How/where to publish Python package - python

If one creates a useful Python package, how/where does one publish/advertise it for other people to use?
I've put it on hithub, but even Google does not find it after a few weeks.
The package is neat & complete, I made it for my personal use and would be a shame not to share it with others :)

Here is the PyPI guide. https://python-packaging-user-guide.readthedocs.org/en/latest/distributing.html
PyPI is the place for putting your Python packages up for others to find. The built-in tool pip references it to install packages for you, and at least one IDE uses pip in the background to give you a GUI for doing this. (PyCharm)

So, to make the package available to a pip install, you have to register it in the Python Package Index (PyPI): https://pypi.python.org/pypi
There's also the test environment, where you can upload your packages to test if your setup is ok before going to the real deal: https://testpypi.python.org/pypi
You create an account in one of the servers and will be able to upload your package. But, before that, you will have to build your package using setuptools. Here's the documentation for packaging and distributing: https://packaging.python.org/distributing/
The proccess can be little boring, so I wrote a little tool to make it simpler. Maybe it's of some use to you: https://github.com/hugollm/foster

Related

Is there an easy solution to "No module named [...]" in Python 3? [duplicate]

I wish to place a python program on GitHub and have other people download and run it on their computers with assorted operating systems. I am relatively new to python but have used it enough to have noticed that getting the assorted versions of all the included modules to work together can be problematic. I just discovered the use of requirements.txt (generated with pipreqs and deployed with the command pip install -r /path/to/requirements.txt) but was very surprised to notice that requirements.txt does not actually state what version of python is being used so obviously it is not the complete solution on its own. So my question is: what set of specifications/files/something-else is needed to ensure that someone downloading my project will actually be able to run it with the fewest possible problems.
EDIT: My plan was to be guided by whichever answer got the most upvotes. But so far, after 4 answers and 127 views, not a single answer has even one upvote. If some of the answers are no good, it would be useful to see some comments as to why they are no good.
Have you considered setting up a setup.py file? It's a handy way of bundling all of your... well setup into a single location. So all your user has to do is A) clone your repo and B) run pip install . to run the setup.py
There's a great stack discussion about this.
As well as a handle example written by the requests guy.
This should cover most use cases. Now if you want to make it truly distributable then you'll want to look into setting it up in PyPi, the official distribution hub.
Beyond that if you're asking how to make a program "OS independent" there isn't a one size fits all. It depends on what you are doing with your code. Requires researching how your particular code interacts with those OS's etc.
There are many, many, many, many, many, many, many ways to do this. I'll skate over the principles behind each, and it's use case.
1. A python environment
There are many ways to do this. pipenv, conda, requirments.txt, etc etc.
With some of these, you can specify python versions. With others, just specify a range of python versions you know it works with - for example, if you're using python 3.7, it's unlikely not to support 3.6; there's only one or two minor changes. 3.8 should work as well.
Another similar method is setup.py. These are generally used to distribute libraries - like PyInstaller (another solution I'll mention below), or numpy, or wxPython, or PyQt5 etc - for import/command line use. The python packaging guide is quite useful, and there are loads of tutorials out there. (google python setup.py tutorial) You can also specify requirements in these files.
2. A container
Docker is the big one. If you haven't heard of it, I'll be surprised. A quick google of a summary comes up with this, which I'll quote part of:
So why does everyone love containers and Docker? James Bottomley, formerly Parallels' CTO of server virtualization and a leading Linux kernel developer, explained VM hypervisors, such as Hyper-V, KVM, and Xen, all are "based on emulating virtual hardware. That means they're fat in terms of system requirements."
Containers, however, use shared operating systems. This means they are much more efficient than hypervisors in system resource terms. Instead of virtualizing hardware, containers rest on top of a single Linux instance. This means you can "leave behind the useless 99.9 percent VM junk, leaving you with a small, neat capsule containing your application,"
That should summarise it for you. (Note you don't need a specific OS for containers.)
3. An executable file
There are 2 main tools that do this at the time of writing. PyInstaller, and cx_Freeze. Both are actively developed. Both are open source.
You take your script, and the tool compiles it to bytecode, finds the imports, copies those, and creates a portable python environment that runs your script on the target system without the end user needing python.
Personally, I prefer PyInstaller - I'm one of the developers. PyInstaller provides all of its functionality through a command line script, and supports most libraries that you can think of - and is extendable to support more. cx_Freeze requires a setup script.
Both tools support windows, Linux, macOS, and more. PyInstaller can create single file exes, or a one folder bundle, whereas cx_Freeze only supports one folder bundles. PyInstaller 3.6 supports python 2.7, and 3.5-3.7 - but 4.0 won't support python 2. cx_Freeze has dropped python 2 support as of the last major release (6.0 I think).
Anyway, enough about the tools features; you can look into those yourself. (See https://pyinstaller.org and https://cx-freeze.readthedocs.io for more info)
When using this distribution method, you usually provide source code on the GitHub repo, a couple of exes (one for each platform) ready for download, and instructions on how to build the code into an executable file.
The best tool I have used so far for this is Pipenv. Not only it unifies and simplifies the whole pip+virtualenv workflow for you, developer, but it also guarantees that the exact versions of all dependencies (including Python itself) are met when other people run your project with it.
The project website does a pretty good job at explaining how to use the tool, but, for completeness sake, I'll give a short explanation here.
Once you have Pipenv installed (for instance, by running pip install --user pipenv), you can go to the directory of your project and run pipenv --python 3.7, so Pipenv will create a new virtualenv for your project, create a Pipfile and a Pipfile.lock (more on them later). If you go ahead and run pipenv install -r requirements.txt it will install all your packages. Now you can do a pipenv shell to activate your new virtualenv, or a pipenv run your_main_file.py to simply run your project.
Now let's take a look at the contents of your Pipfile. It should be something resembling this:
[packages]
Django = "*"
djangorestframework = "*"
iso8601 = "*"
graypy = "*"
whitenoise = "*"
[requires]
python_version = "3.7"
This file has the human-readable specifications for the dependencies of your project (note that it specifies the Python version too). If your requirements.txt had pinned versions, your Pipfile could have them too, but you can safely wildcard them, because the exact versions are stored in the Pipfile.lock. Now you can run things like pipenv update to update your dependencies and don't forget to commit Pipfile and Pipfile.lock to your VCS.
Once people clone your project, all they have to do is run pipenv install and Pipenv will take care of the rest (it may even install the correct version of Python for them).
I hope this was useful. I'm not affiliated in any way with Pipenv, just wanted to share this awesome tool.
If your program is less about GUI, or has a web GUI, then you can share the code using Google Colaboratory.
https://colab.research.google.com/
Everyone can run it with the same environment. No need for installation.
In case converting all your python scripts into one executable can help you, then my answer below would help ...
I have been developing a large desktop application purely in python since 3 years. It is a GUI-based tool built on top of pyqt library (python-bindings of QT C++ framework).
I am currently using "py2exe" packaging library : is a distutils extension which allows to build standalone Windows executable programs (32-bit and 64-bit) from Python scripts; all you have to do is to:
install py2exe: 'pip install py2exe'
Create a setup.py script: It is used to specify the content of the final EXE (name, icon, author, data files, shared libraries, etc ..)
Execute: python setup.py py2exe
I am also using "Inno Setup" software to create installer: Creating shortcuts, setting environment variables, icons, etc ...
I'll give you a very brief summary of some of the existing available solutions when it comes to python packaging you may choose from (knowledge is power):
Follow the guidelines provided at Structuring Your Project, these conventions are widely accepted by python community and it's usually a good starting point when newcomers start coding in python. By following these guidelines pythonists watching your project/source at github or other similar places will know straightaway how to install it. Also, uploading your project to pypi as well as adding CI by following those rules will be painless.
Once your project is structured properly according to standard conventions, the next step might be using some of the available freezers, in case you'd like to ship to your end-users a package they can install without forcing them to have python installed on their machines. Be aware though these tools won't provide you any code protection... said otherwise, extracting the original python code from the final artifacts would be trivial in all cases
If you still want to ship your project to your users without forcing them to install any dev dependency and you do also care about code protection so you don't want to consider any of the existing freezers you might use tools such as nuitka, shedskin, cython or similar ones. Usually reversing code from the artifacts produced by these tools isn't trivial at all... Cracking protection on the other hand is a different matter and unless you don't provide a physical binary to your end-user you can't do much about it other than slowing them down :)
Also, in case you'd need to use external languages in your python project another classic link that comes to mind would be https://wiki.python.org/moin/IntegratingPythonWithOtherLanguages, adding the build systems of such tools to CI by following rules of 1 would be pretty easy.
That said, I'd suggest stick to bulletpoint 1 as I know that will be more than good enough to get you started, also that particular point should cover many of the existing use-cases for python "standard" projects.
While this is not intended to be a full guide by following those you'll be able to publish your python project to the masses in no time.
I think you can use docker with your python https://github.com/celery/celery/tree/master/docker
kindly follow the files and I think you can figure out the way to make your docker file for your python scripts!
Because it is missing from the other answers, I would like to add one completely different aspect:
Unit testing. Or testing in general.
Usually, it is good to have one known good configuration. Depending on what the dependencies of the program are, you might have to test different combinations of packages. You can do that in an automated fashion with e.g. tox or as part of a CI/CD pipeline.
There is no general rule of what combination of packages should be tested, but usually python2/3 compatability is a major issue. If you have strong dependencies on packages with major version differences, you might want to consider testing against these different versions.

When should you package python projects? Should you package personal projects?

The language around packaging python projects in the documentations suggests that it is exclusively for distributing or exporting the project. So what should I do with projects I intend to use personally?
Should I package them anyway? If not, what steps should I take so that I can run my code on any machine with the right version of python? Would packaging a project even accomplish that? Is there even any way to "package" all of a project's files and relevant libraries together, with the end product being a folder/file rather than an install-able package?
I'm sorry if this is basic, I'm very confused, thank you for your time.
For personal use I do not package, except I am very sure there is no need to modify it anymore. And that is very rarely my case. Once it is packaged and published, public or private package repository you get the package and to make changes is more complicated but possible. I prefer to have the project repository and be able to edit and push the changes to remote locations.
Many packaging tools like poetry make it easy to build but also to install requirements and keep track of them. So, there is no hustle with managing requirements.

python and package installment while application is installed

I have done some image processing works using python 3.5, opencv, scikit modules etc for an unreal engine game application.
I have manually installed python and other modules using pip in my windows system.
Now when a user installs the application, i want python and those modules to be installed auto with the application's installment.
I saw pyinstaller which turns py file to application file but unfortunately could not understand how to work it of what i want.
Thank you for any piece of advice.
First, let me say Python packaging has improved a lot over the years, but is still considered very hard compared to other languages like e.g. golang.
Generally, I see two ways how to bring your applications to your user.
Either make a Python package or create an installable package for an operation system.
A Python package means, you could upload it somewhere (e.g. PyPi) and your users could pip install your_package. This involves a lot of work. A good starting point would be:
https://packaging.python.org/tutorials/packaging-projects/
The second option is to create an installer or e.g. Windows.
There are several tools out there, like the mentioned pyinstaller, more on this page: https://docs.python-guide.org/shipping/freezing/
Also, there is a new option called PyOxidizer ( https://pyoxidizer.readthedocs.io/en/stable/overview.html ).
At work we used cx_Freeze - which worked ok.
Unfortunately, there is no easy way. Have a look at several options, and then decide for one.

setup.py + virtualenv = chicken and egg issue?

I'm a Java/Scala dev transitioning to Python for a work project. To dust off the cobwebs on the Python side of my brain, I wrote a webapp that acts as a front-end for Docker when doing local Docker work. I'm now working on packaging it up and, as such, am learning about setup.py and virtualenv. Coming from the JVM world, where dependencies aren't "installed" so much as downloaded to a repository and referenced when needed, the way pip handles things is a bit foreign. It seems like best practice for production Python work is to first create a virtual environment for your project, do your coding work, then package it up with setup.py.
My question is, what happens on the other end when someone needs to install what I've written? They too will have to create a virtual environment for the package but won't know how to set it up without inspecting the setup.py file to figure out what version of Python to use, etc. Is there a way for me to create a setup.py file that also creates the appropriate virtual environment as part of the install process? If not — or if that's considered a "no" as this respondent stated to this SO post — what is considered "best practice" in this situation?
You can think of virtualenv as an isolation for every package you install using pip. It is a simple way to handle different versions of python and packages. For instance you have two projects which use same packages but different versions of them. So, by using virtualenv you can isolate those two projects and install different version of packages separately, not on your working system.
Now, let's say, you want work on a project with your friend. In order to have the same packages installed you have to share somehow what versions and which packages your project depends on. If you are delivering a reusable package (a library) then you need to distribute it and here where setup.py helps. You can learn more in Quick Start
However, if you work on a web site, all you need is to put libraries versions into a separate file. Best practice is to create separate requirements for tests, development and production. In order to see the format of the file - write pip freeze. You will be presented with a list of packages installed on the system (or in the virtualenv) right now. Put it into the file and you can install it later on another pc, with completely clear virtualenv using pip install -r development.txt
And one more thing, please do not put strict versions of packages like pip freeze shows, most of time you want >= at least X.X version. And good news here is that pip handles dependencies by its own. It means you do not have to put dependent packages there, pip will sort it out.
Talking about deploy, you may want to check tox, a tool for managing virtualenvs. It helps a lot with deploy.
Python default package path always point to system environment, that need Administrator access to install. Virtualenv able to localised the installation to an isolated environment.
For deployment/distribution of package, you can choose to
Distribute by source code. User need to run python setup.py --install, or
Pack your python package and upload to Pypi or custom Devpi. So the user can simply use pip install <yourpackage>
However, as you notice the issue on top : without virtualenv, they user need administrator access to install any python package.
In addition, the Pypi package worlds contains a certain amount of badly tested package that doesn't work out of the box.
Note : virtualenv itself is actually a hack to achieve isolation.

Where in a virtualenv should I put a custom library?

I have a virtualenv that serves a few separate projects. I'd like to write a utility library that each of these projects can use. It seems to make sense to stick that in the virtualenv. By all means shoot me down now but please give an alternative if you do.
Assuming I'm not completely crazy though, Where's the best place to stick my library?
My virtualenv sticks everything I install with pip in lib/pyton2.7/site-packages. I wonder if it would make more sense to follow suit or to hack in a separate home (further up the directory tree) so if things do ever clash, my work isn't overwritten by pip (et al).
If your project follows the standard packaging practices with setuptools, then all you have to do is run python setup.py develop inside the virtualenvs that you want the library to be used for. A .egg-link file will be created pointing to your package from which your other libraries will use much like any other packages, with the added benefit that your latest changes will be available to all packages at the same time (if that's your intention). If not, then either you could call python setup.py install or use multiple versions at different locations on the file system.
To get yourself started, take a look at Getting Started With setuptools and setup.py (you can skip the part on registering your package on pypi if this is your private work).
Another relevant stackoverflow thread: setup.py examples? The Hitchhiker's Guide to Packaging can also be quite useful.

Categories