I am running two python scripts using subprocess one of them still runs.
import subprocess
subprocess.run("python3 script_with_loop.py & python3 scrip_with_io.py", shell=True)
script_with_loop still runs in the background.
What is the way to kill both scripts if one of them dies?
So, you're basically not using python here, you're using your shell.
a & b runs a, disavows it, and runs b. Since you're using the shell, if you wanted to terminate the background task, you'd have to use shell commands to do that.
Of course, since you're using python, there is a better way.
with subprocess.Popen(["somecommand"]) as proc:
try:
subprocess.run(["othercommand"])
finally:
proc.terminate()
Looking at your code though - python3 script_with_loop.py and python3 script_with_io.py - my guess is you'd be better off using the asyncio module because it basically does what the names of those two files are describing.
you should use threading for this sort of thing. try this.
import threading
def script_with_loop():
try:
# script_with_loop.py code goes here
except:
_exit()
def script_with_io():
try:
# script_with_io.py code goes here
except:
_exit()
threading.Thread(target=script_with_loop, daemon=True).start()
threading.Thread(target=script_with_io, daemon=True).start()
I'm trying to port a shell script to the much more readable python version. The original shell script starts several processes (utilities, monitors, etc.) in the background with "&". How can I achieve the same effect in python? I'd like these processes not to die when the python scripts complete. I am sure it's related to the concept of a daemon somehow, but I couldn't find how to do this easily.
While jkp's solution works, the newer way of doing things (and the way the documentation recommends) is to use the subprocess module. For simple commands its equivalent, but it offers more options if you want to do something complicated.
Example for your case:
import subprocess
subprocess.Popen(["rm","-r","some.file"])
This will run rm -r some.file in the background. Note that calling .communicate() on the object returned from Popen will block until it completes, so don't do that if you want it to run in the background:
import subprocess
ls_output=subprocess.Popen(["sleep", "30"])
ls_output.communicate() # Will block for 30 seconds
See the documentation here.
Also, a point of clarification: "Background" as you use it here is purely a shell concept; technically, what you mean is that you want to spawn a process without blocking while you wait for it to complete. However, I've used "background" here to refer to shell-background-like behavior.
Note: This answer is less current than it was when posted in 2009. Using the subprocess module shown in other answers is now recommended in the docs
(Note that the subprocess module provides more powerful facilities for spawning new processes and retrieving their results; using that module is preferable to using these functions.)
If you want your process to start in the background you can either use system() and call it in the same way your shell script did, or you can spawn it:
import os
os.spawnl(os.P_DETACH, 'some_long_running_command')
(or, alternatively, you may try the less portable os.P_NOWAIT flag).
See the documentation here.
You probably want the answer to "How to call an external command in Python".
The simplest approach is to use the os.system function, e.g.:
import os
os.system("some_command &")
Basically, whatever you pass to the system function will be executed the same as if you'd passed it to the shell in a script.
I found this here:
On windows (win xp), the parent process will not finish until the longtask.py has finished its work. It is not what you want in CGI-script. The problem is not specific to Python, in PHP community the problems are the same.
The solution is to pass DETACHED_PROCESS Process Creation Flag to the underlying CreateProcess function in win API. If you happen to have installed pywin32 you can import the flag from the win32process module, otherwise you should define it yourself:
DETACHED_PROCESS = 0x00000008
pid = subprocess.Popen([sys.executable, "longtask.py"],
creationflags=DETACHED_PROCESS).pid
Use subprocess.Popen() with the close_fds=True parameter, which will allow the spawned subprocess to be detached from the Python process itself and continue running even after Python exits.
https://gist.github.com/yinjimmy/d6ad0742d03d54518e9f
import os, time, sys, subprocess
if len(sys.argv) == 2:
time.sleep(5)
print 'track end'
if sys.platform == 'darwin':
subprocess.Popen(['say', 'hello'])
else:
print 'main begin'
subprocess.Popen(['python', os.path.realpath(__file__), '0'], close_fds=True)
print 'main end'
Both capture output and run on background with threading
As mentioned on this answer, if you capture the output with stdout= and then try to read(), then the process blocks.
However, there are cases where you need this. For example, I wanted to launch two processes that talk over a port between them, and save their stdout to a log file and stdout.
The threading module allows us to do that.
First, have a look at how to do the output redirection part alone in this question: Python Popen: Write to stdout AND log file simultaneously
Then:
main.py
#!/usr/bin/env python3
import os
import subprocess
import sys
import threading
def output_reader(proc, file):
while True:
byte = proc.stdout.read(1)
if byte:
sys.stdout.buffer.write(byte)
sys.stdout.flush()
file.buffer.write(byte)
else:
break
with subprocess.Popen(['./sleep.py', '0'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) as proc1, \
subprocess.Popen(['./sleep.py', '10'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) as proc2, \
open('log1.log', 'w') as file1, \
open('log2.log', 'w') as file2:
t1 = threading.Thread(target=output_reader, args=(proc1, file1))
t2 = threading.Thread(target=output_reader, args=(proc2, file2))
t1.start()
t2.start()
t1.join()
t2.join()
sleep.py
#!/usr/bin/env python3
import sys
import time
for i in range(4):
print(i + int(sys.argv[1]))
sys.stdout.flush()
time.sleep(0.5)
After running:
./main.py
stdout get updated every 0.5 seconds for every two lines to contain:
0
10
1
11
2
12
3
13
and each log file contains the respective log for a given process.
Inspired by: https://eli.thegreenplace.net/2017/interacting-with-a-long-running-child-process-in-python/
Tested on Ubuntu 18.04, Python 3.6.7.
You probably want to start investigating the os module for forking different threads (by opening an interactive session and issuing help(os)). The relevant functions are fork and any of the exec ones. To give you an idea on how to start, put something like this in a function that performs the fork (the function needs to take a list or tuple 'args' as an argument that contains the program's name and its parameters; you may also want to define stdin, out and err for the new thread):
try:
pid = os.fork()
except OSError, e:
## some debug output
sys.exit(1)
if pid == 0:
## eventually use os.putenv(..) to set environment variables
## os.execv strips of args[0] for the arguments
os.execv(args[0], args)
You can use
import os
pid = os.fork()
if pid == 0:
Continue to other code ...
This will make the python process run in background.
I haven't tried this yet but using .pyw files instead of .py files should help. pyw files dosen't have a console so in theory it should not appear and work like a background process.
My today's task is to create a Python script (say A.py) which can do the following things:
Start a C program (say CProg) passing some params
Start another Python script (say B.py) passing other params
Join/Wait until B.py has finished
Send a SIGINT to CProg
Iterate (this won't be a problem at all I think :P)
Since I'm pretty new in developing Python scripts and my mind is quite full of C/C++ thread/join/execve/... I'd like to ask you if there's a proper way to accomplish my task. I've read some related topics on SO (some talk about PIPEs or Execl) but I'm not sure what to use yet.
Thanks in advance
Use subprocess module.
import os
import signal
import subprocess
import sys
params = [...]
for param for params:
proc = subprocess.Popen(['/path/to/CProg', param.., param..])
subprocess.call([sys.executable, 'B.py', param.., param...])
os.kill(proc.pid, signal.SIGINT)
proc.wait()
I'm using a commercial application that uses Python as part of its scripting API. One of the functions provided is something called App.run(). When this function is called, it starts a new Java process that does the rest of the execution. (Unfortunately, I don't really know what it's doing under the hood as the supplied Python modules are .pyc files, and many of the Python functions are SWIG generated).
The trouble I'm having is that I'm building the App.run() call into a larger Python application that needs to do some guaranteed cleanup code (closing a database, etc.). Unfortunately, if the subprocess is interrupted with Ctrl+C, it aborts and returns to the command line without returning control to the main Python program. Thus, my cleanup code never executes.
So far I've tried:
Registering a function with atexit... doesn't work
Putting cleanup in a class __del__ destructor... doesn't work. (App.run() is inside the class)
Creating a signal handler for Ctrl+C in the main Python app... doesn't work
Putting App.run() in a Thread... results in a Memory Fault after the Ctrl+C
Putting App.run() in a Process (from multiprocessing)... doesn't work
Any ideas what could be happening?
This is just an outline- but something like this?
import os
cpid = os.fork()
if not cpid:
# change stdio handles etc
os.setsid() # Probably not needed
App.run()
os._exit(0)
os.waitpid(cpid)
# clean up here
(os.fork is *nix only)
The same idea could be implemented with subprocess in an OS agnostic way. The idea is running App.run() in a child process and then waiting for the child process to exit; regardless of how the child process died. On posix, you could also trap for SIGCHLD (Child process death). I'm not a windows guru, so if applicable and subprocess doesn't work, someone else will have to chime in here.
After App.run() is called, I'd be curious what the process tree looks like. It's possible its running an exec and taking over the python process space. If thats happening, creating a child process is the only way I can think of trapping it.
If try: App.run() finally: cleanup() doesn't work; you could try to run it in a subprocess:
import sys
from subprocess import call
rc = call([sys.executable, 'path/to/run_app.py'])
cleanup()
Or if you have the code in a string you could use -c option e.g.:
rc = call([sys.executable, '-c', '''import sys
print(sys.argv)
'''])
You could implement #tMC's suggestion using subprocess by adding
preexec_fn=os.setsid argument (note: no ()) though I don't see how creating a process group might help here. Or you could try shell=True argument to run it in a separate shell.
You might give another try to multiprocessing:
import multiprocessing as mp
if __name__=="__main__":
p = mp.Process(target=App.run)
p.start()
p.join()
cleanup()
Are you able to wrap the App.Run() in a Try/Catch?
Something like:
try:
App.Run()
except (KeyboardInterrupt, SystemExit):
print "User requested an exit..."
cleanup()
I have the following command on the build-server as a part of the build process:
os.system ('signtool sign /a /t http://timestamp.verisign.com/scripts/timstamp.dll "%s\\*.exe"' % (dir) )
This command signs each executable file in the specified directory. Is there a way to run this command in parallel for each executable file using Python? Is there something like OpenMP for Python?
You could use threads. This tutorial shows how to do something similar to what you're asking for using threads.
Perhaps multiprocessing could be of help here?
Specifically, multiprocessing.Pool.map() might be relevant to your needs.
The above answers are perfectly sensible ways of approaching things from the Python side, eg
from multiprocessing import Pool
import os
def processFile(x):
return os.system('ls '+x)
if __name__ == '__main__':
pool = Pool(processes=2)
files=['foo','foo.py','foo.cpp','foo.txt','foo.bar']
result = pool.map(processFile, files)
print 'Results are', result
But if you're using the shell anyway, you might want to consider using Gnu Parallel on the shell side, which runs like xargs but does the individual tasks in parallel, with options to control how many jobs can run simultaneously, etc.