Can a string ever get shorter when converted to upper/lowercase? - python

A string may get longer (in terms of Unicode codepoints) when converted to upper or lower case. For example, 'ß'.upper() evaluates to 'SS'. But are there strings that get shorter? That is, does there exist a string s such that the expression
len(s.lower()) < len(s) or len(s.upper()) < len(s)
evaluates to True?

I think this may be implementation dependent. I'll answer based on the CPython source.
It seems to me that there are two possible situations where calling lower on a string can make it shorter.
Some combination of two Unicode points next to one another get converted into one Unicode point.
A single Unicode point gets converted into an empty string.
We can determine whether case 1 is possible by examining the type signature of the internal lowercase conversion function. Here it is in Objects/unicodectype.c.
int _PyUnicode_ToLowerFull(Py_UCS4 ch, Py_UCS4 *res)
{
const _PyUnicode_TypeRecord *ctype = gettyperecord(ch);
if (ctype->flags & EXTENDED_CASE_MASK) {
int index = ctype->lower & 0xFFFF;
int n = ctype->lower >> 24;
int i;
for (i = 0; i < n; i++)
res[i] = _PyUnicode_ExtendedCase[index + i];
return n;
}
res[0] = ch + ctype->lower;
return 1;
}
I don't 100% understand this code, but I observe that the first parameter ch is a single Unicode point. Since it operates only on individual characters and not character combinations, it seems like case 1 is ruled out; combinations of code points won't get turned into a smaller sequence.
With that out of the way, we can determine whether case 2 ever occurs by just iterating up to sys.maxunicode and seeing if any single value has a length of zero after lowering.
>>> import sys
>>> unicode_chars = list(map(chr, range(sys.maxunicode+1)))
>>> [x for x in unicode_chars if len(x.lower()) == 0]
[]
Looks like case 2 is also busted.
We can apply the above logic to upper as well. For case 1, the implementation for _PyUnicode_ToUpperFull is nearly identical to its lower counterpart; and for case 2, the corresponding list comprehension likewise returns an empty list.
Conclusion
Nope, lower and upper never make anything shorter.

Related

How do I find all 32 bit binary numbers that have exactly six 1 and rest 0

I could do this in brute force, but I was hoping there was clever coding, or perhaps an existing function, or something I am not realising...
So some examples of numbers I want:
00000000001111110000
11111100000000000000
01010101010100000000
10101010101000000000
00100100100100100100
The full permutation. Except with results that have ONLY six 1's. Not more. Not less. 64 or 32 bits would be ideal. 16 bits if that provides an answer.
I think what you need here is using the itertools module.
BAD SOLUTION
But you need to be careful, for instance, using something like permutations would just work for very small inputs. ie:
Something like the below would give you a binary representation:
>>> ["".join(v) for v in set(itertools.permutations(["1"]*2+["0"]*3))]
['11000', '01001', '00101', '00011', '10010', '01100', '01010', '10001', '00110', '10100']
then just getting decimal representation of those number:
>>> [int("".join(v), 16) for v in set(itertools.permutations(["1"]*2+["0"]*3))]
[69632, 4097, 257, 17, 65552, 4352, 4112, 65537, 272, 65792]
if you wanted 32bits with 6 ones and 26 zeroes, you'd use:
>>> [int("".join(v), 16) for v in set(itertools.permutations(["1"]*6+["0"]*26))]
but this computation would take a supercomputer to deal with (32! = 263130836933693530167218012160000000 )
DECENT SOLUTION
So a more clever way to do it is using combinations, maybe something like this:
import itertools
num_bits = 32
num_ones = 6
lst = [
f"{sum([2**vv for vv in v]):b}".zfill(num_bits)
for v in list(itertools.combinations(range(num_bits), num_ones))
]
print(len(lst))
this would tell us there is 906192 numbers with 6 ones in the whole spectrum of 32bits numbers.
CREDITS:
Credits for this answer go to #Mark Dickinson who pointed out using permutations was unfeasible and suggested the usage of combinations
Well I am not a Python coder so I can not post a valid code for you. Instead I can do a C++ one...
If you look at your problem you set 6 bits and many zeros ... so I would approach this by 6 nested for loops computing all the possible 1s position and set the bits...
Something like:
for (i0= 0;i0<32-5;i0++)
for (i1=i0+1;i1<32-4;i1++)
for (i2=i1+1;i2<32-3;i2++)
for (i3=i2+1;i3<32-2;i3++)
for (i4=i3+1;i4<32-1;i4++)
for (i5=i4+1;i5<32-0;i5++)
// here i0,...,i5 marks the set bits positions
So the O(2^32) become to less than `~O(26.25.24.23.22.21/16) and you can not go faster than that as that would mean you miss valid solutions...
I assume you want to print the number so for speed up you can compute the number as a binary number string from the start to avoid slow conversion between string and number...
The nested for loops can be encoded as increment operation of an array (similar to bignum arithmetics)
When I put all together I got this C++ code:
int generate()
{
const int n1=6; // number of set bits
const int n=32; // number of bits
char x[n+2]; // output number string
int i[n1],j,cnt; // nested for loops iterator variables and found solutions count
for (j=0;j<n;j++) x[j]='0'; x[j]='b'; j++; x[j]=0; // x = 0
for (j=0;j<n1;j++){ i[j]=j; x[i[j]]='1'; } // first solution
for (cnt=0;;)
{
// Form1->mm_log->Lines->Add(x); // here x is the valid answer to print
cnt++;
for (j=n1-1;j>=0;j--) // this emulates n1 nested for loops
{
x[i[j]]='0'; i[j]++;
if (i[j]<n-n1+j+1){ x[i[j]]='1'; break; }
}
if (j<0) break;
for (j++;j<n1;j++){ i[j]=i[j-1]+1; x[i[j]]='1'; }
}
return cnt; // found valid answers
};
When I use this with n1=6,n=32 I got this output (without printing the numbers):
cnt = 906192
and it was finished in 4.246 ms on AMD A8-5500 3.2GHz (win7 x64 32bit app no threads) which is fast enough for me...
Beware once you start outputing the numbers somewhere the speed will drop drastically. Especially if you output to console or what ever ... it might be better to buffer the output somehow like outputting 1024 string numbers at once etc... But as I mentioned before I am no Python coder so it might be already handled by the environment...
On top of all this once you will play with variable n1,n you can do the same for zeros instead of ones and use faster approach (if there is less zeros then ones use nested for loops to mark zeros instead of ones)
If the wanted solution numbers are wanted as a number (not a string) then its possible to rewrite this so the i[] or i0,..i5 holds the bitmask instead of bit positions ... instead of inc/dec you just shift left/right ... and no need for x array anymore as the number would be x = i0|...|i5 ...
You could create a counter array for positions of 1s in the number and assemble it by shifting the bits in their respective positions. I created an example below. It runs pretty fast (less than a second for 32 bits on my laptop):
bitCount = 32
oneCount = 6
maxBit = 1<<(bitCount-1)
ones = [1<<b for b in reversed(range(oneCount)) ] # start with bits on low end
ones[0] >>= 1 # shift back 1st one because it will be incremented at start of loop
index = 0
result = []
while index < len(ones):
ones[index] <<= 1 # shift one at current position
if index == 0:
number = sum(ones) # build output number
result.append(number)
if ones[index] == maxBit:
index += 1 # go to next position when bit reaches max
elif index > 0:
index -= 1 # return to previous position
ones[index] = ones[index+1] # and prepare it to move up (relative to next)
64 bits takes about a minute, roughly proportional to the number of values that are output. O(n)
The same approach can be expressed more concisely in a recursive generator function which will allow more efficient use of the bit patterns:
def genOneBits(bitcount=32,onecount=6):
for bitPos in range(onecount-1,bitcount):
value = 1<<bitPos
if onecount == 1: yield value; continue
for otherBits in genOneBits(bitPos,onecount-1):
yield value + otherBits
result = [ n for n in genOneBits(32,6) ]
This is not faster when you get all the numbers but it allows partial access to the list without going through all values.
If you need direct access to the Nth bit pattern (e.g. to get a random one-bits pattern), you can use the following function. It works like indexing a list but without having to generate the list of patterns.
def numOneBits(bitcount=32,onecount=6):
def factorial(X): return 1 if X < 2 else X * factorial(X-1)
return factorial(bitcount)//factorial(onecount)//factorial(bitcount-onecount)
def nthOneBits(N,bitcount=32,onecount=6):
if onecount == 1: return 1<<N
bitPos = 0
while bitPos<=bitcount-onecount:
group = numOneBits(bitcount-bitPos-1,onecount-1)
if N < group: break
N -= group
bitPos += 1
if bitPos>bitcount-onecount: return None
result = 1<<bitPos
result |= nthOneBits(N,bitcount-bitPos-1,onecount-1)<<(bitPos+1)
return result
# bit pattern at position 1000:
nthOneBit(1000) # --> 10485799 (00000000101000000000000000100111)
This allows you to get the bit patterns on very large integers that would be impossible to generate completely:
nthOneBits(10000, bitcount=256, onecount=9)
# 77371252457588066994880639
# 100000000000000000000000000000000001000000000000000000000000000000000000000000001111111
It is worth noting that the pattern order does not follow the numerical order of the corresponding numbers
Although nthOneBits() can produce any pattern instantly, it is much slower than the other functions when mass producing patterns. If you need to manipulate them sequentially, you should go for the generator function instead of looping on nthOneBits().
Also, it should be fairly easy to tweak the generator to have it start at a specific pattern so you could get the best of both approaches.
Finally, it may be useful to obtain then next bit pattern given a known pattern. This is what the following function does:
def nextOneBits(N=0,bitcount=32,onecount=6):
if N == 0: return (1<<onecount)-1
bitPositions = []
for pos in range(bitcount):
bit = N%2
N //= 2
if bit==1: bitPositions.insert(0,pos)
index = 0
result = None
while index < onecount:
bitPositions[index] += 1
if bitPositions[index] == bitcount:
index += 1
continue
if index == 0:
result = sum( 1<<bp for bp in bitPositions )
break
if index > 0:
index -= 1
bitPositions[index] = bitPositions[index+1]
return result
nthOneBits(12) #--> 131103 00000000000000100000000000011111
nextOneBits(131103) #--> 262175 00000000000001000000000000011111 5.7ns
nthOneBits(13) #--> 262175 00000000000001000000000000011111 49.2ns
Like nthOneBits(), this one does not need any setup time. It could be used in combination with nthOneBits() to get subsequent patterns after getting an initial one at a given position. nextOneBits() is much faster than nthOneBits(i+1) but is still slower than the generator function.
For very large integers, using nthOneBits() and nextOneBits() may be the only practical options.
You are dealing with permutations of multisets. There are many ways to achieve this and as #BPL points out, doing this efficiently is non-trivial. There are many great methods mentioned here: permutations with unique values. The cleanest (not sure if it's the most efficient), is to use the multiset_permutations from the sympy module.
import time
from sympy.utilities.iterables import multiset_permutations
t = time.process_time()
## Credit to #BPL for the general setup
multiPerms = ["".join(v) for v in multiset_permutations(["1"]*6+["0"]*26)]
elapsed_time = time.process_time() - t
print(elapsed_time)
On my machine, the above computes in just over 8 seconds. It generates just under a million results as well:
len(multiPerms)
906192

"in" statement for lists/tuples of floats

Should the use of in or not in be avoided when dealing with lists/tuples of floats? Is its implementation something like the code below or is it something more sophisticated?
check = False
for item in list_to_search_the_value_in:
if value_to_search_for == item:
check = True
in and not in should be your preferred way of membership testing. Both operators can make use (via __contains__()) of any optimized membership test that the container offers.
Your problem is with the float part, because in makes an equality comparison with == (optimized to check for identity, first).
In general, for floating point comparing for equality does not yield the desired results. Hence for lists of floats, you want something like
def is_in_float(item, sequence, eps=None):
eps = eps or 2**-52
return any((abs(item - seq_item) < eps) for seq_item in sequence)
Use with sorting and binary search to find the closest matching float at your convenience.
Here's the part of the documentation saying that in checks for equality on sequence types. So no, this should not be used for sequences of floats.
The in operator uses regular equality checks behind the scenes, so it has the same limitations as __eq__() when it comes to floats. Use with caution if at all.
>>> 0.3 == 0.4 - 0.1
False
>>> 0.3 in [0.4 - 0.1]
False
Since in operator uses equality check, it'll frequently fail, since floating point math is "broken" (well, it's not, but you get a point).
You may easily achieve similar functionality by using any:
epsilon = 1e-9
check = any(abs(f - value_to_search_for) < epsilon for f in seq)
# or
check = False
if any(abs(f - value_to_search_for) < epsilon for f in seq):
check = True
Python's list type has its __contains__ method implemented in C:
static int
list_contains(PyListObject *a, PyObject *el)
{
Py_ssize_t i;
int cmp;
for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i)
cmp = PyObject_RichCompareBool(el, PyList_GET_ITEM(a, i),
Py_EQ);
return cmp;
}
A literal translation to Python might be:
def list_contains(a, el):
cmp = False
for i in range(len(a)):
if cmp: break
cmp = a[i] == el
return cmp
Your example is a more idiomatic translation.
In any case, as the other answers have noted, it uses equality to test the list items against the element you're checking for membership. With float values, that can be perilous, as numbers we'd expect to be equal may not be due to floating point rounding.
A more float-safe way of implementing the check yourself might be:
any(abs(x - el) < epsilon for x in a)
where epsilon is some small value. How small it needs to be will depend on the size of the numbers you're dealing with, and how precise you care to be. If you can estimate the amount of numeric error that might differentiate el an equivalent value in the list, you can set epsilon to one order of magnitude larger and be confident that you'll not give a false negative (and probably only give false positives in cases that are impossible to get right).

Why is "1000000000000000 in range(1000000000000001)" so fast in Python 3?

It is my understanding that the range() function, which is actually an object type in Python 3, generates its contents on the fly, similar to a generator.
This being the case, I would have expected the following line to take an inordinate amount of time because, in order to determine whether 1 quadrillion is in the range, a quadrillion values would have to be generated:
1_000_000_000_000_000 in range(1_000_000_000_000_001)
Furthermore: it seems that no matter how many zeroes I add on, the calculation more or less takes the same amount of time (basically instantaneous).
I have also tried things like this, but the calculation is still almost instant:
# count by tens
1_000_000_000_000_000_000_000 in range(0,1_000_000_000_000_000_000_001,10)
If I try to implement my own range function, the result is not so nice!
def my_crappy_range(N):
i = 0
while i < N:
yield i
i += 1
return
What is the range() object doing under the hood that makes it so fast?
Martijn Pieters's answer was chosen for its completeness, but also see abarnert's first answer for a good discussion of what it means for range to be a full-fledged sequence in Python 3, and some information/warning regarding potential inconsistency for __contains__ function optimization across Python implementations. abarnert's other answer goes into some more detail and provides links for those interested in the history behind the optimization in Python 3 (and lack of optimization of xrange in Python 2). Answers by poke and by wim provide the relevant C source code and explanations for those who are interested.
The Python 3 range() object doesn't produce numbers immediately; it is a smart sequence object that produces numbers on demand. All it contains is your start, stop and step values, then as you iterate over the object the next integer is calculated each iteration.
The object also implements the object.__contains__ hook, and calculates if your number is part of its range. Calculating is a (near) constant time operation *. There is never a need to scan through all possible integers in the range.
From the range() object documentation:
The advantage of the range type over a regular list or tuple is that a range object will always take the same (small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and step values, calculating individual items and subranges as needed).
So at a minimum, your range() object would do:
class my_range:
def __init__(self, start, stop=None, step=1, /):
if stop is None:
start, stop = 0, start
self.start, self.stop, self.step = start, stop, step
if step < 0:
lo, hi, step = stop, start, -step
else:
lo, hi = start, stop
self.length = 0 if lo > hi else ((hi - lo - 1) // step) + 1
def __iter__(self):
current = self.start
if self.step < 0:
while current > self.stop:
yield current
current += self.step
else:
while current < self.stop:
yield current
current += self.step
def __len__(self):
return self.length
def __getitem__(self, i):
if i < 0:
i += self.length
if 0 <= i < self.length:
return self.start + i * self.step
raise IndexError('my_range object index out of range')
def __contains__(self, num):
if self.step < 0:
if not (self.stop < num <= self.start):
return False
else:
if not (self.start <= num < self.stop):
return False
return (num - self.start) % self.step == 0
This is still missing several things that a real range() supports (such as the .index() or .count() methods, hashing, equality testing, or slicing), but should give you an idea.
I also simplified the __contains__ implementation to only focus on integer tests; if you give a real range() object a non-integer value (including subclasses of int), a slow scan is initiated to see if there is a match, just as if you use a containment test against a list of all the contained values. This was done to continue to support other numeric types that just happen to support equality testing with integers but are not expected to support integer arithmetic as well. See the original Python issue that implemented the containment test.
* Near constant time because Python integers are unbounded and so math operations also grow in time as N grows, making this a O(log N) operation. Since it’s all executed in optimised C code and Python stores integer values in 30-bit chunks, you’d run out of memory before you saw any performance impact due to the size of the integers involved here.
The fundamental misunderstanding here is in thinking that range is a generator. It's not. In fact, it's not any kind of iterator.
You can tell this pretty easily:
>>> a = range(5)
>>> print(list(a))
[0, 1, 2, 3, 4]
>>> print(list(a))
[0, 1, 2, 3, 4]
If it were a generator, iterating it once would exhaust it:
>>> b = my_crappy_range(5)
>>> print(list(b))
[0, 1, 2, 3, 4]
>>> print(list(b))
[]
What range actually is, is a sequence, just like a list. You can even test this:
>>> import collections.abc
>>> isinstance(a, collections.abc.Sequence)
True
This means it has to follow all the rules of being a sequence:
>>> a[3] # indexable
3
>>> len(a) # sized
5
>>> 3 in a # membership
True
>>> reversed(a) # reversible
<range_iterator at 0x101cd2360>
>>> a.index(3) # implements 'index'
3
>>> a.count(3) # implements 'count'
1
The difference between a range and a list is that a range is a lazy or dynamic sequence; it doesn't remember all of its values, it just remembers its start, stop, and step, and creates the values on demand on __getitem__.
(As a side note, if you print(iter(a)), you'll notice that range uses the same listiterator type as list. How does that work? A listiterator doesn't use anything special about list except for the fact that it provides a C implementation of __getitem__, so it works fine for range too.)
Now, there's nothing that says that Sequence.__contains__ has to be constant time—in fact, for obvious examples of sequences like list, it isn't. But there's nothing that says it can't be. And it's easier to implement range.__contains__ to just check it mathematically ((val - start) % step, but with some extra complexity to deal with negative steps) than to actually generate and test all the values, so why shouldn't it do it the better way?
But there doesn't seem to be anything in the language that guarantees this will happen. As Ashwini Chaudhari points out, if you give it a non-integral value, instead of converting to integer and doing the mathematical test, it will fall back to iterating all the values and comparing them one by one. And just because CPython 3.2+ and PyPy 3.x versions happen to contain this optimization, and it's an obvious good idea and easy to do, there's no reason that IronPython or NewKickAssPython 3.x couldn't leave it out. (And in fact, CPython 3.0-3.1 didn't include it.)
If range actually were a generator, like my_crappy_range, then it wouldn't make sense to test __contains__ this way, or at least the way it makes sense wouldn't be obvious. If you'd already iterated the first 3 values, is 1 still in the generator? Should testing for 1 cause it to iterate and consume all the values up to 1 (or up to the first value >= 1)?
Use the source, Luke!
In CPython, range(...).__contains__ (a method wrapper) will eventually delegate to a simple calculation which checks if the value can possibly be in the range. The reason for the speed here is we're using mathematical reasoning about the bounds, rather than a direct iteration of the range object. To explain the logic used:
Check that the number is between start and stop, and
Check that the stride value doesn't "step over" our number.
For example, 994 is in range(4, 1000, 2) because:
4 <= 994 < 1000, and
(994 - 4) % 2 == 0.
The full C code is included below, which is a bit more verbose because of memory management and reference counting details, but the basic idea is there:
static int
range_contains_long(rangeobject *r, PyObject *ob)
{
int cmp1, cmp2, cmp3;
PyObject *tmp1 = NULL;
PyObject *tmp2 = NULL;
PyObject *zero = NULL;
int result = -1;
zero = PyLong_FromLong(0);
if (zero == NULL) /* MemoryError in int(0) */
goto end;
/* Check if the value can possibly be in the range. */
cmp1 = PyObject_RichCompareBool(r->step, zero, Py_GT);
if (cmp1 == -1)
goto end;
if (cmp1 == 1) { /* positive steps: start <= ob < stop */
cmp2 = PyObject_RichCompareBool(r->start, ob, Py_LE);
cmp3 = PyObject_RichCompareBool(ob, r->stop, Py_LT);
}
else { /* negative steps: stop < ob <= start */
cmp2 = PyObject_RichCompareBool(ob, r->start, Py_LE);
cmp3 = PyObject_RichCompareBool(r->stop, ob, Py_LT);
}
if (cmp2 == -1 || cmp3 == -1) /* TypeError */
goto end;
if (cmp2 == 0 || cmp3 == 0) { /* ob outside of range */
result = 0;
goto end;
}
/* Check that the stride does not invalidate ob's membership. */
tmp1 = PyNumber_Subtract(ob, r->start);
if (tmp1 == NULL)
goto end;
tmp2 = PyNumber_Remainder(tmp1, r->step);
if (tmp2 == NULL)
goto end;
/* result = ((int(ob) - start) % step) == 0 */
result = PyObject_RichCompareBool(tmp2, zero, Py_EQ);
end:
Py_XDECREF(tmp1);
Py_XDECREF(tmp2);
Py_XDECREF(zero);
return result;
}
static int
range_contains(rangeobject *r, PyObject *ob)
{
if (PyLong_CheckExact(ob) || PyBool_Check(ob))
return range_contains_long(r, ob);
return (int)_PySequence_IterSearch((PyObject*)r, ob,
PY_ITERSEARCH_CONTAINS);
}
The "meat" of the idea is mentioned in the comment lines:
/* positive steps: start <= ob < stop */
/* negative steps: stop < ob <= start */
/* result = ((int(ob) - start) % step) == 0 */
As a final note - look at the range_contains function at the bottom of the code snippet. If the exact type check fails then we don't use the clever algorithm described, instead falling back to a dumb iteration search of the range using _PySequence_IterSearch! You can check this behaviour in the interpreter (I'm using v3.5.0 here):
>>> x, r = 1000000000000000, range(1000000000000001)
>>> class MyInt(int):
... pass
...
>>> x_ = MyInt(x)
>>> x in r # calculates immediately :)
True
>>> x_ in r # iterates for ages.. :(
^\Quit (core dumped)
To add to Martijn’s answer, this is the relevant part of the source (in C, as the range object is written in native code):
static int
range_contains(rangeobject *r, PyObject *ob)
{
if (PyLong_CheckExact(ob) || PyBool_Check(ob))
return range_contains_long(r, ob);
return (int)_PySequence_IterSearch((PyObject*)r, ob,
PY_ITERSEARCH_CONTAINS);
}
So for PyLong objects (which is int in Python 3), it will use the range_contains_long function to determine the result. And that function essentially checks if ob is in the specified range (although it looks a bit more complex in C).
If it’s not an int object, it falls back to iterating until it finds the value (or not).
The whole logic could be translated to pseudo-Python like this:
def range_contains (rangeObj, obj):
if isinstance(obj, int):
return range_contains_long(rangeObj, obj)
# default logic by iterating
return any(obj == x for x in rangeObj)
def range_contains_long (r, num):
if r.step > 0:
# positive step: r.start <= num < r.stop
cmp2 = r.start <= num
cmp3 = num < r.stop
else:
# negative step: r.start >= num > r.stop
cmp2 = num <= r.start
cmp3 = r.stop < num
# outside of the range boundaries
if not cmp2 or not cmp3:
return False
# num must be on a valid step inside the boundaries
return (num - r.start) % r.step == 0
If you're wondering why this optimization was added to range.__contains__, and why it wasn't added to xrange.__contains__ in 2.7:
First, as Ashwini Chaudhary discovered, issue 1766304 was opened explicitly to optimize [x]range.__contains__. A patch for this was accepted and checked in for 3.2, but not backported to 2.7 because "xrange has behaved like this for such a long time that I don't see what it buys us to commit the patch this late." (2.7 was nearly out at that point.)
Meanwhile:
Originally, xrange was a not-quite-sequence object. As the 3.1 docs say:
Range objects have very little behavior: they only support indexing, iteration, and the len function.
This wasn't quite true; an xrange object actually supported a few other things that come automatically with indexing and len,* including __contains__ (via linear search). But nobody thought it was worth making them full sequences at the time.
Then, as part of implementing the Abstract Base Classes PEP, it was important to figure out which builtin types should be marked as implementing which ABCs, and xrange/range claimed to implement collections.Sequence, even though it still only handled the same "very little behavior". Nobody noticed that problem until issue 9213. The patch for that issue not only added index and count to 3.2's range, it also re-worked the optimized __contains__ (which shares the same math with index, and is directly used by count).** This change went in for 3.2 as well, and was not backported to 2.x, because "it's a bugfix that adds new methods". (At this point, 2.7 was already past rc status.)
So, there were two chances to get this optimization backported to 2.7, but they were both rejected.
* In fact, you even get iteration for free with indexing alone, but in 2.3 xrange objects got a custom iterator.
** The first version actually reimplemented it, and got the details wrong—e.g., it would give you MyIntSubclass(2) in range(5) == False. But Daniel Stutzbach's updated version of the patch restored most of the previous code, including the fallback to the generic, slow _PySequence_IterSearch that pre-3.2 range.__contains__ was implicitly using when the optimization doesn't apply.
The other answers explained it well already, but I'd like to offer another experiment illustrating the nature of range objects:
>>> r = range(5)
>>> for i in r:
print(i, 2 in r, list(r))
0 True [0, 1, 2, 3, 4]
1 True [0, 1, 2, 3, 4]
2 True [0, 1, 2, 3, 4]
3 True [0, 1, 2, 3, 4]
4 True [0, 1, 2, 3, 4]
As you can see, a range object is an object that remembers its range and can be used many times (even while iterating over it), not just a one-time generator.
It's all about a lazy approach to the evaluation and some extra optimization of range.
Values in ranges don't need to be computed until real use, or even further due to extra optimization.
By the way, your integer is not such big, consider sys.maxsize
sys.maxsize in range(sys.maxsize) is pretty fast
due to optimization - it's easy to compare given integer just with min and max of range.
but:
Decimal(sys.maxsize) in range(sys.maxsize) is pretty slow.
(in this case, there is no optimization in range, so if python receives unexpected Decimal, python will compare all numbers)
You should be aware of an implementation detail but should not be relied upon, because this may change in the future.
TL;DR
The object returned by range() is actually a range object. This object implements the iterator interface so you can iterate over its values sequentially, just like a generator, list, or tuple.
But it also implements the __contains__ interface which is actually what gets called when an object appears on the right-hand side of the in operator. The __contains__() method returns a bool of whether or not the item on the left-hand side of the in is in the object. Since range objects know their bounds and stride, this is very easy to implement in O(1).
Due to optimization, it is very easy to compare given integers just with min and max range.
The reason that the range() function is so fast in Python3 is that here we use mathematical reasoning for the bounds, rather than a direct iteration of the range object.
So for explaining the logic here:
Check whether the number is between the start and stop.
Check whether the step precision value doesn't go over our number.
Take an example, 997 is in range(4, 1000, 3) because:
4 <= 997 < 1000, and (997 - 4) % 3 == 0.
Try x-1 in (i for i in range(x)) for large x values, which uses a generator comprehension to avoid invoking the range.__contains__ optimisation.
TLDR;
the range is an arithmetic series so it can very easily calculate whether the object is there. It could even get the index of it if it were list like really quickly.
__contains__ method compares directly with the start and end of the range

What's actually happening when I convert an int to a string?

I understand it's easy to convert an int to a string by using the built-in method str(). However, what's actually happening? I understand it may point to the
__str__ method of the int object but how does it then compute the “informal” string representation? Tried looking at the source and didn't find a lead; any help appreciated.
Python repeatedly divides the int by 10 and uses % 10 to get the decimal digits one by one.
Just to make sure we're looking at the right code, here's the function Python 2.7 uses to convert ints to strings:
static PyObject *
int_to_decimal_string(PyIntObject *v) {
char buf[sizeof(long)*CHAR_BIT/3+6], *p, *bufend;
long n = v->ob_ival;
unsigned long absn;
p = bufend = buf + sizeof(buf);
absn = n < 0 ? 0UL - n : n;
do {
*--p = '0' + (char)(absn % 10);
absn /= 10;
} while (absn);
if (n < 0)
*--p = '-';
return PyString_FromStringAndSize(p, bufend - p);
}
This allocates enough space to store the characters of the string, then fills the digits in one by one, starting at the end. When it's done with the digits, it sticks a - sign on the front if the number is negative and constructs a Python string object from the characters. Translating that into Python, we get the following:
def int_to_decimal_string(n):
chars = [None] * enough # enough room for any int's string representation
abs_n = abs(n)
i = 0
while True:
i += 1
chars[-i] = str(abs_n % 10) # chr(ord('0') + abs_n % 10) is more accurate
abs_n //= 10
if not abs_n:
break
if n < 0:
i += 1
chars[-i] = '-'
return ''.join(chars[-i:])
Internally the Int object is stored as 2's complement representation like in C (well, this is true if range value allow it, python can automagically convert it to some other representation if it does not fit any more).
Now to get the string representation you have to change that to a string (and a string merely some unmutable list of chars). The algorithm is simple mathematical computing: divide the number by 10 (integer division) and keep the remainder, add that to character code '0'. You get the unit digit. Go on with the result of the division until the result of the division is zero. It's as simple as that.
This approach works with any integer representation but of course it will be more efficient to call the ltoa C library function or equivalent C code to do that if possible than code it in python.
When you call str() on an object it calls it's classes __ str__ magic method.
for example
class NewThing:
def __init__(self, name):
self.name = name
def __str__(self):
return self.name
From there you can use the str() method on the object, or use it directly in strings.
>> thing = NewThing("poop")
>> print thing
>> poop
More info on magic methods here
Not sure if this is what you wanted, but I can't comment yet to ask clarifying questions.

Find num of overlapping and non-overlapping substrings in a string

PS: This is not a duplicate of How to find the overlap between 2 sequences, and return it
[Although I ask for solutions in above approach if it could be applied to the following problem]
Q: Although I got it right, it is still not a scalable solution and is definitely not optimized (low on score). Read the following description of the problem and kindly offer better solution.
Question:
For simplicity, we require prefixes and suffixes to be non-empty and shorter than the whole string S. A border of a string S is any string that is both a prefix and a suffix. For example, "cut" is a border of a string "cutletcut", and a string "barbararhubarb" has two borders: "b" and "barb".
class Solution { public int solution(String S); }
that, given a string S consisting of N characters, returns the length of its longest border that has at least three non-overlapping occurrences in the given string. If there is no such border in S, the function should return 0.
For example,
if S = "barbararhubarb" the function should return 1, as explained above;
if S = "ababab" the function should return 2, as "ab" and "abab" are both borders of S, but only "ab" has three non-overlapping occurrences;
if S = "baaab" the function should return 0, as its only border "b" occurs only twice.
Assume that:
N is an integer within the range [0..1,000,000];
string S consists only of lower-case letters (a−z).
Complexity:
expected worst-case time complexity is O(N);
expected worst-case space complexity is O(N) (not counting the storage required for input arguments).
def solution(S):
S = S.lower()
presuf = []
f = l = str()
rank = []
wordlen = len(S)
for i, j in enumerate(S):
y = -i-1
f += S[i]
l = S[y] + l
if f==l and f != S:
#print f,l
new=S[i+1:-i-1]
mindex = new.find(f)
if mindex != -1:
mid = f #new[mindex]
#print mid
else:
mid = None
presuf.append((f,mid,l,(i,y)))
#print presuf
for i,j,k,o in presuf:
if o[0]<wordlen+o[-1]: #non overlapping
if i==j:
rank.append(len(i))
else:
rank.append(0)
if len(rank)==0:
return 0
else:
return max(rank)
My solutions time complexity is: O(N2) or O(N4)
Help greatly appreciated.
My solution is combination between Rabin-Karp and Knuth–Morris–Pratt algorithms.
http://codility.com/cert/view/certB6J4FV-W89WX4ZABTDRVAG6/details
I have a (Java) solution that performs O(N) or O(N**3), for a resulting 90/100 overall, but I can't figure out how to make it go though 2 different testcases:
almost_all_same_letters
aaaaa...aa??aaaa??....aaaaaaa 2.150 s. TIMEOUT ERROR
running time: >2.15 sec., time limit: 1.20 sec.
same_letters_on_both_ends 2.120 s. TIMEOUT ERROR
running time: >2.12 sec., time limit: 1.24 sec.
Edit: Nailed it!
Now I have a solution that perform in O(N) and passes all the checks for a 100/100 result :)
I didn't know Codility, but it's a nice tool!
I have a solution with suffix arrays (there actually is algorithm for constructing SA and LCP in linear time or something bit worse than that, but surely not quadratic).
Still not sure if I can go without RMQs ( O(log n) with SegmentTree) which I couldn't make pass my own cases and seems quite complicated, but with RMQs it can (not mentioning approach with for loop instead of RMQ, that would make it quadratic anyway).
Solution is performing quite fast and passing my 21 test cases with various perks I've managed to craft, but still failing on some of their cases. Not sure if that helped you or gave you idea how to approach the problem, but I am sure that naive solution, like #Vicenco said in some of his comments, can't get you better than Silver.
EDIT:
managed to fix it all problems, but still to slow. I had to enforce some conditions but had to increase complexity with this, still not sure how to optimize that. Will keep you posted. Good luck!
protected int calcBorder(String input) {
if (null != input) {
int mean = (input.length() / 3);
while (mean >= 1) {
if (input.substring(0, mean).equals(
input.substring(input.length() - mean))) {
String reference = input.substring(0, mean);
String temp = input
.substring(mean, (input.length() - mean));
int startIndex = 0;
int endIndex = mean;
int count = 2;
while (endIndex <= temp.length()) {
if (reference.equals(temp.substring(startIndex,
endIndex))) {
count++;
if (count >= 3) {
return reference.length();
}
}
startIndex++;
endIndex++;
}
}
mean--;
}
}
return 0;
}
The Z-Algorithm would be a good solution.

Categories