stepwise time series pandas - python

I have the following problem in pandas where I have a time series with specific time stamps and values:
ts1 = DatetimeIndex(['1995-05-26', '1995-05-30', '1995-05-31', '1995-06-01',
'1995-06-02', '1995-06-05', '1995-06-06', '1995-06-08',
'1995-06-09', '1995-06-12'],
dtype='datetime64[ns]', freq=None, tz=None)
Then I have a time index that contains these timestamps, and some other timestamps in between. How do I create a stepwise function (forward fill) that fills forward the same constant value from [T-1, T) for T in ts1?

Something like this?:
dfg1 = pd.DataFrame(range(len(ts1)), index=ts1)
idx = pd.DatetimeIndex(start=min(ts1), end=max(ts1), freq='D')
>>> dfg1.reindex(index=idx).ffill()
0
1995-05-26 0
1995-05-27 0
1995-05-28 0
1995-05-29 0
1995-05-30 1
1995-05-31 2
1995-06-01 3
1995-06-02 4
1995-06-03 4
1995-06-04 4
1995-06-05 5
1995-06-06 6
1995-06-07 6
1995-06-08 7
1995-06-09 8
1995-06-10 8
1995-06-11 8
1995-06-12 9

Related

Pandas: group columns into a time series

Consider this set of data:
data = [{'Year':'1959:01','0':138.89,'1':139.39,'2':139.74,'3':139.69,'4':140.68,'5':141.17},
{'Year':'1959:07','0':141.70,'1':141.90,'2':141.01,'3':140.47,'4':140.38,'5':139.95},
{'Year':'1960:01','0':139.98,'1':139.87,'2':139.75,'3':139.56,'4':139.61,'5':139.58}]
How can I convert to Pandas time series, like this:
Year Value
1959-01 138.89
1959-02 139.39
1959-03 139.74
...
1959-07 141.70
1959-08 141.90
...
Code
df = pd.DataFrame(data).set_index('Year').stack().droplevel(1)
df.index=pd.date_range(start=pd.to_datetime(df.index, format='%Y:%m')[0],
periods=len(df.index), freq='M').to_period('M')
df = df.to_frame().reset_index().rename(columns={'index': 'Year', (0):'Value'})
Explanation
Converting the df to series using stack and dropping the level which is not required.
Then resetting the index for desired range and since we need the output in monthly freq, hence doing that using to_period.
Last step is to convert series back to frame and rename columns.
Output as required
Year Value
0 1959-01 138.89
1 1959-02 139.39
2 1959-03 139.74
3 1959-04 139.69
4 1959-05 140.68
5 1959-06 141.17
6 1959-07 141.70
7 1959-08 141.90
8 1959-09 141.01
9 1959-10 140.47
10 1959-11 140.38
11 1959-12 139.95
12 1960-01 139.98
13 1960-02 139.87
14 1960-03 139.75
15 1960-04 139.56
16 1960-05 139.61
17 1960-06 139.58
here is one way
s = pd.DataFrame(data).set_index("Year").stack()
s.index = pd.Index([pd.to_datetime(start, format="%Y:%m") + pd.DateOffset(months=int(off))
for start, off in s.index], name="Year")
df = s.to_frame("Value")
First we set Year as the index and then stack the values next to it. Then prepare an index from the current index via available dates + other values as month offsets. Lastly go to a frame with new column's name being Value.
to get
>>> df
Value
Year
1959-01-01 138.89
1959-02-01 139.39
1959-03-01 139.74
1959-04-01 139.69
1959-05-01 140.68
1959-06-01 141.17
1959-07-01 141.70
1959-08-01 141.90
1959-09-01 141.01
1959-10-01 140.47
1959-11-01 140.38
1959-12-01 139.95
1960-01-01 139.98
1960-02-01 139.87
1960-03-01 139.75
1960-04-01 139.56
1960-05-01 139.61
1960-06-01 139.58

check if each user has consecutive dates in a python 3 pandas dataframe

Imagine there is a dataframe:
id date balance_total transaction_total
0 1 01/01/2019 102.0 -1.0
1 1 01/02/2019 100.0 -2.0
2 1 01/03/2019 100.0 NaN
3 1 01/04/2019 100.0 NaN
4 1 01/05/2019 96.0 -4.0
5 2 01/01/2019 200.0 -2.0
6 2 01/02/2019 100.0 -2.0
7 2 01/04/2019 100.0 NaN
8 2 01/05/2019 96.0 -4.0
here is the create dataframe command:
import pandas as pd
import numpy as np
users=pd.DataFrame(
[
{'id':1,'date':'01/01/2019', 'transaction_total':-1, 'balance_total':102},
{'id':1,'date':'01/02/2019', 'transaction_total':-2, 'balance_total':100},
{'id':1,'date':'01/03/2019', 'transaction_total':np.nan, 'balance_total':100},
{'id':1,'date':'01/04/2019', 'transaction_total':np.nan, 'balance_total':100},
{'id':1,'date':'01/05/2019', 'transaction_total':-4, 'balance_total':np.nan},
{'id':2,'date':'01/01/2019', 'transaction_total':-2, 'balance_total':200},
{'id':2,'date':'01/02/2019', 'transaction_total':-2, 'balance_total':100},
{'id':2,'date':'01/04/2019', 'transaction_total':np.nan, 'balance_total':100},
{'id':2,'date':'01/05/2019', 'transaction_total':-4, 'balance_total':96}
]
)
How could I check if each id has consecutive dates or not? I use the
"shift" idea here but it doesn't seem to work:
Calculating time difference between two rows
df['index_col'] = df.index
for id in df['id'].unique():
# create an empty QA dataframe
column_names = ["Delta"]
df_qa = pd.DataFrame(columns = column_names)
df_qa['Delta']=(df['index_col'] - df['index_col'].shift(1))
if (df_qa['Delta'].iloc[1:] != 1).any() is True:
print('id ' + id +' might have non-consecutive dates')
# doesn't print any account => Each Customer's Daily Balance has Consecutive Dates
break
Ideal output:
it should print id 2 might have non-consecutive dates
Thank you!
Use groupby and diff:
df["date"] = pd.to_datetime(df["date"],format="%m/%d/%Y")
df["difference"] = df.groupby("id")["date"].diff()
print (df.loc[df["difference"]>pd.Timedelta(1, unit="d")])
#
id date transaction_total balance_total difference
7 2 2019-01-04 NaN 100.0 2 days
Use DataFrameGroupBy.diff with Series.dt.days, compre by greatee like 1 and filter only id column by DataFrame.loc:
users['date'] = pd.to_datetime(users['date'])
i = users.loc[users.groupby('id')['date'].diff().dt.days.gt(1), 'id'].tolist()
print (i)
[2]
for val in i:
print( f'id {val} might have non-consecutive dates')
id 2 might have non-consecutive dates
First step is to parse date:
users['date'] = pd.to_datetime(users.date).
Then add a shifted column on the id and date columns:
users['id_shifted'] = users.id.shift(1)
users['date_shifted'] = users.date.shift(1)
The difference between date and date_shifted columns is of interest:
>>> users.date - users.date_shifted
0 NaT
1 1 days
2 1 days
3 1 days
4 1 days
5 -4 days
6 1 days
7 2 days
8 1 days
dtype: timedelta64[ns]
You can now query the DataFrame for what you want:
users[(users.id_shifted == users.id) & (users.date_shifted - users.date != np.timedelta64(days=1))]
That is, consecutive lines of the same user with a date difference != 1 day.
This solution does assume the data is sorted by (id, date).

How to convert time data to numeric value?

I have a dataframe out:
dates min max wh
0 2005-09-06 07:41:18 21:59:57 14:18:39
1 2005-09-12 14:49:22 14:49:22 00:00:00
2 2005-09-19 11:08:56 11:24:05 00:15:09
3 2005-09-21 21:19:21 21:20:15 00:00:54
4 2005-09-22 19:41:52 19:41:52 00:00:00
5 2005-10-13 11:22:07 21:05:41 09:43:34
6 2005-11-22 11:53:12 21:21:22 09:28:10
7 2005-11-23 00:07:01 14:08:50 14:01:49
8 2005-11-30 13:42:48 23:59:19 10:16:31
9 2005-12-01 00:05:16 10:24:12 10:18:56
10 2005-12-21 17:38:43 19:26:03 01:47:20
11 2005-12-22 09:20:07 11:25:40 02:05:33
12 2006-01-23 07:46:20 08:01:52 00:15:32
13 2006-04-27 16:27:54 19:29:52 03:01:58
14 2006-05-11 12:48:34 23:10:44 10:22:10
15 2006-05-15 10:14:59 22:28:12 12:13:13
16 2006-05-16 01:14:07 23:55:51 22:41:44
17 2006-05-17 01:12:45 23:57:56 22:45:11
18 2006-05-18 02:42:08 21:48:49 19:06:41
and I want the average workhours per day (which presents the column wh) per month.
out['dates'] = pd.to_datetime(out['dates'])
out['month']= pd.PeriodIndex(out.dates, freq='M')
out2=out.groupby('month')['wh'].mean().reset_index(name='wh2')
I used this so far, but the values in wh are no numeric data so I can't build the mean. How can I convert the whole column wh build the mean?
My wh was made by the following:
df = pd.read_csv("Testordner2/"+i, parse_dates=True)
df['new_time'] = pd.to_datetime(df['new_time'])
df['dates']= df['new_time'].dt.date
df['time'] = df['new_time'].dt.time
out = df.groupby(df['dates']).agg({'time': ['min', 'max']}) \
.stack(level=0).droplevel(1)
out['min_as_time_format'] = pd.to_datetime(out['min'], format="%H:%M:%S")
out['max_as_time_format'] = pd.to_datetime(out['max'], format="%H:%M:%S")
out['wh'] = out['max_as_time_format'] - out['min_as_time_format']
out['wh'].astype(str).str[-18:-10]
One possible solution is convert timedeltas to native format, aggregate mean and then convert back to timedeltas:
out['dates'] = pd.to_datetime(out['dates'])
out['month']= pd.PeriodIndex(out.dates, freq='M')
out['wh'] = pd.to_timedelta(out['wh']).astype(np.int64)
out2=pd.to_timedelta(out.groupby('month')['wh'].mean()).reset_index(name='wh2')
print (out2)
month wh2
0 2005-09 02:54:56.400000
1 2005-10 09:43:34
2 2005-11 11:15:30
3 2005-12 04:43:56.333333
4 2006-01 00:15:32
5 2006-04 03:01:58
6 2006-05 17:25:47.800000

how to construct an index from percentage change time series?

consider the values below
array1 = np.array([526.59, 528.88, 536.19, 536.18, 536.18, 534.14, 538.14, 535.44,532.21, 531.94, 531.89, 531.89, 531.23, 529.41, 526.31, 523.67])
I convert these into a pandas Series object
import numpy as np
import pandas as pd
df = pd.Series(array1)
And compute the percentage change as
df = (1+df.pct_change(periods=1))
from here, how do i construct an index (base=100)? My desired output should be:
0 100.00
1 100.43
2 101.82
3 101.82
4 101.82
5 101.43
6 102.19
7 101.68
8 101.07
9 101.02
10 101.01
11 101.01
12 100.88
13 100.54
14 99.95
15 99.45
I can achieve the objective through an iterative (loop) solution, but that may not be a practical solution, if the data depth and breadth is large. Secondly, is there a way in which i can get this done in a single step on multiple columns? thank you all for any guidance.
An index (base=100) is the relative change of a series in retation to its first element. So there's no need to take a detour to relative changes and recalculate the index from them when you can get it directly by
df = pd.Series(array1)/array1[0]*100
As far as I know, there is still no off-the-shelf expanding_window version for pct_change(). You can avoid the for-loop by using apply:
# generate data
import pandas as pd
series = pd.Series([526.59, 528.88, 536.19, 536.18, 536.18, 534.14, 538.14, 535.44,532.21, 531.94, 531.89, 531.89, 531.23, 529.41, 526.31, 523.67])
# copmute percentage change with respect to first value
series.apply(lambda x: ((x / series.iloc[0]) - 1) * 100) + 100
Output:
0 100.000000
1 100.434873
2 101.823050
3 101.821151
4 101.821151
5 101.433753
6 102.193357
7 101.680624
8 101.067244
9 101.015971
10 101.006476
11 101.006476
12 100.881141
13 100.535521
14 99.946828
15 99.445489
dtype: float64

pandas dataframe column means [duplicate]

I am new to Python and Pandas. I have a panda dataframe with monthly columns ranging from 2000 (2000-01) to 2016 (2016-06).
I want to find the average of every three months and assign it to a new quarterly column (2000q1). I know I can do the following:
df['2000q1'] = df[['2000-01', '2000-02', '2000-03']].mean(axis=1)
df['2000q2'] = df[['2000-04', '2000-05', '2000-06']].mean(axis=1)
.
.
.
df['2016-02'] = df[['2016-04', '2016-05', '2016-06']].mean(axis=1)
But, this is very tedious. I appreciate it if someone helps me find a better way.
You can use groupby on columns:
df.groupby(np.arange(len(df.columns))//3, axis=1).mean()
Or, those can be converted to datetime. You can use resample:
df.columns = pd.to_datetime(df.columns)
df.resample('Q', axis=1).mean()
Here's a demo:
cols = pd.date_range('2000-01', '2000-06', freq='MS')
cols = cols.strftime('%Y-%m')
cols
Out:
array(['2000-01', '2000-02', '2000-03', '2000-04', '2000-05', '2000-06'],
dtype='<U7')
df = pd.DataFrame(np.random.randn(10, 6), columns=cols)
df
Out:
2000-01 2000-02 2000-03 2000-04 2000-05 2000-06
0 -1.263798 0.251526 0.851196 0.159452 1.412013 1.079086
1 -0.909071 0.685913 1.394790 -0.883605 0.034114 -1.073113
2 0.516109 0.452751 -0.397291 -0.050478 -0.364368 -0.002477
3 1.459609 -1.696641 0.457822 1.057702 -0.066313 -0.910785
4 -0.482623 1.388621 0.971078 -0.038535 0.033167 0.025781
5 -0.016654 1.404805 0.100335 -0.082941 -0.418608 0.588749
6 0.684735 -2.007105 0.552615 1.969356 -0.614634 0.021459
7 0.382475 0.965739 -1.826609 -0.086537 -0.073538 -0.534753
8 1.548773 -0.157250 0.494819 -1.631516 0.627794 -0.398741
9 0.199049 0.145919 0.711701 0.305382 -0.118315 -2.397075
First alternative:
df.groupby(np.arange(len(df.columns))//3, axis=1).mean()
Out:
0 1
0 -0.053692 0.883517
1 0.390544 -0.640868
2 0.190523 -0.139108
3 0.073597 0.026868
4 0.625692 0.006805
5 0.496162 0.029067
6 -0.256585 0.458727
7 -0.159465 -0.231609
8 0.628781 -0.467487
9 0.352223 -0.736669
Second alternative:
df.columns = pd.to_datetime(df.columns)
df.resample('Q', axis=1).mean()
Out:
2000-03-31 2000-06-30
0 -0.053692 0.883517
1 0.390544 -0.640868
2 0.190523 -0.139108
3 0.073597 0.026868
4 0.625692 0.006805
5 0.496162 0.029067
6 -0.256585 0.458727
7 -0.159465 -0.231609
8 0.628781 -0.467487
9 0.352223 -0.736669
You can assign this to a DataFrame:
res = df.resample('Q', axis=1).mean()
Change column names as you like:
res = res.rename(columns=lambda col: '{}q{}'.format(col.year, col.quarter))
res
Out:
2000q1 2000q2
0 -0.053692 0.883517
1 0.390544 -0.640868
2 0.190523 -0.139108
3 0.073597 0.026868
4 0.625692 0.006805
5 0.496162 0.029067
6 -0.256585 0.458727
7 -0.159465 -0.231609
8 0.628781 -0.467487
9 0.352223 -0.736669
And attach this to your current DataFrame by:
pd.concat([df, res], axis=1)

Categories