Euler's method in python - python

I'm trying to implement euler's method to approximate the value of e in python. This is what I have so far:
def Euler(f, t0, y0, h, N):
t = t0 + arange(N+1)*h
y = zeros(N+1)
y[0] = y0
for n in range(N):
y[n+1] = y[n] + h*f(t[n], y[n])
f = (1+(1/N))^N
return y
However, when I try to call the function, I get the error "ValueError: shape <= 0". I suspect this has something to do with how I defined f? I tried inputting f directly when euler is called, but gave me errors related to variables not being defined. I also tried defining f as its own function, which gave me a division by 0 error.
def f(N):
for n in range(N):
return (1+(1/n))^n
(not sure if N was the appropriate variable to use here...)

The formula you are trying to use is not Euler's method, but rather the exact value of e as n approaches infinity wiki,
$n = \lim_{n\to\infty} (1 + \frac{1}{n})^n$
Euler's method is used to solve first order differential equations.
Here are two guides that show how to implement Euler's method to solve a simple test function: beginner's guide and numerical ODE guide.
To answer the title of this post, rather than the question you are asking, I've used Euler's method to solve usual exponential decay:
$\frac{dN}{dt} = -\lambda N$
Which has the solution,
$N(t) = N_0 e^{-\lambda t}$
Code:
import numpy as np
import matplotlib.pyplot as plt
from __future__ import division
# Concentration over time
N = lambda t: N0 * np.exp(-k * t)
# dN/dt
def dx_dt(x):
return -k * x
k = .5
h = 0.001
N0 = 100.
t = np.arange(0, 10, h)
y = np.zeros(len(t))
y[0] = N0
for i in range(1, len(t)):
# Euler's method
y[i] = y[i-1] + dx_dt(y[i-1]) * h
max_error = abs(y-N(t)).max()
print 'Max difference between the exact solution and Euler's approximation with step size h=0.001:'
print '{0:.15}'.format(max_error)
Output:
Max difference between the exact solution and Euler's approximation with step size h=0.001:
0.00919890254720457
Note: I'm not sure how to get LaTeX displaying properly.

Are you sure you are not trying to implement the Newton's method? Because Newton's method is used to approximate the roots.
In case you decide to go with Newton's method, here is a slightly changed version of your code that approximates the square-root of 2. You can change f(x) and fp(x) with the function and its derivative you use in your approximation to the thing you want.
import numpy as np
def f(x):
return x**2 - 2
def fp(x):
return 2*x
def Newton(f, y0, N):
y = np.zeros(N+1)
y[0] = y0
for n in range(N):
y[n+1] = y[n] - f(y[n])/fp(y[n])
return y
print Newton(f, 1, 10)
gives
[ 1. 1.5 1.41666667 1.41421569 1.41421356 1.41421356
1.41421356 1.41421356 1.41421356 1.41421356 1.41421356]
which are the initial value and the first ten iterations to the square-root of two.
Besides this a big problem was the usage of ^ instead of ** for powers which is a legal but a totally different (bitwise) operation in python.

Related

Optimize with PyMC3

Problem Summary
I have been optimizing my function VectorizedVcdfe, and I am still trying to optimize it. This function is responsible for 99% of the slowness of another function customFunc. This customFunc is used in a PyMC3 code block.
Please help me optimize VectorizedVcdfe.
Function to optimize
def VectorizedVcdfe(self, x, dataVector, recip_h_times_lambda_vector):
n = len(dataVector)
differenceVector = x - dataVector
stackedDiffVecAndRecipVec = pymc3.math.stack(differenceVector, recip_h_times_lambda_vector)
erfcTerm = 1. - pymc3.math.erf(self.neg_sqrt1_2 * pymc3.math.prod(stackedDiffVecAndRecipVec, axis=0))
# Calc F_Hat
F_Hat = (1. / float(n)) * pymc3.math.sum(0.5 * erfcTerm)
# Return F_Hat
return(F_Hat)
Arguments/variables
x is a TensorVariable.
dataVector is a 1Xn numpy matrix.
recip_h_times_lambda_vector is also a 1Xn numpy matrix.
neg_sqrt1_2 is a scalar constant.
How customFunc is used
with pymc3.Model() as model:
# Create likelihood
like = pymc3.DensityDist('X', customFunc, shape=2)
# Make samples
step = pymc3.NUTS()
trace = pymc3.sample(2000, tune=1000, init=None, step=step, cores=2)
EDIT:
To answer commenters, random values are OK for both dataVector and
recip_h_times_lambda_vector for the purposes of doing this optimization. In reality, recip_h_times_lambda_vector is dependent on dataVector and a scalar parameter h.
Some commenters were wondering about customFunc, so here it is...
def customFunc(X):
Y = []
for j in range(2):
x_j = X[j]
F_x_j = fittedKdEstimator.VCDFE(x_j)
y_j = myPPF(F_x_j)
Y.append(y_j)
logLikelihood = 0.
recipSqrtTwoPi = 1. / math.sqrt(2. * math.pi)
for j in range(2):
y_j = Y[j]
logLikelihood += pymc3.math.log(recipSqrtTwoPi * pymc3.math.exp(y_j * y_j / -2.))
return(pymc3.math.exp(logLikelihood))
The global variable fittedKdEstimator is an instance of the class that contains the functions VectorizedVcdfe and VCDFE.
Here is the Python code for VCDFE...
def VCDFE(self, x):
if not self.beenFit: raise Exception("Must first fit to data")
return(self.VectorizedVcdfe(x, self.__dataVector, self.__recip_h_times_lambda_vector))
On a separate note, the function myPPF is my implementation of the standard normal "percent-point function" (AKA: "quantile function"). I have timed the customFunc, and myPPF takes a fraction of the entire time. The vast majority of time is consumed by VectorizedVcdfe.
Last but not least, a typical value for n may range from 10,000 to 100,000.

Scipy optimisation routines only finding one answer

Given this function:
def f(x):
return (1-x**2)**m * ((1-x)/2)**n
where m and n are constants, let's say both 0.5 for the sake of an example.
I'm trying to use functions from scipy.optimize to solve for x given a value of y. I'm only interested in xvalues from -1 to 1. Plotting the function with
x = numpy.arange(0, 1, 0,1)
matplotlib.pyplot.plot(x, f(x))
shows that the function is a kind of distorted parabola covering the range about 0 to 0.65. So lets try solving it for y = 0.3:
def f(x):
return (1 - x**2)**m * ((1-x)/2)**n - 0.3
print(scipy.optimize.newton_krylov(f, 0.5))
0.6718791645800665
This looks about right for one of the possible solutions. But there are two. The second should be around -0.9. Try what I might for an initial guess, I can't get it to find this second solution. The Newton-Krylov method gives no convergence at all for xin < 0 but none of the solvers can find this second solution.
Am I missing something? What am I doing wrong?
The method converges at least for x=-0.9:
scipy.optimize.newton_krylov(f, -0.9)
#array(-0.9527983).
It diverges for x approximately in [-0.85...0.06].
This is because, newton_krylov uses the Jacobian of the function. This makes it a gradient decent method consequently your solutions always converge to a local minima. Furthermore, because your function is parabolic you have a very interesting option!
The first is to find the maxima of f(x) and split your search domain into to. Next you can make an initial guess in each domain and solve with newton_krylov.
def f(x):
# Here is our function
return (1-x**2)**m * ((1-x)/2)**n
def minf(x):
# Here is where we find an optima and split the domain
return -f(x)
def fy(x):
# This is where you want your y value target defined
return abs(f(x) - .3)
if __name__ == "__main__":
x = numpy.arange(-1., 1., 1e-3, dtype=float)
# pyplot.plot(x, f(x))
# pyplot.show()
minx = minimize(minf, 0.0)['x']
# Make an initial guess in each domain
a1 = minx - 1.6 * minx
a2 = minx + 1.6 * minx
print(newton_krylov(fy, a1))
print(newton_krylov(fy, a2))
The output then is:
[0.67187916]
[-0.95279992]

Finding equilibria of ODE as a function of initial conditions

Let us assume I have an ODE with x'(t) = f(x) with the respective solution x(t) = ϕ(x(0),t) of a initial condition x(0). Now I intend to calculate numerically the equilibria as a function of their initial condition: eq(x0) := ϕ(x0, ∞). The ODEs are such that these equilibria exist unambiguously for all initial conditions (including eq = ∞).
My poor man's approach would be to integrate the ODE up to a late time and fetch that value (for brevity I do not show the plotting):
import numpy as np
from scipy.integrate import odeint
# ODE
def func(X,t):
return [ X[2]**2 * (X[0] - X[1]),
X[2]**3 * (X[0] + 3 * X[1]),
-X[2]**2]
# Forming a grid
n = 15
x0 = x1 = np.linspace(0,1,n)
x0_,x1_ = np.meshgrid(x0,x1)
eq = np.zeros([n,n,3])
t = np.linspace(0,100,1000)
x2 = 1
for i in range(n):
for j in range(n):
X = odeint(func,[x0_[j,i],x1_[j,i],x2], t)
eq[j,i,:] = X[-1,:]
Naive example above:
The problem with that approach is that you can never be sure if it converged. I know that you can just find the roots of f(x), but this would not yield the equilibria as a function of their initial conditions (You could trace them back, but since this function is not injective, you will not find values for all initial values). I somehow need a ODE solver which integrates until an equilibria is reached (or stops integrating if it goes beyond a limit). Do you have any ideas?

Solve an implicit ODE (differential algebraic equation DAE)

I'm trying to solve a second order ODE using odeint from scipy. The issue I'm having is the function is implicitly coupled to the second order term, as seen in the simplified snippet (please ignore the pretend physics of the example):
import numpy as np
from scipy.integrate import odeint
def integral(y,t,F_l,mass):
dydt = np.zeros_like(y)
x, v = y
F_r = (((1-a)/3)**2 + (2*(1+a)/3)**2) * v # 'a' implicit
a = (F_l - F_r)/mass
dydt = [v, a]
return dydt
y0 = [0,5]
time = np.linspace(0.,10.,21)
F_lon = 100.
mass = 1000.
dydt = odeint(integral, y0, time, args=(F_lon,mass))
in this case I realise it is possible to algebraically solve for the implicit variable, however in my actual scenario there is a lot of logic between F_r and the evaluation of a and algebraic manipulation fails.
I believe the DAE could be solved using MATLAB's ode15i function, but I'm trying to avoid that scenario if at all possible.
My question is - is there a way to solve implicit ODE functions (DAE) in python( scipy preferably)? And is there a better way to pose the problem above to do so?
As a last resort, it may be acceptable to pass a from the previous time-step. How could I pass dydt[1] back into the function after each time-step?
Quite Old , but worth updating so it may be useful for anyone, who stumbles upon this question. There are quite few packages currently available in python that can solve implicit ODE.
GEKKO (https://github.com/BYU-PRISM/GEKKO) is one of the packages, that specializes on dynamic optimization for mixed integer , non linear optimization problems, but can also be used as a general purpose DAE solver.
The above "pretend physics" problem can be solved in GEKKO as follows.
m= GEKKO()
m.time = np.linspace(0,100,101)
F_l = m.Param(value=1000)
mass = m.Param(value =1000)
m.options.IMODE=4
m.options.NODES=3
F_r = m.Var(value=0)
x = m.Var(value=0)
v = m.Var(value=0,lb=0)
a = m.Var(value=5,lb=0)
m.Equation(x.dt() == v)
m.Equation(v.dt() == a)
m.Equation (F_r == (((1-a)/3)**2 + (2*(1+a)/3)**2 * v))
m.Equation (a == (1000 - F_l)/mass)
m.solve(disp=False)
plt.plot(x)
if algebraic manipulation fails, you can go for a numerical solution of your constraint, running for example fsolve at each timestep:
import sys
from numpy import linspace
from scipy.integrate import odeint
from scipy.optimize import fsolve
y0 = [0, 5]
time = linspace(0., 10., 1000)
F_lon = 10.
mass = 1000.
def F_r(a, v):
return (((1 - a) / 3) ** 2 + (2 * (1 + a) / 3) ** 2) * v
def constraint(a, v):
return (F_lon - F_r(a, v)) / mass - a
def integral(y, _):
v = y[1]
a, _, ier, mesg = fsolve(constraint, 0, args=[v, ], full_output=True)
if ier != 1:
print "I coudn't solve the algebraic constraint, error:\n\n", mesg
sys.stdout.flush()
return [v, a]
dydt = odeint(integral, y0, time)
Clearly this will slow down your time integration. Always check that fsolve finds a good solution, and flush the output so that you can realize it as it happens and stop the simulation.
About how to "cache" the value of a variable at a previous timestep, you can exploit the fact that default arguments are calculated only at the function definition,
from numpy import linspace
from scipy.integrate import odeint
#you can choose a better guess using fsolve instead of 0
def integral(y, _, F_l, M, cache=[0]):
v, preva = y[1], cache[0]
#use value for 'a' from the previous timestep
F_r = (((1 - preva) / 3) ** 2 + (2 * (1 + preva) / 3) ** 2) * v
#calculate the new value
a = (F_l - F_r) / M
cache[0] = a
return [v, a]
y0 = [0, 5]
time = linspace(0., 10., 1000)
F_lon = 100.
mass = 1000.
dydt = odeint(integral, y0, time, args=(F_lon, mass))
Notice that in order for the trick to work the cache parameter must be mutable, and that's why I use a list. See this link if you are not familiar with how default arguments work.
Notice that the two codes DO NOT produce the same result, and you should be very careful using the value at the previous timestep, both for numerical stability and precision. The second is clearly much faster though.

Artefacts from Riemann sum in scipy.signal.convolve

Short summary: How do I quickly calculate the finite convolution of two arrays?
Problem description
I am trying to obtain the finite convolution of two functions f(x), g(x) defined by
To achieve this, I have taken discrete samples of the functions and turned them into arrays of length steps:
xarray = [x * i / steps for i in range(steps)]
farray = [f(x) for x in xarray]
garray = [g(x) for x in xarray]
I then tried to calculate the convolution using the scipy.signal.convolve function. This function gives the same results as the algorithm conv suggested here. However, the results differ considerably from analytical solutions. Modifying the algorithm conv to use the trapezoidal rule gives the desired results.
To illustrate this, I let
f(x) = exp(-x)
g(x) = 2 * exp(-2 * x)
the results are:
Here Riemann represents a simple Riemann sum, trapezoidal is a modified version of the Riemann algorithm to use the trapezoidal rule, scipy.signal.convolve is the scipy function and analytical is the analytical convolution.
Now let g(x) = x^2 * exp(-x) and the results become:
Here 'ratio' is the ratio of the values obtained from scipy to the analytical values. The above demonstrates that the problem cannot be solved by renormalising the integral.
The question
Is it possible to use the speed of scipy but retain the better results of a trapezoidal rule or do I have to write a C extension to achieve the desired results?
An example
Just copy and paste the code below to see the problem I am encountering. The two results can be brought to closer agreement by increasing the steps variable. I believe that the problem is due to artefacts from right hand Riemann sums because the integral is overestimated when it is increasing and approaches the analytical solution again as it is decreasing.
EDIT: I have now included the original algorithm 2 as a comparison which gives the same results as the scipy.signal.convolve function.
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt
import math
def convolveoriginal(x, y):
'''
The original algorithm from http://www.physics.rutgers.edu/~masud/computing/WPark_recipes_in_python.html.
'''
P, Q, N = len(x), len(y), len(x) + len(y) - 1
z = []
for k in range(N):
t, lower, upper = 0, max(0, k - (Q - 1)), min(P - 1, k)
for i in range(lower, upper + 1):
t = t + x[i] * y[k - i]
z.append(t)
return np.array(z) #Modified to include conversion to numpy array
def convolve(y1, y2, dx = None):
'''
Compute the finite convolution of two signals of equal length.
#param y1: First signal.
#param y2: Second signal.
#param dx: [optional] Integration step width.
#note: Based on the algorithm at http://www.physics.rutgers.edu/~masud/computing/WPark_recipes_in_python.html.
'''
P = len(y1) #Determine the length of the signal
z = [] #Create a list of convolution values
for k in range(P):
t = 0
lower = max(0, k - (P - 1))
upper = min(P - 1, k)
for i in range(lower, upper):
t += (y1[i] * y2[k - i] + y1[i + 1] * y2[k - (i + 1)]) / 2
z.append(t)
z = np.array(z) #Convert to a numpy array
if dx != None: #Is a step width specified?
z *= dx
return z
steps = 50 #Number of integration steps
maxtime = 5 #Maximum time
dt = float(maxtime) / steps #Obtain the width of a time step
time = [dt * i for i in range (steps)] #Create an array of times
exp1 = [math.exp(-t) for t in time] #Create an array of function values
exp2 = [2 * math.exp(-2 * t) for t in time]
#Calculate the analytical expression
analytical = [2 * math.exp(-2 * t) * (-1 + math.exp(t)) for t in time]
#Calculate the trapezoidal convolution
trapezoidal = convolve(exp1, exp2, dt)
#Calculate the scipy convolution
sci = signal.convolve(exp1, exp2, mode = 'full')
#Slice the first half to obtain the causal convolution and multiply by dt
#to account for the step width
sci = sci[0:steps] * dt
#Calculate the convolution using the original Riemann sum algorithm
riemann = convolveoriginal(exp1, exp2)
riemann = riemann[0:steps] * dt
#Plot
plt.plot(time, analytical, label = 'analytical')
plt.plot(time, trapezoidal, 'o', label = 'trapezoidal')
plt.plot(time, riemann, 'o', label = 'Riemann')
plt.plot(time, sci, '.', label = 'scipy.signal.convolve')
plt.legend()
plt.show()
Thank you for your time!
or, for those who prefer numpy to C. It will be slower than the C implementation, but it's just a few lines.
>>> t = np.linspace(0, maxtime-dt, 50)
>>> fx = np.exp(-np.array(t))
>>> gx = 2*np.exp(-2*np.array(t))
>>> analytical = 2 * np.exp(-2 * t) * (-1 + np.exp(t))
this looks like trapezoidal in this case (but I didn't check the math)
>>> s2a = signal.convolve(fx[1:], gx, 'full')*dt
>>> s2b = signal.convolve(fx, gx[1:], 'full')*dt
>>> s = (s2a+s2b)/2
>>> s[:10]
array([ 0.17235682, 0.29706872, 0.38433313, 0.44235042, 0.47770012,
0.49564748, 0.50039326, 0.49527721, 0.48294359, 0.46547582])
>>> analytical[:10]
array([ 0. , 0.17221333, 0.29682141, 0.38401317, 0.44198216,
0.47730244, 0.49523485, 0.49997668, 0.49486489, 0.48254154])
largest absolute error:
>>> np.max(np.abs(s[:len(analytical)-1] - analytical[1:]))
0.00041657780840698155
>>> np.argmax(np.abs(s[:len(analytical)-1] - analytical[1:]))
6
Short answer: Write it in C!
Long answer
Using the cookbook about numpy arrays I rewrote the trapezoidal convolution method in C. In order to use the C code one requires three files (https://gist.github.com/1626919)
The C code (performancemodule.c).
The setup file to build the code and make it callable from python (performancemodulesetup.py).
The python file that makes use of the C extension (performancetest.py)
The code should run upon downloading by doing the following
Adjust the include path in performancemodule.c.
Run the following
python performancemodulesetup.py build
python performancetest.py
You may have to copy the library file performancemodule.so or performancemodule.dll into the same directory as performancetest.py.
Results and performance
The results agree neatly with one another as shown below:
The performance of the C method is even better than scipy's convolve method. Running 10k convolutions with array length 50 requires
convolve (seconds, microseconds) 81 349969
scipy.signal.convolve (seconds, microseconds) 1 962599
convolve in C (seconds, microseconds) 0 87024
Thus, the C implementation is about 1000 times faster than the python implementation and a bit more than 20 times as fast as the scipy implementation (admittedly, the scipy implementation is more versatile).
EDIT: This does not solve the original question exactly but is sufficient for my purposes.

Categories