I first create a list of 10^6 false values and what I want to do is to iterate True over the interval for all numbers containing 4 distinct prime factors.
What that means is that the number 2 * 2 * 3 * 5 * 7 is a number containing 4 distinct prime numbers.
I really have no clue how to create the numbers, I don't even know how to think of the it. I want to have 4 different kinds of numbers but in all possible different amounts. Code as far:
""" Pre do prime list """
sieve = [True] * 1000
sieve[0] = sieve[1] = False
def primes(sieve, x):
for i in range(x+x, len(sieve), x):
sieve[i] = False
for x in range(2, int(len(sieve) ** 0.5) + 1):
primes(sieve, x)
PRIMES = list((x for x in range(2, len(sieve)) if sieve[x]))
""" Main """
Numbers = [False] * 10 ** 6
Factors = PRIMES[0] * PRIMES[1] * PRIMES[2] * PRIMES[3]
Numbers[Factors] = True
for prime in PRIMES:
for prime in PRIMES[1:]:
for prime in PRIMES[2:]:
for prime in PRIMES[3:]:
I think the easiest way is to keep track of how many prime factors you have found for each number. You can perform the Sieve of Eratosthenes, but instead of marking multiples of a prime as composite, increment the count of primes dividing them. Make sure that you use an unoptimized loop: Once you choose the prime p, increment the count of primes dividing p, 2*p, 3*p etc. instead of marking p^2, p^2+2*p, etc. composite.
Another possibility is to record the smallest prime factor of each number as you perform the Sieve of Eratosthenes. This lets you find the prime factorization recursively, and you can check which of these have exactly 4 prime factors.
could you do it the other way round: get a list of primes up to root(N) then generate products that are less than N. Something like:
res = {}
for i in range(n):
for j in range(i,n):
for k in range(j,n):
for m in range(k,n):
prod = p[i] * p[j] * p[k] * p[m]
if prod < N:
res[prod] = [p[i], p[j], p[k], p[m]]
ed. just noticed distinct so you would have to put each p[] ** u and iterate each over a suitable number with another four nested loops! Probably still faster to do it this way round.
PPS after a little thought, the above method will be significantly slower than just using the modified sieve as suggested by Douglas Zare. By the time I get to 10**6 my first suggestion takes minutes but the modified sieve is less than 10s
class Numb(object):
def __init__(self):
self.is_prime = True
self.pf = []
def tick(self, factor):
self.is_prime = False
self.pf.append(factor)
N = 1000000
sieve = [Numb() for i in range(N)]
sieve[0].is_prime = sieve[1].is_prime = False
def primes(sieve, x):
for i in range(x + x, len(sieve), x):
sieve[i].tick(x)
for x in range(2, int(len(sieve) ** 0.5) + 1):
if sieve[x].is_prime:
primes(sieve, x)
I continued doing something like this, before trying out sieve method.. And in the end realising that I should use an search algorithm that finds two odd number with 4 distinct factors which differ by 2 and try the number in-between and the number before and after. if this condition is meet the problem is solved.
It's actually falls back on the same problem as stated in post but through some number-theory magic reduces to just finding numbers with no multiples of factors where question conditions is meet.
Factors = list([0, 0, 1, 1, 2, 1, 2, 1, 3, 2]) + [0] * 5 * 10 ** 5
for prime in PRIMES:
Factors[prime] = 1
for number in range(10, 5 * 10 ** 5):
if Factors[number] == 1:
continue
for prime in PRIMES:
if number % prime == 0:
Factors[number] = Factors[prime] + Factors[number // prime]
break
Related
I am not sure whether this question was posted before, after searching it, I cannot find it.
Question: Give one number, to print all factor product.
Example:
Given number: 20
Output: 1 * 20
2 * 10
2 * 2 * 5
4 * 5
Given number: 30
Output: 1 * 30
2 * 15
2 * 3 * 5
3 * 10
5 * 6
Here are my thoughts:
Solution 1.
step 1) First, get all prime factors of this number
def get_prime_factors(n):
factors = []
if n == 0:
return factors
# Get the number of 2s that divide n
while n%2 == 0:
factors.append(2)
n /= 2
# n must be odd
for i in range(3, int(ceil(sqrt(n))), 2):
while n%i == 0:
factors.append(i)
n /= i
# handle the case n is prime number greater than 2s
if n > 2:
factors.append(n)
return factors
step 2) Then get the combination of those factors
I plan to get all factor product through combination, however, I am stuck in how to handle those duplicate factors in this case? (question 1)
Solution 2:
Solve it through backtracking method.
def get_factors_recv(n, cur_ret, ret):
for i in range(2, int(ceil(sqrt(n)))):
if n%i == 0:
fact_arr = [i, n/i]
# add the current value to current result
cur_ret.extend(fact_arr)
if sorted(cur_ret) not in ret:
ret.append(sorted(cur_ret))
# backtracking
cur_ret = cur_ret[:-2]
get_factors_recv(n/i, cur_ret + [i], ret)
def get_all_factors_product(n):
if n == 0:
return '';
result = []
# push the simple factor multiplier
result.append([1, n])
get_factors_recv(n, [], result)
return result
I want to know is there any optimization for the above codes? (Question 2)
Is there any better solution to solve it? (Question 3)
A simple while loop can solve your first problem of dupicates. Given a number:
num_list = []
i = 2;
num = 72*5*5*19*10
while i <=num:
if(num%i == 0):
num_list.append(i)
num = num/i
else:
i = i + 1
print num_list
num_list will contain the factors. The idea is to not increase the index variable untill the number is no longer divisible by it. Also the number keeps reducing after every division so the loop will actually run a lot less iterations than the actual number. Instead of
while i<=num
you can also use
while i<=num/2
This is correct mathematically and results in further reduction of no of iterations.
This will give you all the factors.
Hope this helps.
number = 30
factors = []
for i in range(1, number+1):
if number%i == 0:
factors.append(i)
print factors
I need an explanation for the program suggested in the edit in the first answer over here. It is a program to find the totients of a range of numbers. Can somebody provide a simple explanation? (Ignore the summation part for now, I need to find out how the init method finds the totients.) I know there is an explanation in the answer, but that is an explanation for different programs, I need an explanation for this particular one.
class Totient:
def __init__(self, n):
self.totients = [1 for i in range(n)]
for i in range(2, n):
if self.totients[i] == 1:
for j in range(i, n, i):
self.totients[j] *= i - 1
k = j / i
while k % i == 0:
self.totients[j] *= i
k /= i
def __call__(self, i):
return self.totients[i]
if __name__ == '__main__':
from itertools import imap
totient = Totient(10000)
print sum(imap(totient, range(10000)))
It's a variant of the Sieve of Eratosthenes for finding prime numbers.
If you want to know the totient of a single number n, the best way to find it is to factor n and take the product of 1 less than each factor; for instance, 30 = 2 * 3 * 5, and subtracting 1 from each factor, then multiplying, gives the totient 1 * 2 * 4 = 8. But if you want to find the totients of all the numbers less than a given n, a better approach than factoring each of them is sieving. The idea is simple: Set up an array X from 0 to n, store i in each Xi, then run through the array starting from 0 and whenever Xi = i loop over the multiples of i, multiplying each by i − 1.
Further discussion and code at my blog.
I'm not completely sure what the code is doing -- but frankly it looks pretty bad. It clearly is trying to use that Euler's totient function is multiplicative, meaning that a,b are relatively prime then t(a,b) = t(a)*t(b), together with the fact that if p is a prime then t(p) = p-1. But -- it seems to be using crude trial division to determine such things. If you really want to calculate the totient of all numbers in a given range then you should use an algorithm that sieves the numbers as you go along.
Here is a version which sieves as it goes and exploits the multiplicative nature to the hilt. At each pass through the main loop it starts with a prime, p which hasn't yet been processed. It determines all powers of p <= n and then uses a direct formula for these powers (see https://en.wikipedia.org/wiki/Euler%27s_totient_function ). Once these totients have been added, it forms all possible products <= n of these powers and the numbers for which the totients have been previously computed. This gives a whole slew of numbers to add to the list of previously determined numbers. At most sqrt(n) passes need to be made through the main loop. It runs almost instantly for n = 10000. It returns a list where the ith value is the totient of i (with t(0) = 0 for convenience):
def allTotients(n):
totients = [None]*(n+1) #totients[i] will contain the t(i)
totients[0] = 0
totients[1] = 1
knownTotients = [] #known in range 2 to n
p = 2
while len(knownTotients) < n - 1:
powers = [p]
k = 2
while p ** k <= n:
powers.append(p ** k)
k +=1
totients[p] = p - 1
for i in range(1,len(powers)):
totients[powers[i]] = powers[i] - powers[i-1]
#at this stage powers represent newly discovered totients
#combine with previously discovered totients to get still more
newTotients = powers[:]
for m in knownTotients:
for pk in powers:
if m*pk > n: break
totients[m*pk] = totients[m]*totients[pk]
newTotients.append(m*pk)
knownTotients.extend(newTotients)
#if there are any unkown totients -- the smallest such will be prime
if len(knownTotients) < n-1:
p = totients.index(None)
return totients
For completeness sake, here is a Python implementation of the algorithm to compute the totient of a single number which user448810 described in their answer:
from math import sqrt
#crude factoring algorithm:
small_primes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,
53,59,61,67,71,73,79,83,89,97]
def factor(n):
#returns a list of prime factors
factors = []
num = n
#first pull out small prime factors
for p in small_primes:
while num % p == 0:
factors.append(p)
num = num // p
if num == 1: return factors
#now do trial division, starting at 101
k = 101
while k <= sqrt(num):
while num % k == 0:
factors.append(k)
num = num // k
k += 2
if num == 1:
return factors
else:
factors.append(num)
return factors
def totient(n):
factors = factor(n)
unique_factors = set()
t = 1
for p in factors:
if p in unique_factors:
t *= p
else:
unique_factors.add(p)
t *= (p-1)
return t
I'm relatively new to python and I'm confused about the performance of two relatively simple blocks of code. The first function generates a prime factorization of a number n given a list of primes. The second generates a list of all factors of n. I would have though prime_factor would be faster than factors (for the same n), but this is not the case. I'm not looking for better algorithms, but rather I would like to understand why prime_factor is so much slower than factors.
def prime_factor(n, primes):
prime_factors = []
i = 0
while n != 1:
if n % primes[i] == 0:
factor = primes[i]
prime_factors.append(factor)
n = n // factor
else: i += 1
return prime_factors
import math
def factors(n):
if n == 0: return []
factors = {1, n}
for i in range(2, math.floor(n ** (1/2)) + 1):
if n % i == 0:
factors.add(i)
factors.add(n // i)
return list(factors)
Using the timeit module,
{ i:factors(i) for i in range(1, 10000) } takes 2.5 seconds
{ i:prime_factor(i, primes) for i in range(1, 10000) } takes 17 seconds
This is surprising to me. factors checks every number from 1 to sqrt(n), while prime_factor only checks primes. I would appreciate any help in understanding the performance characteristics of these two functions.
Thanks
Edit: (response to roliu)
Here is my code to generate a list of primes from 2 to up_to:
def primes_up_to(up_to):
marked = [0] * up_to
value = 3
s = 2
primes = [2]
while value < up_to:
if marked[value] == 0:
primes.append(value)
i = value
while i < up_to:
marked[i] = 1
i += value
value += 2
return primes
Without seeing what you used for primes, we have to guess (we can't run your code).
But a big part of this is simply mathematics: there are (very roughly speaking) about n/log(n) primes less than n, and that's a lot bigger than sqrt(n). So when you pass a prime, prime_factor(n) does a lot more work: it goes through O(n/log(n)) operations before finding the first prime factor (n itself!), while factors(n) gives up after O(sqrt(n)) operations.
This can be very significant. For example, sqrt(10000) is just 100, but there are 1229 primes less than 10000. So prime_factor(n) can need to do over 10 times as much work to deal with the large primes in your range.
I am trying to find an efficient way to compute Euler's totient function.
What is wrong with this code? It doesn't seem to be working.
def isPrime(a):
return not ( a < 2 or any(a % i == 0 for i in range(2, int(a ** 0.5) + 1)))
def phi(n):
y = 1
for i in range(2,n+1):
if isPrime(i) is True and n % i == 0 is True:
y = y * (1 - 1/i)
else:
continue
return int(y)
Here's a much faster, working way, based on this description on Wikipedia:
Thus if n is a positive integer, then φ(n) is the number of integers k in the range 1 ≤ k ≤ n for which gcd(n, k) = 1.
I'm not saying this is the fastest or cleanest, but it works.
from math import gcd
def phi(n):
amount = 0
for k in range(1, n + 1):
if gcd(n, k) == 1:
amount += 1
return amount
You have three different problems...
y needs to be equal to n as initial value, not 1
As some have mentioned in the comments, don't use integer division
n % i == 0 is True isn't doing what you think because of Python chaining the comparisons! Even if n % i equals 0 then 0 == 0 is True BUT 0 is True is False! Use parens or just get rid of comparing to True since that isn't necessary anyway.
Fixing those problems,
def phi(n):
y = n
for i in range(2,n+1):
if isPrime(i) and n % i == 0:
y *= 1 - 1.0/i
return int(y)
Calculating gcd for every pair in range is not efficient and does not scales. You don't need to iterate throught all the range, if n is not a prime you can check for prime factors up to its square root, refer to https://stackoverflow.com/a/5811176/3393095.
We must then update phi for every prime by phi = phi*(1 - 1/prime).
def totatives(n):
phi = int(n > 1 and n)
for p in range(2, int(n ** .5) + 1):
if not n % p:
phi -= phi // p
while not n % p:
n //= p
#if n is > 1 it means it is prime
if n > 1: phi -= phi // n
return phi
I'm working on a cryptographic library in python and this is what i'm using. gcd() is Euclid's method for calculating greatest common divisor, and phi() is the totient function.
def gcd(a, b):
while b:
a, b=b, a%b
return a
def phi(a):
b=a-1
c=0
while b:
if not gcd(a,b)-1:
c+=1
b-=1
return c
Most implementations mentioned by other users rely on calling a gcd() or isPrime() function. In the case you are going to use the phi() function many times, it pays of to calculated these values before hand. A way of doing this is by using a so called sieve algorithm.
https://stackoverflow.com/a/18997575/7217653 This answer on stackoverflow provides us with a fast way of finding all primes below a given number.
Oke, now we can replace isPrime() with a search in our array.
Now the actual phi function:
Wikipedia gives us a clear example: https://en.wikipedia.org/wiki/Euler%27s_totient_function#Example
phi(36) = phi(2^2 * 3^2) = 36 * (1- 1/2) * (1- 1/3) = 30 * 1/2 * 2/3 = 12
In words, this says that the distinct prime factors of 36 are 2 and 3; half of the thirty-six integers from 1 to 36 are divisible by 2, leaving eighteen; a third of those are divisible by 3, leaving twelve numbers that are coprime to 36. And indeed there are twelve positive integers that are coprime with 36 and lower than 36: 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, and 35.
TL;DR
With other words: We have to find all the prime factors of our number and then multiply these prime factors together using foreach prime_factor: n *= 1 - 1/prime_factor.
import math
MAX = 10**5
# CREDIT TO https://stackoverflow.com/a/18997575/7217653
def sieve_for_primes_to(n):
size = n//2
sieve = [1]*size
limit = int(n**0.5)
for i in range(1,limit):
if sieve[i]:
val = 2*i+1
tmp = ((size-1) - i)//val
sieve[i+val::val] = [0]*tmp
return [2] + [i*2+1 for i, v in enumerate(sieve) if v and i>0]
PRIMES = sieve_for_primes_to(MAX)
print("Primes generated")
def phi(n):
original_n = n
prime_factors = []
prime_index = 0
while n > 1: # As long as there are more factors to be found
p = PRIMES[prime_index]
if (n % p == 0): # is this prime a factor?
prime_factors.append(p)
while math.ceil(n / p) == math.floor(n / p): # as long as we can devide our current number by this factor and it gives back a integer remove it
n = n // p
prime_index += 1
for v in prime_factors: # Now we have the prime factors, we do the same calculation as wikipedia
original_n *= 1 - (1/v)
return int(original_n)
print(phi(36)) # = phi(2**2 * 3**2) = 36 * (1- 1/2) * (1- 1/3) = 36 * 1/2 * 2/3 = 12
It looks like you're trying to use Euler's product formula, but you're not calculating the number of primes which divide a. You're calculating the number of elements relatively prime to a.
In addition, since 1 and i are both integers, so is the division, in this case you always get 0.
With regards to efficiency, I haven't noticed anyone mention that gcd(k,n)=gcd(n-k,n). Using this fact can save roughly half the work needed for the methods involving the use of the gcd. Just start the count with 2 (because 1/n and (n-1)/k will always be irreducible) and add 2 each time the gcd is one.
Here is a shorter implementation of orlp's answer.
from math import gcd
def phi(n): return sum([gcd(n, k)==1 for k in range(1, n+1)])
As others have already mentioned it leaves room for performance optimization.
Actually to calculate phi(any number say n)
We use the Formula
where p are the prime factors of n.
So, you have few mistakes in your code:
1.y should be equal to n
2. For 1/i actually 1 and i both are integers so their evaluation will also be an integer,thus it will lead to wrong results.
Here is the code with required corrections.
def phi(n):
y = n
for i in range(2,n+1):
if isPrime(i) and n % i == 0 :
y -= y/i
else:
continue
return int(y)
After 10 minutes of work I have written a function presented below. It returns a list of all primes lower than an argument. I have used all known for me programing and mathematical tricks in order to make this function as fast as possible. To find all the primes lower than a million it takes about 2 seconds.
Do you see any possibilities to optimize it even further? Any ideas?
def Primes(To):
if To<2:
return []
if To<3:
return [2]
Found=[2]
n=3
LastSqr=0
while n<=To:
k=0
Limit=len(Found)
IsPrime=True
while k<Limit:
if k>=LastSqr:
if Found[k]>pow(n,0.5):
LastSqr=k
break
if n%Found[k]==0:
IsPrime=False
break
k+=1
if IsPrime:
Found.append(n)
n+=1
return Found
You can use a couple tricks to speed things up, using the basic sieve of erastothenes. One is to use Wheel Factorization to skip calculating numbers that are known not to be prime. For example, besides 2 and 3, all primes are congruent to 1 or 5 mod 6. This means you don't have to process 4 of every 6 numbers at all.
At the next level, all primes are congruent to 1, 7, 11, 13, 17, 19, 23, or 29, mod 30. You can throw out 22 of every 30 numbers.
Here is a simple implementation of the sieve of Erastothenes that doesn't calculate or store even numbers:
def basic_gen_primes(n):
"""Return a list of all primes less then or equal to n"""
if n < 2:
return []
# The sieve. Each entry i represents (2i + 1)
size = (n + 1) // 2
sieve = [True] * size
# 2(0) + 1 == 1 is not prime
sieve[0] = False
for i, value in enumerate(sieve):
if not value:
continue
p = 2*i + 1
# p is prime. Remove all of its multiples from the sieve
# p^2 == (2i + 1)(2i + 1) == (4i^2 + 4i + 1) == 2(2i^2 + 2i) + 1
multiple = 2 * i * i + 2 * i
if multiple >= size:
break
while multiple < size:
sieve[multiple] = False
multiple += p
return [2] + [2*i+1 for i, value in enumerate(sieve) if value]
As mentioned, you can use more exotic sieves as well.
You can check only odd numbers. So why don't you use n+=2 instead of n+=1?
google and wikipedia for better algorithms. If you are only looking for small primes this might be fast enough. But the real algorithms are a lot faster for large primes.
http://en.wikipedia.org/wiki/Quadratic_sieve
start with that page.
Increment n by two instead of one. ?