of the language spec though
Your answer is correct. The is operator compares the identity of two objects. The == operator compares the values of two objects.
An object's identity never changes once it has been created; you may think of it as the object's address in memory.
You can control comparison behaviour of object values by defining a __cmp__ method or a rich comparison method like __eq__.
Have a look at Stack Overflow question Python's “is” operator behaves unexpectedly with integers.
What it mostly boils down to is that "is" checks to see if they are the same object, not just equal to each other (the numbers below 256 are a special case).
In a nutshell, is checks whether two references point to the same object or not.== checks whether two objects have the same value or not.
a=[1,2,3]
b=a #a and b point to the same object
c=list(a) #c points to different object
if a==b:
print('#') #output:#
if a is b:
print('##') #output:##
if a==c:
print('###') #output:##
if a is c:
print('####') #no output as c and a point to different object
As the other people in this post answer the question in details the difference between == and is for comparing Objects or variables, I would emphasize mainly the comparison between is and == for strings which can give different results and I would urge programmers to carefully use them.
For string comparison, make sure to use == instead of is:
str = 'hello'
if (str is 'hello'):
print ('str is hello')
if (str == 'hello'):
print ('str == hello')
Out:
str is hello
str == hello
But in the below example == and is will get different results:
str2 = 'hello sam'
if (str2 is 'hello sam'):
print ('str2 is hello sam')
if (str2 == 'hello sam'):
print ('str2 == hello sam')
Out:
str2 == hello sam
Conclusion and Analysis:
Use is carefully to compare between strings.
Since is for comparing objects and since in Python 3+ every variable such as string interpret as an object, let's see what happened in above paragraphs.
In python there is id function that shows a unique constant of an object during its lifetime. This id is using in back-end of Python interpreter to compare two objects using is keyword.
str = 'hello'
id('hello')
> 140039832615152
id(str)
> 140039832615152
But
str2 = 'hello sam'
id('hello sam')
> 140039832615536
id(str2)
> 140039832615792
As John Feminella said, most of the time you will use == and != because your objective is to compare values. I'd just like to categorise what you would do the rest of the time:
There is one and only one instance of NoneType i.e. None is a singleton. Consequently foo == None and foo is None mean the same. However the is test is faster and the Pythonic convention is to use foo is None.
If you are doing some introspection or mucking about with garbage collection or checking whether your custom-built string interning gadget is working or suchlike, then you probably have a use-case for foo is bar.
True and False are also (now) singletons, but there is no use-case for foo == True and no use case for foo is True.
Most of them already answered to the point. Just as an additional note (based on my understanding and experimenting but not from a documented source), the statement
== if the objects referred to by the variables are equal
from above answers should be read as
== if the objects referred to by the variables are equal and objects belonging to the same type/class
. I arrived at this conclusion based on the below test:
list1 = [1,2,3,4]
tuple1 = (1,2,3,4)
print(list1)
print(tuple1)
print(id(list1))
print(id(tuple1))
print(list1 == tuple1)
print(list1 is tuple1)
Here the contents of the list and tuple are same but the type/class are different.

Categories