I have an n row, m column numpy array, and would like to create a new k x m array by selecting k random elements from each column of the array. I wrote the following python function to do this, but would like to implement something more efficient and faster:
def sample_array_cols(MyMatrix, nelements):
vmat = []
TempMat = MyMatrix.T
for v in TempMat:
v = np.ndarray.tolist(v)
subv = random.sample(v, nelements)
vmat = vmat + [subv]
return(np.array(vmat).T)
One question is whether there's a way to loop over each column without transposing the array (and then transposing back). More importantly, is there some way to map the random sample onto each column that would be faster than having a for loop over all columns? I don't have that much experience with numpy objects, but I would guess that there should be something analogous to apply/mapply in R that would work?
One alternative is to randomly generate the indices first, and then use take_along_axis to map them to the original array:
arr = np.random.randn(1000, 5000) # arbitrary
k = 10 # arbitrary
n, m = arr.shape
idx = np.random.randint(0, n, (k, m))
new = np.take_along_axis(arr, idx, axis=0)
Output (shape):
in [215]: new.shape
out[215]: (10, 500) # (k x m)
To sample each column without replacement just like your original solution
import numpy as np
matrix = np.arange(4*3).reshape(4,3)
matrix
Output
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11]])
k = 2
np.take_along_axis(matrix, np.random.rand(*matrix.shape).argsort(axis=0)[:k], axis=0)
Output
array([[ 9, 1, 2],
[ 3, 4, 11]])
I would
Pre-allocate the result array, and fill in columns, and
Use numpy index based indexing
def sample_array_cols(matrix, n_result):
(n,m) = matrix.shape
vmat = numpy.array([n_result, m], dtype= matrix.dtype)
for c in range(m):
random_indices = numpy.random.randint(0, n, n_result)
vmat[:,c] = matrix[random_indices, c]
return vmat
Not quite fully vectorized, but better than building up a list, and the code scans just like your description.
Here a simple example
import numpy as np
x=np.random.rand(5,5)
k,p = np.where(x>0.5)
k and p are arrays of indices
Now I have a list of rows which should be considered m=[0,2,4], so I need to find all entries of k which are in the list m.
I came up with a very simple but horrible inefficient solution
d = np.array([ (a,b) for a,b in zip(k,p) if a in m])
The solution works, but very slow. I’m looking for a better and more efficient one. I need to do a few millions of such operations with dynamically adjusted m, so efficiency of an algorithm is really a critical question.
Maybe the below is faster:
d=np.dstack((k,p))[0]
print(d[np.isin(d[:,0],m)])
You could use isin() to get a boolean mask which you can use to index k.
>>> x=np.random.rand(3,3)
>>> x
array([[0.74043564, 0.48328081, 0.82396324],
[0.40693944, 0.24951958, 0.18043229],
[0.46623863, 0.53559775, 0.98956277]])
>>> k, p = np.where(x > 0.5)
>>> p
array([0, 2, 1, 2])
>>> k
array([0, 0, 2, 2])
>>> m
array([0, 1])
>>> np.isin(k, m)
array([ True, True, False, False])
>>> k[np.isin(k, m)]
array([0, 0])
How about:
import numpy as np
m = np.array([0, 2, 4])
k, p = np.where(x[m, :] > 0.5)
k = m[k]
print(zip(k, p))
This only considers the interesting rows (and then zips them to 2d indices).
I have to create a data structure to store distances from each point to every other point in a very large array of 2d-coordinates. It's easy to implement for small arrays, but beyond about 50,000 points I start running into memory issues -- not surprising, given that I'm creating an n x n matrix.
Here's a simple example which works fine:
import numpy as np
from scipy.spatial import distance
n = 2000
arr = np.random.rand(n,2)
d = distance.cdist(arr,arr)
cdist is fast, but is inefficient in storage since the matrix is mirrored diagonally (e.g. d[i][j] == d[j][i]). I can use np.triu(d) to convert to upper triangular, but the resulting square matrix still takes the same memory. I also don't need distances beyond a certain cutoff, so that can be helpful. The next step is to convert to a sparse matrix to save memory:
from scipy import sparse
max_dist = 5
dist = np.array([[0,1,3,6], [1,0,8,7], [3,8,0,4], [6,7,4,0]])
print dist
array([[0, 1, 3, 6],
[1, 0, 8, 7],
[3, 8, 0, 4],
[6, 7, 4, 0]])
dist[dist>=max_dist] = 0
dist = np.triu(dist)
print dist
array([[0, 1, 3, 0],
[0, 0, 0, 0],
[0, 0, 0, 4],
[0, 0, 0, 0]])
sdist = sparse.lil_matrix(dist)
print sdist
(0, 1) 1
(2, 3) 4
(0, 2) 3
The problem is getting to that sparse matrix quickly for a very large dataset. To reiterate, making a square matrix with cdist is the fastest way I know of to calculate distances between points, but the intermediate square matrix runs out of memory. I could break it down into more manageable chunks of rows, but then that slows things down a lot. I feel like I'm missing some obvious easy way to go directly to a sparse matrix from cdist.
Here is how to do it with a KDTree:
>>> import numpy as np
>>> from scipy import sparse
>>> from scipy.spatial import cKDTree as KDTree
>>>
# mock data
>>> a = np.random.random((50000, 2))
>>>
# make tree
>>> A = KDTree(a)
>>>
# list all pairs within 0.05 of each other in 2-norm
# format: (i, j, v) - i, j are indices, v is distance
>>> D = A.sparse_distance_matrix(A, 0.05, p=2.0, output_type='ndarray')
>>>
# only keep upper triangle
>>> DU = D[D['i'] < D['j']]
>>>
# make sparse matrix
>>> result = sparse.coo_matrix((DU['v'], (DU['i'], DU['j'])), (50000, 50000))
>>> result
<50000x50000 sparse matrix of type '<class 'numpy.float64'>'
with 9412560 stored elements in COOrdinate format>
I want to get the intersecting (common) rows across two 2D numpy arrays. E.g., if the following arrays are passed as inputs:
array([[1, 4],
[2, 5],
[3, 6]])
array([[1, 4],
[3, 6],
[7, 8]])
the output should be:
array([[1, 4],
[3, 6])
I know how to do this with loops. I'm looking at a Pythonic/Numpy way to do this.
For short arrays, using sets is probably the clearest and most readable way to do it.
Another way is to use numpy.intersect1d. You'll have to trick it into treating the rows as a single value, though... This makes things a bit less readable...
import numpy as np
A = np.array([[1,4],[2,5],[3,6]])
B = np.array([[1,4],[3,6],[7,8]])
nrows, ncols = A.shape
dtype={'names':['f{}'.format(i) for i in range(ncols)],
'formats':ncols * [A.dtype]}
C = np.intersect1d(A.view(dtype), B.view(dtype))
# This last bit is optional if you're okay with "C" being a structured array...
C = C.view(A.dtype).reshape(-1, ncols)
For large arrays, this should be considerably faster than using sets.
You could use Python's sets:
>>> import numpy as np
>>> A = np.array([[1,4],[2,5],[3,6]])
>>> B = np.array([[1,4],[3,6],[7,8]])
>>> aset = set([tuple(x) for x in A])
>>> bset = set([tuple(x) for x in B])
>>> np.array([x for x in aset & bset])
array([[1, 4],
[3, 6]])
As Rob Cowie points out, this can be done more concisely as
np.array([x for x in set(tuple(x) for x in A) & set(tuple(x) for x in B)])
There's probably a way to do this without all the going back and forth from arrays to tuples, but it's not coming to me right now.
I could not understand why there is no suggested pure numpy way to get this working. So I found one, that uses numpy broadcast. The basic idea is to transform one of the arrays to 3d by axes swapping. Let's construct 2 arrays:
a=np.random.randint(10, size=(5, 3))
b=np.zeros_like(a)
b[:4,:]=a[np.random.randint(a.shape[0], size=4), :]
With my run it gave:
a=array([[5, 6, 3],
[8, 1, 0],
[2, 1, 4],
[8, 0, 6],
[6, 7, 6]])
b=array([[2, 1, 4],
[2, 1, 4],
[6, 7, 6],
[5, 6, 3],
[0, 0, 0]])
The steps are (arrays can be interchanged) :
#a is nxm and b is kxm
c = np.swapaxes(a[:,:,None],1,2)==b #transform a to nx1xm
# c has nxkxm dimensions due to comparison broadcast
# each nxixj slice holds comparison matrix between a[j,:] and b[i,:]
# Decrease dimension to nxk with product:
c = np.prod(c,axis=2)
#To get around duplicates://
# Calculate cumulative sum in k-th dimension
c= c*np.cumsum(c,axis=0)
# compare with 1, so that to get only one 'True' statement by row
c=c==1
#//
# sum in k-th dimension, so that a nx1 vector is produced
c=np.sum(c,axis=1).astype(bool)
# The intersection between a and b is a[c]
result=a[c]
In a function with 2 lines for used memory reduction (correct me if wrong):
def array_row_intersection(a,b):
tmp=np.prod(np.swapaxes(a[:,:,None],1,2)==b,axis=2)
return a[np.sum(np.cumsum(tmp,axis=0)*tmp==1,axis=1).astype(bool)]
which gave result for my example:
result=array([[5, 6, 3],
[2, 1, 4],
[6, 7, 6]])
This is faster than set solutions, as it makes use only of simple numpy operations, while it reduces constantly dimensions, and is ideal for two big matrices. I guess I might have made mistakes in my comments, as I got the answer by experimentation and instinct. The equivalent for column intersection can either be found by transposing the arrays or by changing the steps a little. Also, if duplicates are wanted, then the steps inside "//" have to be skipped. The function can be edited to return only the boolean array of the indices, which came handy to me ,while trying to get different arrays indices with the same vector. Benchmark for the voted answer and mine (number of elements in each dimension plays role on what to choose):
Code:
def voted_answer(A,B):
nrows, ncols = A.shape
dtype={'names':['f{}'.format(i) for i in range(ncols)],
'formats':ncols * [A.dtype]}
C = np.intersect1d(A.view(dtype), B.view(dtype))
return C.view(A.dtype).reshape(-1, ncols)
a_small=np.random.randint(10, size=(10, 10))
b_small=np.zeros_like(a_small)
b_small=a_small[np.random.randint(a_small.shape[0],size=[a_small.shape[0]]),:]
a_big_row=np.random.randint(10, size=(10, 1000))
b_big_row=a_big_row[np.random.randint(a_big_row.shape[0],size=[a_big_row.shape[0]]),:]
a_big_col=np.random.randint(10, size=(1000, 10))
b_big_col=a_big_col[np.random.randint(a_big_col.shape[0],size=[a_big_col.shape[0]]),:]
a_big_all=np.random.randint(10, size=(100,100))
b_big_all=a_big_all[np.random.randint(a_big_all.shape[0],size=[a_big_all.shape[0]]),:]
print 'Small arrays:'
print '\t Voted answer:',timeit.timeit(lambda:voted_answer(a_small,b_small),number=100)/100
print '\t Proposed answer:',timeit.timeit(lambda:array_row_intersection(a_small,b_small),number=100)/100
print 'Big column arrays:'
print '\t Voted answer:',timeit.timeit(lambda:voted_answer(a_big_col,b_big_col),number=100)/100
print '\t Proposed answer:',timeit.timeit(lambda:array_row_intersection(a_big_col,b_big_col),number=100)/100
print 'Big row arrays:'
print '\t Voted answer:',timeit.timeit(lambda:voted_answer(a_big_row,b_big_row),number=100)/100
print '\t Proposed answer:',timeit.timeit(lambda:array_row_intersection(a_big_row,b_big_row),number=100)/100
print 'Big arrays:'
print '\t Voted answer:',timeit.timeit(lambda:voted_answer(a_big_all,b_big_all),number=100)/100
print '\t Proposed answer:',timeit.timeit(lambda:array_row_intersection(a_big_all,b_big_all),number=100)/100
with results:
Small arrays:
Voted answer: 7.47108459473e-05
Proposed answer: 2.47001647949e-05
Big column arrays:
Voted answer: 0.00198730945587
Proposed answer: 0.0560171294212
Big row arrays:
Voted answer: 0.00500325918198
Proposed answer: 0.000308241844177
Big arrays:
Voted answer: 0.000864889621735
Proposed answer: 0.00257176160812
Following verdict is that if you have to compare 2 big 2d arrays of 2d points then use voted answer. If you have big matrices in all dimensions, voted answer is the best one by all means. So, it depends on what you choose each time.
Numpy broadcasting
We can create a boolean mask using broadcasting which can be then used to filter the rows in array A which are also present in array B
A = np.array([[1,4],[2,5],[3,6]])
B = np.array([[1,4],[3,6],[7,8]])
m = (A[:, None] == B).all(-1).any(1)
>>> A[m]
array([[1, 4],
[3, 6]])
Another way to achieve this using structured array:
>>> a = np.array([[3, 1, 2], [5, 8, 9], [7, 4, 3]])
>>> b = np.array([[2, 3, 0], [3, 1, 2], [7, 4, 3]])
>>> av = a.view([('', a.dtype)] * a.shape[1]).ravel()
>>> bv = b.view([('', b.dtype)] * b.shape[1]).ravel()
>>> np.intersect1d(av, bv).view(a.dtype).reshape(-1, a.shape[1])
array([[3, 1, 2],
[7, 4, 3]])
Just for clarity, the structured view looks like this:
>>> a.view([('', a.dtype)] * a.shape[1])
array([[(3, 1, 2)],
[(5, 8, 9)],
[(7, 4, 3)]],
dtype=[('f0', '<i8'), ('f1', '<i8'), ('f2', '<i8')])
np.array(set(map(tuple, b)).difference(set(map(tuple, a))))
This could also work
Without Index
Visit https://gist.github.com/RashidLadj/971c7235ce796836853fcf55b4876f3c
def intersect2D(Array_A, Array_B):
"""
Find row intersection between 2D numpy arrays, a and b.
"""
# ''' Using Tuple ''' #
intersectionList = list(set([tuple(x) for x in Array_A for y in Array_B if(tuple(x) == tuple(y))]))
print ("intersectionList = \n",intersectionList)
# ''' Using Numpy function "array_equal" ''' #
""" This method is valid for an ndarray """
intersectionList = list(set([tuple(x) for x in Array_A for y in Array_B if(np.array_equal(x, y))]))
print ("intersectionList = \n",intersectionList)
# ''' Using set and bitwise and '''
intersectionList = [list(y) for y in (set([tuple(x) for x in Array_A]) & set([tuple(x) for x in Array_B]))]
print ("intersectionList = \n",intersectionList)
return intersectionList
With Index
Visit https://gist.github.com/RashidLadj/bac71f3d3380064de2f9abe0ae43c19e
def intersect2D(Array_A, Array_B):
"""
Find row intersection between 2D numpy arrays, a and b.
Returns another numpy array with shared rows and index of items in A & B arrays
"""
# [[IDX], [IDY], [value]] where Equal
# ''' Using Tuple ''' #
IndexEqual = np.asarray([(i, j, x) for i,x in enumerate(Array_A) for j, y in enumerate (Array_B) if(tuple(x) == tuple(y))]).T
# ''' Using Numpy array_equal ''' #
IndexEqual = np.asarray([(i, j, x) for i,x in enumerate(Array_A) for j, y in enumerate (Array_B) if(np.array_equal(x, y))]).T
idx, idy, intersectionList = (IndexEqual[0], IndexEqual[1], IndexEqual[2]) if len(IndexEqual) != 0 else ([], [], [])
return intersectionList, idx, idy
A = np.array([[1,4],[2,5],[3,6]])
B = np.array([[1,4],[3,6],[7,8]])
def matching_rows(A,B):
matches=[i for i in range(B.shape[0]) if np.any(np.all(A==B[i],axis=1))]
if len(matches)==0:
return B[matches]
return np.unique(B[matches],axis=0)
>>> matching_rows(A,B)
array([[1, 4],
[3, 6]])
This of course assumes the rows are all the same length.
import numpy as np
A=np.array([[1, 4],
[2, 5],
[3, 6]])
B=np.array([[1, 4],
[3, 6],
[7, 8]])
intersetingRows=[(B==irow).all(axis=1).any() for irow in A]
print(A[intersetingRows])
I am looking for a way to achieve the following in Python and can't figure out how to do it:
a=[[0,1],[1,0],[1,1]]
b=[1,0,5]
c=hocuspocus(a,b)
--> c=[[0,1],[0,0],[5,5]]
So basically I would like to multiply the different matrix rows in a with the list b.
Thanks a lot in advance!
hocuspocus = lambda a,b: [[r*q for r in p] for p, q in zip(a,b)]
Use Numpy, it has a function for cross multiplying, and other useful tools for matricies.
import * from numpy as np
a=[[0,1],[1,0],[1,1]]
b=[1,0,5]
prod = a * b
Python lists don't support that behaviour directly, but Numpy arrays do matrix multiplication (and various other matrix operations that you might want) directly:
>>> a
array([[0, 1, 1],
[1, 0, 1]])
>>> b
array([1, 0, 5])
>>> a * b
array([[0, 0, 5],
[1, 0, 5]])