I have a table with 12 columns and want to select the items in the first column (qseqid) based on the second column (sseqid). Meaning that the second column (sseqid) is repeating with different values in the 11th and 12th columns, which areevalueandbitscore, respectively.
The ones that I would like to get are having the lowestevalueand the highestbitscore(whenevalues are the same, the rest of the columns can be ignored and the data is down below).
So, I have made a short code which uses the second columns as a key for the dictionary. I can get five different items from the second column with lists of qseqid+evalueandqseqid+bitscore.
Here is the code:
#!usr/bin/python
filename = "data.txt"
readfile = open(filename,"r")
d = dict()
for i in readfile.readlines():
i = i.strip()
i = i.split("\t")
d.setdefault(i[1], []).append([i[0],i[10]])
d.setdefault(i[1], []).append([i[0],i[11]])
for x in d:
print(x,d[x])
readfile.close()
But, I am struggling to get the qseqid with the lowest evalue and the highest bitscore for each sseqid.
Is there any good logic to solve the problem?
Thedata.txtfile (including the header row and with»representing tab characters)
qseqid»sseqid»pident»length»mismatch»gapopen»qstart»qend»sstart»send»evalue»bitscore
ACLA_022040»TBB»32.71»431»258»8»39»468»24»423»2.00E-76»240
ACLA_024600»TBB»80»435»87»0»1»435»1»435»0»729
ACLA_031860»TBB»39.74»453»251»3»1»447»1»437»1.00E-121»357
ACLA_046030»TBB»75.81»434»105»0»1»434»1»434»0»704
ACLA_072490»TBB»41.7»446»245»3»4»447»3»435»2.00E-120»353
ACLA_010400»EF1A»27.31»249»127»8»69»286»9»234»3.00E-13»61.6
ACLA_015630»EF1A»22»491»255»17»186»602»3»439»8.00E-19»78.2
ACLA_016510»EF1A»26.23»122»61»4»21»127»9»116»2.00E-08»46.2
ACLA_023300»EF1A»29.31»447»249»12»48»437»3»439»2.00E-45»155
ACLA_028450»EF1A»85.55»443»63»1»1»443»1»442»0»801
ACLA_074730»CALM»23.13»147»101»4»6»143»2»145»7.00E-08»41.2
ACLA_096170»CALM»29.33»150»96»4»34»179»2»145»1.00E-13»55.1
ACLA_016630»CALM»23.9»159»106»5»58»216»4»147»5.00E-12»51.2
ACLA_031930»RPB2»36.87»1226»633»24»121»1237»26»1219»0»734
ACLA_065630»RPB2»65.79»1257»386»14»1»1252»4»1221»0»1691
ACLA_082370»RPB2»27.69»1228»667»37»31»1132»35»1167»7.00E-110»365
ACLA_061960»ACT»28.57»147»95»5»146»284»69»213»3.00E-12»57.4
ACLA_068200»ACT»28.73»463»231»13»16»471»4»374»1.00E-53»176
ACLA_069960»ACT»24.11»141»97»4»581»718»242»375»9.00E-09»46.2
ACLA_095800»ACT»91.73»375»31»0»1»375»1»375»0»732
And here's a little more readable version of the table's contents:
0 1 2 3 4 5 6 7 8 9 10 11
qseqid sseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore
ACLA_022040 TBB 32.71 431 258 8 39 468 24 423 2.00E-76 240
ACLA_024600 TBB 80 435 87 0 1 435 1 435 0 729
ACLA_031860 TBB 39.74 453 251 3 1 447 1 437 1.00E-121 357
ACLA_046030 TBB 75.81 434 105 0 1 434 1 434 0 704
ACLA_072490 TBB 41.7 446 245 3 4 447 3 435 2.00E-120 353
ACLA_010400 EF1A 27.31 249 127 8 69 286 9 234 3.00E-13 61.6
ACLA_015630 EF1A 22 491 255 17 186 602 3 439 8.00E-19 78.2
ACLA_016510 EF1A 26.23 122 61 4 21 127 9 116 2.00E-08 46.2
ACLA_023300 EF1A 29.31 447 249 12 48 437 3 439 2.00E-45 155
ACLA_028450 EF1A 85.55 443 63 1 1 443 1 442 0 801
ACLA_074730 CALM 23.13 147 101 4 6 143 2 145 7.00E-08 41.2
ACLA_096170 CALM 29.33 150 96 4 34 179 2 145 1.00E-13 55.1
ACLA_016630 CALM 23.9 159 106 5 58 216 4 147 5.00E-12 51.2
ACLA_031930 RPB2 36.87 1226 633 24 121 1237 26 1219 0 734
ACLA_065630 RPB2 65.79 1257 386 14 1 1252 4 1221 0 1691
ACLA_082370 RPB2 27.69 1228 667 37 31 1132 35 1167 7.00E-110 365
ACLA_061960 ACT 28.57 147 95 5 146 284 69 213 3.00E-12 57.4
ACLA_068200 ACT 28.73 463 231 13 16 471 4 374 1.00E-53 176
ACLA_069960 ACT 24.11 141 97 4 581 718 242 375 9.00E-09 46.2
ACLA_095800 ACT 91.73 375 31 0 1 375 1 375 0 732
Since you're a Python newbie I'm glad that there are several examples of how to this manually, but for comparison I'll show how it can be done using the pandas library which makes working with tabular data much simpler.
Since you didn't provide example output, I'm assuming that by "with the lowest evalue and the highest bitscore for each sseqid" you mean "the highest bitscore among the lowest evalues" for a given sseqid; if you want those separately, that's trivial too.
import pandas as pd
df = pd.read_csv("acla1.dat", sep="\t")
df = df.sort(["evalue", "bitscore"],ascending=[True, False])
df_new = df.groupby("sseqid", as_index=False).first()
which produces
>>> df_new
sseqid qseqid pident length mismatch gapopen qstart qend sstart send evalue bitscore
0 ACT ACLA_095800 91.73 375 31 0 1 375 1 375 0.000000e+00 732.0
1 CALM ACLA_096170 29.33 150 96 4 34 179 2 145 1.000000e-13 55.1
2 EF1A ACLA_028450 85.55 443 63 1 1 443 1 442 0.000000e+00 801.0
3 RPB2 ACLA_065630 65.79 1257 386 14 1 1252 4 1221 0.000000e+00 1691.0
4 TBB ACLA_024600 80.00 435 87 0 1 435 1 435 0.000000e+00 729.0
Basically, first we read the data file into an object called a DataFrame, which is kind of like an Excel worksheet. Then we sort by evalue ascending (so that lower evalues come first) and by bitscore descending (so that higher bitscores come first). Then we can use groupby to collect the data in groups of equal sseqid, and take the first one in each group, which because of the sorting will be the one we want.
#!usr/bin/python
import csv
DATA = "data.txt"
class Sequence:
def __init__(self, row):
self.qseqid = row[0]
self.sseqid = row[1]
self.pident = float(row[2])
self.length = int(row[3])
self.mismatch = int(row[4])
self.gapopen = int(row[5])
self.qstart = int(row[6])
self.qend = int(row[7])
self.sstart = int(row[8])
self.send = int(row[9])
self.evalue = float(row[10])
self.bitscore = float(row[11])
def __str__(self):
return (
"{qseqid}\t"
"{sseqid}\t"
"{pident}\t"
"{length}\t"
"{mismatch}\t"
"{gapopen}\t"
"{qstart}\t"
"{qend}\t"
"{sstart}\t"
"{send}\t"
"{evalue}\t"
"{bitscore}"
).format(**self.__dict__)
def entries(fname, header_rows=1, dtype=list, **kwargs):
with open(fname) as inf:
incsv = csv.reader(inf, **kwargs)
# skip header rows
for i in range(header_rows):
next(incsv)
for row in incsv:
yield dtype(row)
def main():
bestseq = {}
for seq in entries(DATA, dtype=Sequence, delimiter="\t"):
# see if a sequence with the same sseqid already exists
prev = bestseq.get(seq.sseqid, None)
if (
prev is None
or seq.evalue < prev.evalue
or (seq.evalue == prev.evalue and seq.bitscore > prev.bitscore)
):
bestseq[seq.sseqid] = seq
# display selected sequences
keys = sorted(bestseq)
for key in keys:
print(bestseq[key])
if __name__ == "__main__":
main()
which results in
ACLA_095800 ACT 91.73 375 31 0 1 375 1 375 0.0 732.0
ACLA_096170 CALM 29.33 150 96 4 34 179 2 145 1e-13 55.1
ACLA_028450 EF1A 85.55 443 63 1 1 443 1 442 0.0 801.0
ACLA_065630 RPB2 65.79 1257 386 14 1 1252 4 1221 0.0 1691.0
ACLA_024600 TBB 80.0 435 87 0 1 435 1 435 0.0 729.0
While not nearly as elegant and concise as using thepandaslibrary, it's quite possible to do what you want without resorting to third-party modules. The following uses thecollections.defaultdictclass to facilitate creation of dictionaries of variable-length lists of records. The use of theAttrDictclass is optional, but it makes accessing the fields of each dictionary-based records easier and is less awkward-looking than the usualdict['fieldname']syntax otherwise required.
import csv
from collections import defaultdict, namedtuple
from itertools import imap
from operator import itemgetter
data_file_name = 'data.txt'
DELIMITER = '\t'
ssqeid_dict = defaultdict(list)
# from http://stackoverflow.com/a/1144405/355230
def multikeysort(items, columns):
comparers = [((itemgetter(col[1:].strip()), -1) if col.startswith('-') else
(itemgetter(col.strip()), 1)) for col in columns]
def comparer(left, right):
for fn, mult in comparers:
result = cmp(fn(left), fn(right))
if result:
return mult * result
else:
return 0
return sorted(items, cmp=comparer)
# from http://stackoverflow.com/a/15109345/355230
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
with open(data_file_name, 'rb') as data_file:
reader = csv.DictReader(data_file, delimiter=DELIMITER)
format_spec = '\t'.join([('{%s}' % field) for field in reader.fieldnames])
for rec in (AttrDict(r) for r in reader):
# Convert the two sort fields to numeric values for proper ordering.
rec.evalue, rec.bitscore = map(float, (rec.evalue, rec.bitscore))
ssqeid_dict[rec.sseqid].append(rec)
for ssqeid in sorted(ssqeid_dict):
# Sort each group of recs with same ssqeid. The first record after sorting
# will be the one sought that has the lowest evalue and highest bitscore.
selected = multikeysort(ssqeid_dict[ssqeid], ['evalue', '-bitscore'])[0]
print format_spec.format(**selected)
Output (»represents tabs):
ACLA_095800» ACT» 91.73» 375» 31» 0» 1» 375» 1» 375» 0.0» 732.0
ACLA_096170» CALM» 29.33» 150» 96» 4» 34» 179» 2» 145» 1e-13» 55.1
ACLA_028450» EF1A» 85.55» 443» 63» 1» 1» 443» 1» 442» 0.0» 801.0
ACLA_065630» RPB2» 65.79» 1257» 386» 14» 1» 1252» 4» 1221» 0.0» 1691.0
ACLA_024600» TBB» 80» 435» 87» 0» 1» 435» 1» 435» 0.0» 729.0
filename = 'data.txt'
readfile = open(filename,'r')
d = dict()
sseqid=[]
lines=[]
for i in readfile.readlines():
sseqid.append(i.rsplit()[1])
lines.append(i.rsplit())
sorted_sseqid = sorted(set(sseqid))
sdqDict={}
key =None
for sorted_ssqd in sorted_sseqid:
key=sorted_ssqd
evalue=[]
bitscore=[]
qseid=[]
for line in lines:
if key in line:
evalue.append(line[10])
bitscore.append(line[11])
qseid.append(line[0])
sdqDict[key]=[qseid,evalue,bitscore]
print sdqDict
print 'TBB LOWEST EVALUE' + '---->' + min(sdqDict['TBB'][1])
##I think you can do the list manipulation below to find out the qseqid
readfile.close()
Related
I have a dataframe with multiple columns with numerical values. I wanted to new columns which compare the values of other columns and assign its column name as label. I already understood its logic in r, but wondering how should I do this easily in python. Can anyone point me out how this can be done in python when we try to add new column where need to compare value of multiple columns and assign column name which has max value? Any idea?
reproducible example
this is 100% working reproducible example in R:
library(data.table)
df <- data.frame(a = sample(seq(1:10), size=10), b = sample(LETTERS[1:10], size=10), cnt=sample(seq(1:100), size=5),
RECENT_MOV= sample(seq(1:1000), size = 10),
RETIRED= sample(seq(1:200), size = 10),
SERV_EMPL= sample(seq(1:500), size = 10),
SUB_BUS=sample(seq(1:2000), size = 10),
WORK_HOME=sample(seq(1:1200), size = 10)
)
dt <- as.data.table(df)
write.csv(dt, "sample.csv")
label = c("RECENT_MOV", "RETIRED", "SERV_EMPL", "SUB_BUS","WORK_HOME")
df$category <- NA_character_
df[, row_ind:= 1:nrow(df)]
df[cnt > 2, category := names(which.max(.SD[, label, with = FALSE])), by = row_ind]
current output is:
> dput(dt)
structure(list(a = c(5L, 10L, 1L, 6L, 7L, 3L, 2L, 8L, 4L, 9L),
b = c("E", "A", "D", "H", "J", "F", "G", "I", "C", "B"),
cnt = c(13L, 88L, 45L, 92L, 70L, 13L, 88L, 45L, 92L, 70L),
RECENT_MOV = c(70L, 195L, 620L, 572L, 354L, 648L, 798L, 657L,
233L, 672L), RETIRED = c(189L, 195L, 191L, 88L, 148L, 186L,
39L, 78L, 158L, 55L), SERV_EMPL = c(65L, 151L, 415L, 383L,
255L, 207L, 210L, 470L, 181L, 188L), SUB_BUS = c(894L, 829L,
1798L, 502L, 897L, 1461L, 744L, 1991L, 260L, 1697L), WORK_HOME = c(553L,
739L, 454L, 137L, 435L, 1042L, 316L, 697L, 517L, 1158L),
category = c("SUB_BUS", "SUB_BUS", "SUB_BUS", "RECENT_MOV",
"SUB_BUS", "SUB_BUS", "RECENT_MOV", "SUB_BUS", "WORK_HOME",
"SUB_BUS"), row_ind = 1:10), row.names = c(NA, -10L), class = c("data.table",
"data.frame"), .internal.selfref = <pointer: 0x0000015a64b61ef0>)
my current python attempt
import pandas as pd
df=pd.read_csv("sample.csv", index_col=None, header=0)
label = ["RECENT_MOV", "RETIRED", "SERV_EMPL", "SUB_BUS","WORK_HOME"]
df['category'] = pd.NA
df['row_ind'] = range(1,len(df))
however, I have trouble to make this line in pythonic way:
df[cnt > 2, category := names(which.max(.SD[, label, with = FALSE])), by = row_ind]
basically, this lines said create new column variable called category where comparing columns in label where whichever column has max value, its column name will be assigned as value in category column. How should I do it this easily in python?
logic translation:
df[cnt > 2, category := names(which.max(.SD[, label, with = FALSE])), by = row_ind]
this line telling us that first do filter by cnt column where cnt > 2, then compare columns values of df[["RECENT_MOV", "RETIRED", "SERV_EMPL", "SUB_BUS","WORK_HOME"]] and pick the column with highest value by row-wise and assign that name of that column as value to df['category']=col_name_with_highest_value_in_each_row.
desirable output
this is desirable output that I want to produce in python:
a b cnt RECENT_MOV RETIRED SERV_EMPL SUB_BUS WORK_HOME category row_ind
1 5 E 13 70 189 65 894 553 SUB_BUS 1
2 10 A 88 195 195 151 829 739 SUB_BUS 2
3 1 D 45 620 191 415 1798 454 SUB_BUS 3
4 6 H 92 572 88 383 502 137 RECENT_MOV 4
5 7 J 70 354 148 255 897 435 SUB_BUS 5
6 3 F 13 648 186 207 1461 1042 SUB_BUS 6
7 2 G 88 798 39 210 744 316 RECENT_MOV 7
8 8 I 45 657 78 470 1991 697 SUB_BUS 8
9 4 C 92 233 158 181 260 517 WORK_HOME 9
10 9 B 70 672 55 188 1697 1158 SUB_BUS 10
This is actually really simple with pandas. Have a list of the columns to search in, and then use idxmax with axis=1:
# Filter out rows where `cnt` is less than or equal to 2
df = df[df['cnt'] > 2]
# Determine category for each row
search_cols = ['RECENT_MOV', 'RETIRED', 'SERV_EMPL', 'SUB_BUS', 'WORK_HOME']
df['category'] = df[search_cols].idxmax(axis=1)
# Assign row indexes
df['row_ind'] = df.index
Output:
>>> df
a b cnt RECENT_MOV RETIRED SERV_EMPL SUB_BUS WORK_HOME category row_ind
1 1 C 76 452 62 55 115 247 RECENT_MOV 1
2 7 E 14 50 165 337 1165 810 SUB_BUS 2
3 2 A 46 523 167 423 784 707 SUB_BUS 3
4 3 H 3 38 144 473 745 437 SUB_BUS 4
5 5 I 59 743 127 261 351 190 RECENT_MOV 5
6 8 J 76 143 49 470 1612 935 SUB_BUS 6
7 4 D 14 818 101 418 1919 314 SUB_BUS 7
8 6 F 46 714 9 446 1432 938 SUB_BUS 8
9 10 B 3 585 160 14 107 489 RECENT_MOV 9
10 9 G 59 814 73 449 937 287 SUB_BUS 10
Given two lists V1 and V2 of sizes n and m respectively. Return the list of elements common to both the lists and return the list in sorted order. Duplicates may be there in the output list.
Link to the problem : LINK
Example:
Input:
5
3 4 2 2 4
4
3 2 2 7
Output:
2 2 3
Explanation:
The first list is {3 4 2 2 4}, and the second list is {3 2 2 7}.
The common elements in sorted order are {2 2 3}
Expected Time complexity : O(N)
My code:
class Solution:
def common_element(self,v1,v2):
dict1 = {}
ans = []
for num1 in v1:
dict1[num1] = 0
for num2 in v2:
if num2 in dict1:
ans.append(num2)
return sorted(ans)
Problem with my code:
So the accessing time in a dictionary is constant and hence my time complexity was reduced but one of the hidden test cases is failing and my logic is very simple and straight forward and everything seems to be on point. What's your take? Is the logic wrong or the question desc is missing some vital details?
New Approach
Now I am generating two hashmaps/dictionaries for the two arrays. If a num is present in another array, we check the min frequency and then appending that num into the ans that many times.
class Solution:
def common_element(self,arr1,arr2):
dict1 = {}
dict2 = {}
ans = []
for num1 in arr1:
dict1[num1] = 0
for num1 in arr1:
dict1[num1] += 1
for num2 in arr2:
dict2[num2] = 0
for num2 in arr2:
dict2[num2] += 1
for number in dict1:
if number in dict2:
minFreq = min(dict1[number],dict2[number])
for _ in range(minFreq):
ans.append(number)
return sorted(ans)
The code is outputting nothing for this test case
Input:
64920
83454 38720 96164 26694 34159 26694 51732 64378 41604 13682 82725 82237 41850 26501 29460 57055 10851 58745 22405 37332 68806 65956 24444 97310 72883 33190 88996 42918 56060 73526 33825 8241 37300 46719 45367 1116 79566 75831 14760 95648 49875 66341 39691 56110 83764 67379 83210 31115 10030 90456 33607 62065 41831 65110 34633 81943 45048 92837 54415 29171 63497 10714 37685 68717 58156 51743 64900 85997 24597 73904 10421 41880 41826 40845 31548 14259 11134 16392 58525 3128 85059 29188 13812.................
Its Correct output is:
4 6 9 14 17 19 21 26 28 32 33 42 45 54 61 64 67 72 77 86 93 108 113 115 115 124 129 133 135 137 138 141 142 144 148 151 154 160 167 173 174 192 193 195 198 202 205 209 215 219 220 221 231 231 233 235 236 238 239 241 245 246 246 247 254 255 257 262 277 283 286 290 294 298 305 305 307 309 311 312 316 319 321 323 325 325 326 329 329 335 338 340 341 350 353 355 358 364 367 369 378 385 387 391 401 404 405 406 406 410 413 416 417 421 434 435 443 449 452 455 456 459 460 460 466 467 469 473 482 496 503 .................
And Your Code's output is:
Please find the below solution
def sorted_common_elemen(v1, v2):
res = []
for elem in v2:
res.append(elem)
v1.pop(0)
return sorted(res)
Your code ignores the number of times a given element occurs in the list. I think this is a good way to fix that:
class Solution:
def common_element(self, l0, l1):
li = []
for i in l0:
if i in l1:
l1.remove(i)
li.append(i)
return sorted(li)
I have a dataframe, from where I extracted some sample data:
Time Val
0 70000 -322
1 70500 -439
2 71000 -528
3 71500 -606
4 72000 -642
5 72500 -663
6 73000 -620
7 73500 -561
8 74000 -592
9 74500 -614
10 75000 -630
11 75500 -719
12 80000 -613
13 80500 -127
14 81000 -235
15 81500 -186
16 82000 -82
17 82500 836
18 83000 1137
183 70000 -106
184 70500 -117
185 71000 -626
186 71500 -810
187 72000 -822
188 72500 -676
189 73000 -639
190 73500 -664
191 74000 -708
192 74500 -515
193 75000 -61
194 75500 -121
195 80000 -145
196 80500 -57
197 81000 -133
198 81500 101
199 82000 235
200 82500 585
201 83000 550
366 70000 18
367 70500 138
368 71000 22
369 71500 -68
370 72000 -146
371 72500 -163
372 73000 -251
373 73500 -230
374 74000 -218
375 74500 -137
376 75000 -126
Now I would like to compare the value from 'Val' at time 73000 with the value [i-3].
If the value is less, then append the continuous values to the list until Time has reached 80000.
I wrote this loop but the problem is that 'Val' compares ALL values [i-3] between 73000 and 80000. I want that the comparison happens ONLY at 73000, and if the condition is true, write the data to the list (until Time 80000)
box = []
for i in df.index:
if df.Time[i] >= 73000 and df.Time[i] <= 80000 and df.Val[i] < df.Val[i-3]:
box.append(
{
'Time': df.Time[i],
'newVAL': df.Val[i],
}
)
box = pd.DataFrame (box, columns = ['Time','newVAL'])
How could I change the code in order to achieve this?
You need to remember the result of the comparison in another variable, and reset it whenever you encounter a time value outside your desired interval. The code would look like this.
box = []
writeToList = False
for i in df.index:
if df.Time[i] < 73000 or df.Time[i] > 80000:
writeToList = False
if df.Time[i] == 73000 and df.Val[i] < df.Val[i-3]:
writeToList = True
if writeToList and df.Time[i] >= 73000 and df.Time[i] <= 80000 :
box.append(
{
'Time': df.Time[i],
'newVAL': df.Val[i],
}
)
box = pd.DataFrame (box, columns = ['Time','newVAL'])
Hope this helps.
I have an input file as shown below which needs to be arranged in such an order that the key values need to be in ascending order, while the keys which are not present need to be printed in the last.
I am getting the data arranged in the required format but the order is missing.
I have tried using sort() method but it shows "list has no attribute sort".
Please suggest solution and also suggest if any modifications required.
Input file:
3=1388|4=1388|5=IBM|8=157.75|9=88929|1021=1500|854=n|388=157.75|394=157.75|474=157.75|1584=88929|444=20160713|459=93000546718000|461=7|55=93000552181000|22=89020|400=157.75|361=0.73|981=0|16=1468416600.6006|18=1468416600.6006|362=0.46
3=1388|4=1388|5=IBM|8=157.73|9=100|1021=0|854=p|394=157.73|474=157.749977558|1584=89029|444=20160713|459=93001362639104|461=26142|55=93001362849000|22=89120|361=0.71|981=0|16=1468416601.372|18=1468416601.372|362=0.45
3=1388|4=1388|5=IBM|8=157.69|9=100|1021=600|854=p|394=157.69|474=157.749910415|1584=89129|444=20160713|459=93004178882560|461=27052|55=93004179085000|22=89328|361=0.67|981=1|16=1468416604.1916|18=1468416604.1916|362=0.43
Code i tried:
import pandas as pd
import numpy as np
df = pd.read_csv('inputfile', index_col=None, names=['text'])
s = df.text.str.split('|')
ds = [dict(w.split('=', 1) for w in x) for x in s]
p = pd.DataFrame.from_records(ds)
p1 = p.replace(np.nan,'n/a', regex=True)
st = p1.stack(level=0,dropna=False)
dfs = [g for i,g in st.groupby(level=0)]
#print st
i = 0
while i < len(dfs):
#index of each column
print ('\nindex[%d]'%i)
for (_,k),v in dfs[i].iteritems():
print k,'\t',v
i = i + 1
output getting:
index[0]
1021 1500
1584 88929
16 1468416600.6006
18 1468416600.6006
22 89020
3 1388
361 0.73
362 0.46
388 157.75
394 157.75
4 1388
400 157.75
444 20160713
459 93000546718000
461 7
474 157.75
5 IBM
55 93000552181000
8 157.75
854 n
9 88929
981 0
index[1]
1021 0
1584 89029
16 1468416601.372
18 1468416601.372
22 89120
3 1388
361 0.71
362 0.45
388 n/a
394 157.73
4 1388
400 n/a
444 20160713
459 93001362639104
461 26142
474 157.749977558
5 IBM
55 93001362849000
8 157.73
854 p
9 100
981 0
Expected output:
index[0]
3 1388
4 1388
5 IBM
8 157.75
9 88929
16 1468416600.6006
18 1468416600.6006
22 89020
55 93000552181000
361 0.73
362 0.46
388 157.75
394 157.75
400 157.75
444 20160713
459 93000546718000
461 7
474 157.75
854 n
981 0
1021 1500
1584 88929
index[1]
3 1388
4 1388
5 IBM
8 157.75
9 88929
16 1468416600.6006
18 1468416600.6006
22 89020
55 93000552181000
361 0.73
362 0.46
394 157.75
444 20160713
459 93000546718000
461 7
474 157.75
854 n
981 0
1021 1500
1584 88929
388 n/a
400 n/a
Replace your ds line with
ds = [{int(pair[0]): pair[1] for pair in [w.split('=', 1) for w in x]} for x in s]
To convert the index to an integer so it will be sorted numerically
To output the n/a values at the end, you could use the pandas selection to output the nonnull values first, then the null values, e.g:
for (ix, series) in p.iterrows():
print('\nindex[%d]' % ix)
output_series(ix, series[pd.notnull])
output_series(ix, series[pd.isnull].fillna('n/a'))
btw, you can also simplify your stack, groupby, print to:
for (ix, series) in p1.iterrows():
print('\nindex[%d]' % ix)
for tag, value in series.iteritems():
print(tag, '\t', value)
So the whole script becomes:
def output_series(ix, series):
for tag, value in series.iteritems():
print(tag, '\t', value)
df = pd.read_csv('inputfile', index_col=None, names=['text'])
s = df.text.str.split('|')
ds = [{int(pair[0]): pair[1] for pair in [w.split('=', 1) for w in x]} for x in s]
p = pd.DataFrame.from_records(ds)
for (ix, series) in p.iterrows():
print('\nindex[%d]' % ix)
output_series(ix, series[pd.notnull])
output_series(ix, series[pd.isnull].fillna('n/a'))
Here:
import pandas as pd
import numpy as np
df = pd.read_csv('inputfile', index_col=None, names=['text'])
s = df.text.str.split('|')
ds = [dict(w.split('=', 1) for w in x) for x in s]
p1 = pd.DataFrame.from_records(ds).fillna('n/a')
st = p1.stack(level=0,dropna=False)
for k, v in st.groupby(level=0):
print(k, v.sort_index())
Problem:
I'm trying to two relatively small datasets together, but the merge raises a MemoryError. I have two datasets of aggregates of country trade data, that I'm trying to merge on the keys year and country, so the data needs to be particularity placed. This unfortunately makes the use of concat and its performance benefits impossible as seen in the answer to this question: MemoryError on large merges with pandas in Python.
Here's the setup:
The attempted merge:
df = merge(df, i, left_on=['year', 'ComTrade_CC'], right_on=["Year","Partner Code"])
Basic data structure:
i:
Year Reporter_Code Trade_Flow_Code Partner_Code Classification Commodity Code Quantity Unit Code Supplementary Quantity Netweight (kg) Value Estimation Code
0 2003 381 2 36 H2 070951 8 1274 1274 13810 0
1 2003 381 2 36 H2 070930 8 17150 17150 30626 0
2 2003 381 2 36 H2 0709 8 20493 20493 635840 0
3 2003 381 1 36 H2 0507 8 5200 5200 27619 0
4 2003 381 1 36 H2 050400 8 56439 56439 683104 0
df:
mporter cod CC ComTrade_CC Distance_miles
0 110 215 215 757 428.989
1 110 215 215 757 428.989
2 110 215 215 757 428.989
3 110 215 215 757 428.989
4 110 215 215 757 428.989
Error Traceback:
MemoryError Traceback (most recent call last)
<ipython-input-10-8d6e9fb45de6> in <module>()
1 for i in c_list:
----> 2 df = merge(df, i, left_on=['year', 'ComTrade_CC'], right_on=["Year","Partner Code"])
/usr/local/lib/python2.7/dist-packages/pandas-0.12.0rc1_309_g9fc8636-py2.7-linux-x86_64.egg/pandas/tools/merge.pyc in merge(left, right, how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy)
36 right_index=right_index, sort=sort, suffixes=suffixes,
37 copy=copy)
---> 38 return op.get_result()
39 if __debug__:
40 merge.__doc__ = _merge_doc % '\nleft : DataFrame'
/usr/local/lib/python2.7/dist-packages/pandas-0.12.0rc1_309_g9fc8636-py2.7-linux-x86_64.egg/pandas/tools/merge.pyc in get_result(self)
193 copy=self.copy)
194
--> 195 result_data = join_op.get_result()
196 result = DataFrame(result_data)
197
/usr/local/lib/python2.7/dist-packages/pandas-0.12.0rc1_309_g9fc8636-py2.7-linux-x86_64.egg/pandas/tools/merge.pyc in get_result(self)
693 if klass in mapping:
694 klass_blocks.extend((unit, b) for b in mapping[klass])
--> 695 res_blk = self._get_merged_block(klass_blocks)
696
697 # if we have a unique result index, need to clear the _ref_locs
/usr/local/lib/python2.7/dist-packages/pandas-0.12.0rc1_309_g9fc8636-py2.7-linux-x86_64.egg/pandas/tools/merge.pyc in _get_merged_block(self, to_merge)
706 def _get_merged_block(self, to_merge):
707 if len(to_merge) > 1:
--> 708 return self._merge_blocks(to_merge)
709 else:
710 unit, block = to_merge[0]
/usr/local/lib/python2.7/dist-packages/pandas-0.12.0rc1_309_g9fc8636-py2.7-linux-x86_64.egg/pandas/tools/merge.pyc in _merge_blocks(self, merge_chunks)
728 # Should use Fortran order??
729 block_dtype = _get_block_dtype([x[1] for x in merge_chunks])
--> 730 out = np.empty(out_shape, dtype=block_dtype)
731
732 sofar = 0
MemoryError:
Thanks for your thoughts!
In case anyone coming across this question still has similar trouble with merge, you can probably get concat to work by renaming the relevant columns in the two dataframes to the same names, setting them as a MultiIndex (i.e. df = dv.set_index(['A','B'])), and then using concat to join them.
UPDATE
Example:
df1 = pd.DataFrame({'A':[1, 2], 'B':[2, 3], 'C':[3, 4]})
df2 = pd.DataFrame({'A':[1, 2], 'B':[2, 3], 'D':[7, 8]})
both = pd.concat([df1.set_index(['A','B']), df2.set_index(['A','B'])], axis=1).reset_index()
df1
A B C
0 1 2 3
1 2 3 4
df2
A B D
0 1 2 7
1 2 3 8
both
A B C D
0 1 2 3 7
1 2 3 4 8
I haven't benchmarked the performance of this approach, but it didn't get the memory error and worked for my applications.