Row based chart plot (Seaborn or Matplotlib) - python

Given that my data is a pandas dataframe and looks like this:
Ref +1 +2 +3 +4 +5 +6 +7
2013-05-28 1 -0.44 0.03 0.06 -0.31 0.13 0.56 0.81
2013-07-05 2 0.84 1.03 0.96 0.90 1.09 0.59 1.15
2013-08-21 3 0.09 0.25 0.06 0.09 -0.09 -0.16 0.56
2014-10-15 4 0.35 1.16 1.91 3.44 2.75 1.97 2.16
2015-02-09 5 0.09 -0.10 -0.38 -0.69 -0.25 -0.85 -0.47
How can I plot a chart of the 5 lines (1 for each ref), where the X axis are the columns (+1, +2...), and starts from 0? If is in seaborn, even better. But matplotlib solutions are also welcome.

Plotting a dataframe in pandas is generally all about reshaping the table so that the individual lines you want are in separate columns, and the x-values are in the index. Some of these reshape operations are a bit ugly, but you can do:
df = pd.read_clipboard()
plot_table = pd.melt(df.reset_index(), id_vars=['index', 'Ref'])
plot_table = plot_table.pivot(index='variable', columns='Ref', values='value')
# Add extra row to have all lines start from 0:
plot_table.loc['+0', :] = 0
plot_table = plot_table.sort_index()
plot_table
Ref 1 2 3 4 5
variable
+0 0.00 0.00 0.00 0.00 0.00
+1 -0.44 0.84 0.09 0.35 0.09
+2 0.03 1.03 0.25 1.16 -0.10
+3 0.06 0.96 0.06 1.91 -0.38
+4 -0.31 0.90 0.09 3.44 -0.69
+5 0.13 1.09 -0.09 2.75 -0.25
+6 0.56 0.59 -0.16 1.97 -0.85
+7 0.81 1.15 0.56 2.16 -0.47
Now that you have a table with the right shape, plotting is pretty automatic:
plot_table.plot()

Related

How to write a function with DataFrame in pandas/Python?

Supposed we have a df with a sum() value in the below DataFrame, thanks so much for #jezrael 's answer here, but we have many different df like below DataFrame with different columns, is it possible to add those three line code in a function?
df.columns=['value_a','value_b','name','up_or_down','difference']
# from here
df.loc['sum'] = df[['value_a','value_b','difference']].sum()
df1 = df[['value_a','value_b','difference']].sum().to_frame().T
df = pd.concat([df1, df], ignore_index=True)
# end here
df
value_a value_b name up_or_down difference
project_name
sum 27.56 25.04 -1.31
2021-project11 0.43 0.48 2021-project11 up 0.05
2021-project1 0.62 0.56 2021-project1 down -0.06
2021-project2 0.51 0.47 2021-project2 down -0.04
2021-porject3 0.37 0.34 2021-porject3 down -0.03
2021-porject4 0.64 0.61 2021-porject4 down -0.03
2021-project5 0.32 0.25 2021-project5 down -0.07
2021-project6 0.75 0.81 2021-project6 up 0.06
2021-project7 0.60 0.60 2021-project7 down 0.00
2021-project8 0.85 0.74 2021-project8 down -0.11
2021-project10 0.67 0.67 2021-project10 down 0.00
2021-project9 0.73 0.73 2021-project9 down 0.00
2021-project11 0.54 0.54 2021-project11 down 0.00
2021-project12 0.40 0.40 2021-project12 down 0.00
2021-project13 0.76 0.77 2021-project13 up 0.01
2021-project14 1.16 1.28 2021-project14 up 0.12
2021-project15 1.01 0.94 2021-project15 down -0.07
2021-project16 1.23 1.24 2021-project16 up 0.01
2022-project17 0.40 0.36 2022-project17 down -0.04
2022-project_11 0.40 0.40 2022-project_11 down 0.00
2022-project4 1.01 0.80 2022-project4 down -0.21
2022-project1 0.65 0.67 2022-project1 up 0.02
2022-project2 0.75 0.57 2022-project2 down -0.18
2022-porject3 0.32 0.32 2022-porject3 down 0.00
2022-project18 0.91 0.56 2022-project18 down -0.35
2022-project5 0.84 0.89 2022-project5 up 0.05
2022-project19 0.61 0.48 2022-project19 down -0.13
2022-project6 0.77 0.80 2022-project6 up 0.03
2022-project20 0.63 0.54 2022-project20 down -0.09
2022-project8 0.59 0.55 2022-project8 down -0.04
2022-project21 0.58 0.54 2022-project21 down -0.04
2022-project10 0.76 0.76 2022-project10 down 0.00
2022-project9 0.70 0.71 2022-project9 up 0.01
2022-project22 0.62 0.56 2022-project22 down -0.06
2022-project23 2.03 1.74 2022-project23 down -0.29
2022-project12 0.39 0.39 2022-project12 down 0.00
2022-project24 1.35 1.55 2022-project24 up 0.20
project25 0.45 0.42 project25 down -0.03
project26 0.53 NaN project26 down NaN
project27 0.68 NaN project27 down NaN
Can I add a function with conditions like below, and our other df values can use the function directly?
def sum_handler(x):
if .......
return .....
elif .......
return .....
else
return .....
Thanks so much for any advice
You could try a different approach for summing up your dataframe like shown in this answer.
df.loc['Total'] = df.sum(numeric_only=True, axis=0)
Since this is a one line of code, there would be no need to create a custom function to do this. But for future referrence, you can create a custom function and apply it to a dataframe like this:
import pandas as pd
def double_columns(df: pd.DataFrame, columns: list[str]):
""" Doubles chosen columns of a dataframe """
df[columns] = df[columns] * 2
return df
df = pd.DataFrame({'col1': [1,2], 'col2': [2,3]})
df = double_columns(df, ['col1'])
print(df)
would return
col1 col2
0 2 2
1 4 3

How to add a sum() value above the df column values?

Supposed I have a df as below, how to add a sum() value in below DataFrame?
df.columns=['value_a','value_b','name','up_or_down','difference']
df
value_a value_b name up_or_down difference
project_name
# sum 27.56 25.04 sum down -1.31
2021-project11 0.43 0.48 2021-project11 up 0.05
2021-project1 0.62 0.56 2021-project1 down -0.06
2021-project2 0.51 0.47 2021-project2 down -0.04
2021-porject3 0.37 0.34 2021-porject3 down -0.03
2021-porject4 0.64 0.61 2021-porject4 down -0.03
2021-project5 0.32 0.25 2021-project5 down -0.07
2021-project6 0.75 0.81 2021-project6 up 0.06
2021-project7 0.60 0.60 2021-project7 down 0.00
2021-project8 0.85 0.74 2021-project8 down -0.11
2021-project10 0.67 0.67 2021-project10 down 0.00
2021-project9 0.73 0.73 2021-project9 down 0.00
2021-project11 0.54 0.54 2021-project11 down 0.00
2021-project12 0.40 0.40 2021-project12 down 0.00
2021-project13 0.76 0.77 2021-project13 up 0.01
2021-project14 1.16 1.28 2021-project14 up 0.12
2021-project15 1.01 0.94 2021-project15 down -0.07
2021-project16 1.23 1.24 2021-project16 up 0.01
2022-project17 0.40 0.36 2022-project17 down -0.04
2022-project_11 0.40 0.40 2022-project_11 down 0.00
2022-project4 1.01 0.80 2022-project4 down -0.21
2022-project1 0.65 0.67 2022-project1 up 0.02
2022-project2 0.75 0.57 2022-project2 down -0.18
2022-porject3 0.32 0.32 2022-porject3 down 0.00
2022-project18 0.91 0.56 2022-project18 down -0.35
2022-project5 0.84 0.89 2022-project5 up 0.05
2022-project19 0.61 0.48 2022-project19 down -0.13
2022-project6 0.77 0.80 2022-project6 up 0.03
2022-project20 0.63 0.54 2022-project20 down -0.09
2022-project8 0.59 0.55 2022-project8 down -0.04
2022-project21 0.58 0.54 2022-project21 down -0.04
2022-project10 0.76 0.76 2022-project10 down 0.00
2022-project9 0.70 0.71 2022-project9 up 0.01
2022-project22 0.62 0.56 2022-project22 down -0.06
2022-project23 2.03 1.74 2022-project23 down -0.29
2022-project12 0.39 0.39 2022-project12 down 0.00
2022-project24 1.35 1.55 2022-project24 up 0.20
project25 0.45 0.42 project25 down -0.03
project26 0.53 NaN project26 down NaN
project27 0.68 NaN project27 down NaN
I tried
df.sum().columns=['value_a_sun','value_b_sum','difference_sum']
And I would like to add below sum value in the above column value,
sum 27.56 25.04 sum down -1.31
But I got AttributeError: 'Series' object has no attribute 'column', how to fix this? Thanks so much for any advice.
Filter columns names in subset by [] before sum and assign for new row in DataFrame.loc:
df.loc['sum'] = df[['value_a','value_b','difference']].sum()
For first line:
df1 = df[['value_a','value_b','difference']].sum().to_frame().T
df = pd.concat([df1, df], ignore_index=True)

Pandas histogram plot with kde?

I have a Pandas dataframe (Dt) like this:
Pc Cvt C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
0 1 2 0.08 0.17 0.16 0.31 0.62 0.66 0.63 0.52 0.38
1 2 2 0.09 0.15 0.13 0.49 0.71 1.28 0.42 1.04 0.43
2 3 2 0.13 0.24 0.22 0.17 0.66 0.17 0.28 0.11 0.30
3 4 1 0.21 0.10 0.23 0.08 0.53 0.14 0.59 0.06 0.53
4 5 1 0.16 0.21 0.18 0.13 0.44 0.08 0.29 0.12 0.52
5 6 1 0.14 0.14 0.13 0.20 0.29 0.35 0.40 0.29 0.53
6 7 1 0.21 0.16 0.19 0.21 0.28 0.23 0.40 0.19 0.52
7 8 1 0.31 0.16 0.34 0.19 0.60 0.32 0.56 0.30 0.55
8 9 1 0.20 0.19 0.26 0.19 0.63 0.30 0.68 0.22 0.58
9 10 2 0.12 0.18 0.13 0.22 0.59 0.40 0.50 0.24 0.36
10 11 2 0.10 0.10 0.19 0.17 0.89 0.36 0.65 0.23 0.37
11 12 2 0.19 0.20 0.17 0.17 0.38 0.14 0.48 0.08 0.36
12 13 1 0.16 0.17 0.15 0.13 0.35 0.12 0.50 0.09 0.52
13 14 2 0.19 0.19 0.29 0.16 0.62 0.19 0.43 0.14 0.35
14 15 2 0.01 0.16 0.17 0.20 0.89 0.38 0.63 0.27 0.46
15 16 2 0.09 0.19 0.33 0.15 1.11 0.16 0.87 0.16 0.29
16 17 2 0.07 0.18 0.19 0.15 0.61 0.19 0.37 0.15 0.36
17 18 2 0.14 0.23 0.23 0.20 0.67 0.38 0.45 0.27 0.33
18 19 1 0.27 0.15 0.20 0.10 0.40 0.05 0.53 0.02 0.52
19 20 1 0.12 0.13 0.18 0.22 0.60 0.49 0.66 0.39 0.66
20 21 2 0.15 0.20 0.18 0.32 0.74 0.58 0.51 0.45 0.37
.
.
.
From this i want to plot an histogram with kde for each column from C1 to C10 in an arrange just like the one that i obtain if i plot it with pandas,
Dt.iloc[:,2:].hist()
But so far i've been not able to add the kde in each histogram; i want something like this:
Any ideas on how to accomplish this?
You want to first plot your histogram then plot the kde on a secondary axis.
Minimal and Complete Verifiable Example MCVE
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.randn(1000, 4)).add_prefix('C')
k = len(df.columns)
n = 2
m = (k - 1) // n + 1
fig, axes = plt.subplots(m, n, figsize=(n * 5, m * 3))
for i, (name, col) in enumerate(df.iteritems()):
r, c = i // n, i % n
ax = axes[r, c]
col.hist(ax=ax)
ax2 = col.plot.kde(ax=ax, secondary_y=True, title=name)
ax2.set_ylim(0)
fig.tight_layout()
How It Works
Keep track of total number of subplots
k = len(df.columns)
n will be the number of chart columns. Change this to suit individual needs. m will be the calculated number of required rows based on k and n
n = 2
m = (k - 1) // n + 1
Create a figure and array of axes with required number of rows and columns.
fig, axes = plt.subplots(m, n, figsize=(n * 5, m * 3))
Iterate through columns, tracking the column name and which number we are at i. Within each iteration, plot.
for i, (name, col) in enumerate(df.iteritems()):
r, c = i // n, i % n
ax = axes[r, c]
col.hist(ax=ax)
ax2 = col.plot.kde(ax=ax, secondary_y=True, title=name)
ax2.set_ylim(0)
Use tight_layout() as an easy way to sharpen up the layout spacing
fig.tight_layout()
Here is a pure seaborn solution, using FacetGrid.map_dataframe as explained here.
Stealing the example from #piRSquared:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(1000, 4)).add_prefix('C')
Get the data in the required format:
df = df.stack().reset_index(level=1, name="val")
Result:
level_1 val
0 C0 0.879714
0 C1 -0.927096
0 C2 -0.929429
0 C3 -0.571176
1 C0 -1.127939
Then:
import seaborn as sns
def distplot(x, **kwargs):
ax = plt.gca()
data = kwargs.pop("data")
sns.distplot(data[x], ax=ax, **kwargs)
g = sns.FacetGrid(df, col="level_1", col_wrap=2, size=3.5)
g = g.map_dataframe(distplot, "val")
You can adjust col_wrap as needed.

Pandas stack column pairs

I have a pandas dataframe with about 100 columns of following type:
X1 Y1 X2 Y2 X3 Y3
0.78 0.22 0.19 0.42 0.04 0.65
0.43 0.29 0.43 0.84 0.14 0.42
0.57 0.70 0.59 0.86 0.11 0.40
0.92 0.52 0.81 0.33 0.54 1.00
w1here (X,Y) are basically pairs of values
I need to create the following from above.
X Y
0.78 0.22
0.43 0.29
0.57 0.70
0.92 0.52
0.19 0.42
0.43 0.84
0.59 0.86
0.81 0.33
0.04 0.65
0.14 0.42
0.11 0.40
0.54 1.00
i.e. stack all the X columns which are odd numbered and then stack all the Y columns which are even numbered.
I have no clue where to even start. For small number of columns I could easily have use the column names.
You can use lreshape, for column names use list comprehension:
x = [col for col in df.columns if 'X' in col]
y = [col for col in df.columns if 'Y' in col]
df = pd.lreshape(df, {'X': x,'Y': y})
print (df)
X Y
0 0.78 0.22
1 0.43 0.29
2 0.57 0.70
3 0.92 0.52
4 0.19 0.42
5 0.43 0.84
6 0.59 0.86
7 0.81 0.33
8 0.04 0.65
9 0.14 0.42
10 0.11 0.40
11 0.54 1.00
Solution with MultiIndex and stack:
df.columns = [np.arange(len(df.columns)) % 2, np.arange(len(df.columns)) // 2]
df = df.stack().reset_index(drop=True)
df.columns = ['X','Y']
print (df)
X Y
0 0.78 0.22
1 0.19 0.42
2 0.04 0.65
3 0.43 0.29
4 0.43 0.84
5 0.14 0.42
6 0.57 0.70
7 0.59 0.86
8 0.11 0.40
9 0.92 0.52
10 0.81 0.33
11 0.54 1.00
It may also be worth noting that you could just construct a new DataFrame explicitly with the X-Y values. This will most likely be quicker, but it assumes that the X-Y column pairs are the entirety of your DataFrame.
pd.DataFrame(dict(X=df.values[:,::2].reshape(-1),
Y=df.values[:,1::2].reshape(-1)))
Demo
>>> pd.DataFrame(dict(X=df.values[:,::2].reshape(-1),
Y=df.values[:,1::2].reshape(-1)))
X Y
0 0.78 0.22
1 0.19 0.42
2 0.04 0.65
3 0.43 0.29
4 0.43 0.84
5 0.14 0.42
6 0.57 0.70
7 0.59 0.86
8 0.11 0.40
9 0.92 0.52
10 0.81 0.33
11 0.54 1.00
You can use the documented pd.wide_to_long but you will need to use a 'dummy' column to uniquely identify each row. You can drop this column later.
pd.wide_to_long(df.reset_index(),
stubnames=['X', 'Y'],
i='index',
j='dropme').reset_index(drop=True)
X Y
0 0.78 0.22
1 0.43 0.29
2 0.57 0.70
3 0.92 0.52
4 0.19 0.42
5 0.43 0.84
6 0.59 0.86
7 0.81 0.33
8 0.04 0.65
9 0.14 0.42
10 0.11 0.40
11 0.54 1.00

feed empty pandas.dataframe with several files

I would like to feed a empty dataframe appending several files of the same type and structure. However, I can't see what's wrong here:
def files2df(colnames, ext):
df = DataFrame(columns = colnames)
for inf in sorted(glob.glob(ext)):
dfin = read_csv(inf, sep='\t', skiprows=1)
print(dfin.head(), '\n')
df.append(dfin, ignore_index=True)
return df
The resulting dataframe is empty. Could someone give me a hand?
1.0 16.59 0.597 0.87 1.0.1 3282 100.08
0 0.953 14.52 0.561 0.80 0.99 4355 -
1 1.000 31.59 1.000 0.94 1.00 6322 -
2 1.000 6.09 0.237 0.71 1.00 10568 -
3 1.000 31.29 1.000 0.94 1.00 14363 -
4 1.000 31.59 1.000 0.94 1.00 19797 -
1.0 6.69 0.199 0.74 1.0.1 186 13.16
0 1 0.88 0.020 0.13 0.99 394 -
1 1 0.75 0.017 0.11 0.99 1052 -
2 1 3.34 0.097 0.57 1.00 1178 -
3 1 1.50 0.035 0.26 1.00 1211 -
4 1 20.59 0.940 0.88 1.00 1583 -
1.0 0.12 0.0030 0.04 0.97 2285 2.62
0 1 1.25 0.135 0.18 0.99 2480 -
1 1 0.03 0.001 0.04 0.97 7440 -
2 1 0.12 0.003 0.04 0.97 8199 -
3 1 1.10 0.092 0.16 0.99 11174 -
4 1 0.27 0.007 0.06 0.98 11310 -
0.244 0.07 0.0030 0.02 0.76 41314 1.32
0 0.181 0.64 0.028 0.03 0.36 41755 -
1 0.161 0.18 0.008 0.01 0.45 42420 -
2 0.161 0.18 0.008 0.01 0.45 42461 -
3 0.237 0.25 0.011 0.02 0.56 43060 -
4 0.267 1.03 0.047 0.07 0.46 43321 -
0.163 0.12 0.0060 0.01 0.5 103384 1.27
0 0.243 0.27 0.014 0.02 0.56 104693 -
1 0.215 0.66 0.029 0.04 0.41 105192 -
2 0.190 0.10 0.005 0.01 0.59 105758 -
3 0.161 0.12 0.006 0.01 0.50 109783 -
4 0.144 0.16 0.007 0.01 0.42 110067 -
Empty DataFrame
Columns: array([D, LOD, r2, CIlow, CIhi, Dist, T-int], dtype=object)
Index: array([], dtype=object)
df.append(dfin, ignore_index=True) returns a new DataFrame, it does not change df in place.
Use df = df.append(dfin, ignore_index=True). But even with this change i think this will not give what you need. Append extends a frame on axis=1 (columns), but i believe you want to combine the data on axis=0 (rows)
In this scenario (reading multiple files and use all data to create a single DataFrame), i would use pandas.concat(). The code below will give you a frame with columns named by colnames, and the rows are formed by the data in the csv files.
def files2df(colnames, ext):
files = sorted(glob.glob(ext))
frames = [read_csv(inf, sep='\t', skiprows=1, names=colnames) for inf in files]
return concat(frames, ignore_index=True)
I did not try this code, just wrote it here, maybe you need tweak it to get it running, but the idea is clear (i hope).
Also, I found another solution, but don't know which one is faster.
def files2df(colnames, ext):
dflist = [ ]
for inf in sorted(glob.glob(ext)):
dflist.append(read_csv(inf, names = colnames, sep='\t', skiprows=1))
#print(dflist)
df = concat(dflist, axis = 0, ignore_index=True)
#print(df.to_string())
return df

Categories