so I am basically not allowed to use any import or other libraries like pandas or groupby.
and I have to categorize the data and sum up the corresponding values. The data is in the csv file.
For example,
**S** C **T**
A T 100
A. B 102
A. T. 200
A B. 100
C T 203
C. T. 200
C B 200
C T 200
C. B 200
my expected result should be
S C T
A T 300
A B. 202
C T 403
C B. 200
C T. 200
C B. 200
Considering that you have a csv file (i.e., columns split by comma):
with open('myfile.csv', 'r') as file:
header = file.readline().rstrip()
data = {}
for row in file:
state, candidate, value = row.split(',')
k, value = (state, candidate), int(value)
data[k] = data.get(k, 0) + value
result_csv = '\n'.join([header] + [f"{','.join(k)},{v}" for k,v in data.items()])
print(result_csv)
Output:
state,candidate,total votes
Alaska,Trump,300
Alaska,Biden,202
colorado,Trump,403
colorado,Biden,200
California,Trump,200
California,Biden,200
Original content of myfile.csv is (use str.replace if necessary):
state,candidate,total votes
Alaska,Trump,100
Alaska,Biden,102
Alaska,Trump,200
Alaska,Biden,100
colorado,Trump,203
colorado,Trump,200
colorado,Biden,200
California,Trump,200
California,Biden,200
mylist = []
with open("data", "r") as msg:
for line in msg:
mylist.append(line.strip().replace(".",""))
msg.close()
headers = mylist[0].replace("*","").split()
del mylist[0]
headers[2] = headers[2]+" "+headers[3]
mydict = {}
for line in mylist:
state = line.split()[0]
mydict[state] = {}
for line in mylist:
state = line.split()[0]
candidate = line.split()[1]
mydict[state][candidate] = 0
for line in mylist:
state = line.split()[0]
candidate = line.split()[1]
votes = line.split()[2]
mydict[state][candidate] = mydict[state][candidate] + int(votes)
print ("%-15s %-15s %-15s \n\n" % (headers[0],headers[1],headers[2]))
for state in mydict.keys():
for candidate in mydict[state].keys():
print ("%-15s %-15s %-15s" % (state,candidate,str(mydict[state][candidate])))
Output:
state candidate total votes
Alaska Trump 300
Alaska Biden 202
colorado Trump 403
colorado Biden 200
California Trump 200
California Biden 200
I want to make relationship between values by their Name based on below rules:
1- I have a CSV file (with more than 100000 rows) that consists of lots of values, I shared some examples as below:
Name:
A02-father
A03-father
A04-father
A05-father
A07-father
A08-father
A09-father
A17-father
A18-father
A20-father
A02-SA-A03-SA
A02-SA-A04-SA
A03-SA-A02-SA
A03-SA-A05-SA
A03-SA-A17-SA
A04-SA-A02-SA
A04-SA-A09-SA
A05-SA-A03-SA
A09-SA-A04-SA
A09-SA-A20-SA
A17-SA-A03-SA
A17-SA-A18-SA
A18-SA-A17-SA
A20-SA-A09-SA
A05-NA
B02-Father
B04-Father
B06-Father
B02-SA-B04-SA
B04-SA-BO2-SA
B04-SA-B06-SA
B06-SA-B04-SA
B06-NA
2- Now I have another CSV file which let me know from which value I should start? in this case the value is
A03-father & B02-father & ... which dont have any influence on each other and they all have seperate path to go, so for each path we will start from mentioned start point.
father.csv
A03-father
B02-father
....
3- Based on the naming I want to make the relationships, As A03-Father has been determined as Father I should check for any value which has been started with A03.(All of them are A0's babies.)
Also as B02 is father, we will check for any value which starts with B02. (B02-SA-B04-SA)
4- Now If I find out A03-SA-A02-SA , this is A03's baby.
I find out A03-SA-A05-SA , this is A03's baby.
I find out A03-SA-A17-SA , this is A03's baby.
and after that I must check any node which starts with A02 & A05 & A17:
As you see A02-Father exists so it is Father and now we will search for any string which starts with A02 and doesn't have A03 which has been detected as Father(It must be ignored)
This must be checked till end of values which exist in the CSV file.
As you see I should check the path based on name (REGEX) and should go forward till end of path.
The expected result:
Father Baby
A03-father A03-SA-A02-SA
A03-father A03-SA-A05-SA
A03-father A03-SA-A17-SA
A02-father A02-SA-A04-SA
A05-father A05-NA
A17-father A17-SA-A18-SA
A04-father A04-SA-A09-SA
A02-father A02-SA-A04-SA
A09-father A09-SA-A20-SA
B02-father B02-SA-B04-SA
B04-father B04-SA-B06-SA
B06-father B06-NA
I have coded it as below with pandas:
import pandas as pd
import numpy as np
import re
#Read the file which consists of all Values
df = pd.read_csv("C:\\total.csv")
#Read the file which let me know who is father
Fa = pd.read_csv("C:\\Father.csv")
#Get the first part of Father which is A0
Fa['sub'] = Fa['Name'].str.extract(r'(\w+\s*)', expand=False)
r2 = []
#check in all the csv file and find anything which starts with A0 and is not Father
for f in Fa['sub']:
baby=(df[df['Name'].str.startswith(f) & ~df['Name'].str.contains('Father')])
baby['sub'] = bay['Name'].str.extract(r'(\w+\s*)', expand=False)
r1= pd.merge(Fa, baby, left_on='sub', right_on='sub',suffixes=('_f', '_c'))
r2.append(result1)
out_df = pd.concat(result2)
out_df= out_df.replace(np.nan, '', regex=True)
#find A0-N-A2-M and A0-N-A4-M
out_df.to_csv('C:\\child1.csv')
#check in all the csv file and find anything which starts with the second part of child1 which is A2 and A4
out_df["baby2"] = out_df['Name_baby'].str.extract(r'^(?:[^-]*-){2}\s*([^-]+)', expand=False)
baby3= out_df["baby2"]
r4 = []
for f in out_df["baby2"]:
#I want to exclude A0 which has been detected.
l = ['A0']
regstr = '|'.join(l)
baby1=(df[df['Name'].str.startswith(f) & ~df['Name'].str.contains(regstr)])
baby1['sub'] = baby1['Name'].str.extract(r'(\w+\s*)', expand=False)
r3= pd.merge(baby3, baby1, left_on='baby2', right_on='sub',suffixes=('_f', '_c'))
r4.append(r3)
out2_df = pd.concat(r4)
out2_df.to_csv('C:\\child2.csv')
I want to put below code in a loop and go through the file and check it, based on naming process and detect other fathers and babies till it finished. however this code is not customized and doesn't have the exact result as i expected.
my question is about how to make the loop?
I should go through the path and also consider regstr value for any string.
#check in all the csv file and find anything which starts with the second part of child1 which is A2 and A4
out_df["baby2"] = out_df['Name_baby'].str.extract(r'^(?:[^-]*-){2}\s*([^-]+)', expand=False)
baby3= out_df["baby2"]
r4 = []
for f in out_df["baby2"]:
#I want to exclude A0 which has been detected.
l = ['A0']
regstr = '|'.join(l)
baby1=(df[df['Name'].str.startswith(f) & ~df['Name'].str.contains(regstr)])
baby1['sub'] = baby1['Name'].str.extract(r'(\w+\s*)', expand=False)
r3= pd.merge(baby3, baby1, left_on='baby2', right_on='sub',suffixes=('_f', '_c'))
r4.append(r3)
out2_df = pd.concat(r4)
out2_df.to_csv('C:\\child2.csv')
Start with import collections (will be needed soon).
I assume that you have already read df and Fa DataFrames.
The first part of my code is to create children Series (index - parent,
value - child):
isFather = df.Name.str.contains('-father', case=False)
dfChildren = df[~isFather]
key = []; val = []
for fath in df[isFather].Name:
prefix = fath.split('-')[0]
for child in dfChildren[dfChildren.Name.str.startswith(prefix)].Name:
key.append(prefix)
val.append(child)
children = pd.Series(val, index=key)
Print children to see the result.
The second part is to create the actual result, starting from each
starting points in Fa:
nodes = collections.deque()
father = []; baby = [] # Containers for source data
# Loop for each starting point
for startNode in Fa.Name.str.split('-', expand=True)[0]:
nodes.append(startNode)
while nodes:
node = nodes.popleft() # Take node name from the queue
# Children of this node
myChildren = children[children.index == node]
# Process children (ind - father, val - child)
for ind, val in myChildren.items():
parts = val.split('-') # Parts of child name
# Child "actual" name (if exists)
val_2 = parts[2] if len(parts) >= 3 else ''
if val_2 not in father: # val_2 not "visited" before
# Add father / child name to containers
father.append(ind)
baby.append(val)
if len(val_2) > 0:
nodes.append(val_2) # Add to the queue, to be processe later
# Drop rows for "node" from "children" (if any exists)
if (children.index == node).sum() > 0:
children.drop(node, inplace=True)
# Convert to a DataFrame
result = pd.DataFrame({'Father': father, 'Baby': baby})
result.Father += '-father' # Add "-father" to "bare" names
I added -father with lower case "f", but I think this is not much
significant detail.
The result, for your data sample, is:
Father Baby
0 A03-father A03-SA-A02-SA
1 A03-father A03-SA-A05-SA
2 A03-father A03-SA-A17-SA
3 A02-father A02-SA-A04-SA
4 A05-father A05-NA
5 A17-father A17-SA-A18-SA
6 A04-father A04-SA-A09-SA
7 A09-father A09-SA-A20-SA
8 B02-father B02-SA-B04-SA
9 B04-father B04-SA-B06-SA
10 B06-father B06-NA
And two remarks concerning your data sample:
You wrote B04-SA-B02-SA with capital O (a letter) instead of 0
(zero). I corrected it in my source data.
Row A02-father A02-SA-A04-SA in your expected result is doubled.
I assume it should occur only once.
Commented inline
def find(data, from_pos=0):
fathers = {}
skip = []
for x in data[from_pos:]:
tks = x.split("-")
# Is it father ?
if tks[1].lower() == "father":
fathers[tks[0]] = x
else:
if tks[0] in fathers and tks[-2] not in skip:
print (fathers[tks[0]], x)
# Skip this father appearing as child later
skip.append(tks[0])
Testcase:
data = [
'A0-Father',
'A0-N-A2-M',
'A0-N-A4-M',
'A2-Father',
'A2-M-A0-N',
'A2-N-A8-M',
'A8-father',
'A8-M-A11-N',
'A8-M-A2-N']
find(data, from_pos=0)
Output:
A0-Father A0-N-A2-M
A0-Father A0-N-A4-M
A2-Father A2-N-A8-M
A8-father A8-M-A11-N
Edit 1:
Start with some data for testing
data = [
'A02-father',
'A03-father',
'A04-father',
'A05-father',
'A07-father',
'A08-father',
'A09-father',
'A17-father',
'A18-father',
'A20-father',
'A02-SA-A03-SA',
'A02-SA-A04-SA',
'A03-SA-A02-SA',
'A03-SA-A05-SA',
'A03-SA-A17-SA',
'A04-SA-A02-SA',
'A04-SA-A09-SA',
'A05-SA-A03-SA',
'A09-SA-A04-SA',
'A09-SA-A20-SA',
'A17-SA-A03-SA',
'A17-SA-A18-SA',
'A18-SA-A17-SA',
'A20-SA-A09-SA',
'A05-NA',
]
father = [
'A03-father',
]
First let us make a data structure so that manipulations will be easy and lookups for relationships will be fast as you have huge data
def make_data_structure(data):
all_fathers, all_relations = {}, {}
for x in data:
tks = x.split("-")
if tks[1].lower() == "father":
all_fathers[tks[0]] = x
else:
if len(tks) == 2:
tks.extend(['NA', 'NA'])
if tks[0] in all_relations:
all_relations[tks[0]][0].append(tks[-2])
all_relations[tks[0]][1].append(x)
else:
all_relations[tks[0]] =[[tks[-2]], [x]]
return all_fathers, all_relations
all_fathers, all_relations = make_data_structure(data)
all_fathers, all_relations
Output:
{'A02': 'A02-father',
'A03': 'A03-father',
'A04': 'A04-father',
'A05': 'A05-father',
'A07': 'A07-father',
'A08': 'A08-father',
'A09': 'A09-father',
'A17': 'A17-father',
'A18': 'A18-father',
'A20': 'A20-father'},
{'A02': [['A03', 'A04'], ['A02-SA-A03-SA', 'A02-SA-A04-SA']],
'A03': [['A02', 'A05', 'A17'],
['A03-SA-A02-SA', 'A03-SA-A05-SA', 'A03-SA-A17-SA']],
'A04': [['A02', 'A09'], ['A04-SA-A02-SA', 'A04-SA-A09-SA']],
'A05': [['A03', 'NA'], ['A05-SA-A03-SA', 'A05-NA']],
'A09': [['A04', 'A20'], ['A09-SA-A04-SA', 'A09-SA-A20-SA']],
'A17': [['A03', 'A18'], ['A17-SA-A03-SA', 'A17-SA-A18-SA']],
'A18': [['A17'], ['A18-SA-A17-SA']],
'A20': [['A09'], ['A20-SA-A09-SA']]}
As you can see all_fathers holds all the parents and most imporantly all_relations hold the father-child relationship which can be indexed using the father for faster lookups.
How lets do the actual parsing of the relationships
def find(all_fathers, all_relations, from_father):
fathers = [from_father]
skip = []
while True:
if len(fathers) == 0:
break
current_father = fathers[0]
fathers = fathers[1:]
for i in range(len(all_relations[current_father][0])):
if not all_relations[current_father][0][i] in skip:
print (all_fathers[current_father], all_relations[current_father][1][i])
if all_relations[current_father][0][i] != 'NA':
fathers.append(all_relations[current_father][0][i])
skip.append(current_father)
for x in father:
find(all_fathers, all_relations, x.split("-")[0])
Output:
A03-father A03-SA-A02-SA
A03-father A03-SA-A05-SA
A03-father A03-SA-A17-SA
A02-father A02-SA-A04-SA
A05-father A05-NA
A17-father A17-SA-A18-SA
A04-father A04-SA-A09-SA
A09-father A09-SA-A20-SA
Edit 2:
New test cases; [You will have to load the values in father.csv to a list called father].
data = [
'A02-father',
'A03-father',
'A04-father',
'A05-father',
'A07-father',
'A08-father',
'A09-father',
'A17-father',
'A18-father',
'A20-father',
'A02-SA-A03-SA',
'A02-SA-A04-SA',
'A03-SA-A02-SA',
'A03-SA-A05-SA',
'A03-SA-A17-SA',
'A04-SA-A02-SA',
'A04-SA-A09-SA',
'A05-SA-A03-SA',
'A09-SA-A04-SA',
'A09-SA-A20-SA',
'A17-SA-A03-SA',
'A17-SA-A18-SA',
'A18-SA-A17-SA',
'A20-SA-A09-SA',
'A05-NA',
'B02-Father',
'B04-Father',
'B06-Father',
'B02-SA-B04-SA',
'B04-SA-B02-SA',
'B04-SA-B06-SA',
'B06-SA-B04-SA',
'B06-NA',
]
father = [
'A03-father',
'B02-father'
]
for x in father:
find(all_fathers, all_relations, x.split("-")[0])
Output:
A03-father A03-SA-A02-SA
A03-father A03-SA-A05-SA
A03-father A03-SA-A17-SA
A02-father A02-SA-A04-SA
A05-father A05-NA
A17-father A17-SA-A18-SA
A04-father A04-SA-A09-SA
A09-father A09-SA-A20-SA
B02-Father B02-SA-B04-SA
B04-Father B04-SA-B06-SA
B06-Father B06-NA
I'm new to Python and trying to solve a problem looping through a tree in NLTK. I'm stuck on the final output, it is not entirely correct.
I'm looking to create a dictionary with 2 variables and if there is no quantity then add value 1.
This is the desired final output:
{ quantity =1, food =pizza }, {quantity =1, food = coke }
,{quantity =2, food = beers}, {quantity =1, food = sandwich }
Here is my code, any help is much appreaciated!
'''
import nltk as nltk
nltk.download()
grammar = r""" Food:{<DT>?<VRB>?<NN.*>+}
}<>+{
Quantity: {<CD>|<JJ>|<DT>}
"""
rp = nltk.RegexpParser(grammar)
def RegPar(menu):
grammar = r"""Food:{<DT>?<VRB>?<NN.*>+}
}<>+{
Quantity: {<CD>|<JJ>|<DT>}
"""
rp = nltk.RegexpParser(grammar)
output = rp.parse(menu)
return(output)
Sentences = [ 'A pizza margherita', 'one coke y 2 beers', 'Sandwich']
tagged_array =[]
output_array =[]
for s in Sentences:
tokens = nltk.word_tokenize(s)
tags = nltk.pos_tag(tokens)
tagged_array.append(tags)
output = rp.parse(tags)
output_array.append(output)
print(output)
dat = []
tree = RegPar(output_array)
for subtree in tree.subtrees():
if subtree.label() == 'Food' or subtree.label() =='Quantity':
dat.append({(subtree.label(),subtree.leaves()[0][0])})
print(dat)
##[{('Food', 'A')}, {('Quantity', 'one')}, {('Food', 'coke')}, {('Quantity', '2')}, {('Food', 'beers')}, {('Food', 'Sandwich')}]*
'''
I have the following type of document, where each person might have a couple of names and an associated description of features:
New person
name: ana
name: anna
name: ann
feature: A 65-year old woman that has no known health issues but has a medical history of Schizophrenia.
New person
name: tom
name: thomas
name: thimoty
name: tommy
feature: A 32-year old male that is known to be deaf.
New person
.....
What I would like is to read this file in a python dictionary, where each new person is id-ed.
i.e. Person with ID 1 will have the names ['ann','anna','ana']
and will have the feature ['A 65-year old woman that has no known health issues but has a medical history of Schizophrenia.' ]
Any suggestions?
Assuming that your input file is lo.txt. It can be added to dictionary this way:
file = open('lo.txt')
final_data = []
feature = []
names = []
for line in file.readlines():
if ("feature") in line:
data = line.replace("\n","").split(":")
feature=data[1]
final_data.append({
'names': names,
'feature': feature
})
names = []
feature = []
if ("name") in line:
data = line.replace("\n","").split(":")
names.append(data[1])
print final_data
Something like this might work
result = {}
f = open("document.txt")
contents = f.read()
info = contents.split('==== new person ===')
for i in range(len(info)):
info[i].split('\n')
names = []
features = []
for j in range(len(info[i])):
info[i][j].split(':')
if info[i][j][0] == 'name':
names.append(info[i][j][1])
else:
features.append(info[i][j][1])
result[i] = {'names': names,'features': features}
print(result)
This should give you something like:
{0: {'names': ['ana', 'anna', 'ann'], features:['...', '...']}}
e.t.c
Here is code that may work for you:
f = open("documents.txt").readlines()
f = [i.strip('\n') for i in f]
final_condition = f[len(f)-1]
f.remove(final_condition)
names = [i.split(":")[1] for i in f]
the_dict = {}
the_dict["names"] = names
the_dict["features"] = final_condition
print the_dict
All it does is split the names at ":" and take the last element of the resulting list (the names) and keep it for the list names.
I must print all the raw text of this HTML page.
Each line has this format:
ENSG00000001461' ';' ';' ';' ';ENST00000432012' ';' ';' ';' ';NIPAL3' ';' ';' ';' ';5' ';' ';' ';' ';1' ';' ';' ';' ';Forward' ';' ';' ';' ';NIPA-like domain containing 3 [Source:HGNC Symbol;Acc:HGNC:25233]<'br/'>
I want the following output:
ENSG00000001461 ENST00000432012 NIPAL3 5 1 Forward NIPA-like domain containing 3 [Source:HGNC Symbol;Acc:HGNC:25233]
But the output is only:
ENSG00000001461
This is my code:
import urllib
from bs4 import BeautifulSoup
species = ['HomoSapiens', 'MusMusculus', 'DrosophilaMelanogaster','CaenorhabditisElegans']
rna_target = ['mRNA', 'lincRNA', 'lncRNA']
db = ['MB21E78v2', 'MB19E65v2', 'MB16E62v1']
species_input = input("Selezionare Specie: ")
target_input = input("Selezionare tipo di RNA: ")
db_input = input("Selezionare DataBase: ")
check = 0
for i in range(len(species)):
if species_input == species[i]:
for j in range(len(rna_target)):
if target_input == rna_target[j]:
for k in range(len(db)):
if db_input == db[k]:
check = 1
if check == 1:
print("Dati Inseriti Correttamente!")
else:
print("Error: Dati inseriti in modo errato!")
exit()
url = urllib.request.urlopen("<https://cm.jefferson.edu/rna22/Precomputed/OptionController?>" +"species=" + species_input + "&type=" + target_input + "&version=" +db_input)
print(url.geturl())
identifier = []
seq_input = input("Digitare ID miRNA: ")
seq = ""
seq = seq_input.split()
print(seq)
for i in range(len(seq)):
identifier.append(seq[i] + "%20")
s = ""
string = s.join(identifier)
url_tab = urllib.request.urlopen("<https://cm.jefferson.edu/rna22/Precomputed/InputController?>"+"identifier=" string+"&minBasePairs=12&maxFoldingEnergy=-12&minSumHits=1&maxProb=.1&"+"version=" + db_input + "&species=" + species_input + "&type=" + target_input)
print(url_tab.geturl())
download = urllib.request.urlopen("
<http://cm.jefferson.edu/rna22/Precomputed/InputController?>download=ALL"+"&ident=" + string+"&minBasePairs=12&maxFoldingEnergy=-12&minSumHits=1&maxProb=.1&" +"version=" + db_input + "&species=" + species_input + "&type=" + target_input)
down_string = download.geturl()
print(down_string)
soup = BeautifulSoup(download, "html5lib")
for match in soup.findAll('br'):
match.unwrap()
s2 = soup
s1 = s2.body.extract()
print(s1.prettify(formatter=lambda s: s.strip(u'xa0')))
There is no notion of lines in the source, there is just one long line of text which you need to separate using newlines using the br tags.
If you have to parse the source, you can replace the br tags with newlines and just pull the text:
import requests
from bs4 import BeautifulSoup
r = requests.get("https://cm.jefferson.edu/rna22/Precomputed/InputController?download=ALL&ident=hsa_miR_107%20hsa_miR_5011_5p%20hsa_miR_326&minBasePairs=12&maxFoldingEnergy=-12&minSumHits=1&maxProb=.1&version=MB21E78v2&species=HomoSapiens&type=mRNA")
soup = BeautifulSoup(r.content)
for b in soup.find_all("br"):
b.replace_with("\n")
print(soup.text)
Which will give you:
ENSG00000001461 ENST00000432012 NIPAL3 5 1 Forward NIPA-like domain containing 3 [Source:HGNC Symbol;Acc:HGNC:25233]
ENSG00000001631 ENST00000340022 KRIT1 5 7 Reverse KRIT1, ankyrin repeat containing [Source:HGNC Symbol;Acc:HGNC:1573]
ENSG00000001631 ENST00000394503 KRIT1 3 7 Reverse KRIT1, ankyrin repeat containing [Source:HGNC Symbol;Acc:HGNC:1573]
ENSG00000001631 ENST00000394505 KRIT1 3 7 Reverse KRIT1, ankyrin repeat containing [Source:HGNC Symbol;Acc:HGNC:1573]
ENSG00000001631 ENST00000394507 KRIT1 4 7 Reverse KRIT1, ankyrin repeat containing [Source:HGNC Symbol;Acc:HGNC:1573]
ENSG00000001631 ENST00000412043 KRIT1 4 7 Reverse KRIT1, ankyrin repeat containing [Source:HGNC Symbol;Acc:HGNC:1573]
ENSG00000002834 ENST00000318008 LASP1 6 17 Forward LIM and SH3 protein 1 [Source:HGNC Symbol;Acc:HGNC:6513]
ENSG00000002834 ENST00000433206 LASP1 6 17 Forward LIM and SH3 protein 1 [Source:HGNC Symbol;Acc:HGNC:6513]
ENSG00000002834 ENST00000435347 LASP1 5 17 Forward LIM and SH3 protein 1 [Source:HGNC Symbol;Acc:HGNC:6513]
ENSG00000005381 ENST00000225275 MPO 5 17 Reverse myeloperoxidase [Source:HGNC Symbol;Acc:HGNC:7218]
ENSG00000005889 ENST00000539115 ZFX 4 23 X Forward zinc finger protein, X-linked [Source:HGNC Symbol;Acc:HGNC:12869]
ENSG00000006432 ENST00000554752 MAP3K9 10 14 Reverse mitogen-activated protein kinase kinase kinase 9 [Source:HGNC Symbol;Acc:HGNC:6861]
ENSG00000006432 ENST00000611979 MAP3K9 10 14 Reverse mitogen-activated protein kinase kinase kinase 9 [Source:HGNC Symbol;Acc:HGNC:6861]
ENSG00000007216 ENST00000314669 SLC13A2 4 17 Forward solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 2 [Source:HGNC Symbol;Acc:HGNC:10917]
ENSG00000007216 ENST00000444914 SLC13A2 4 17 Forward solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 2 [Source:HGNC Symbol;Acc:HGNC:10917]
And a whole lot more of the same.
I tested your code and replaced my previous answer.
If you edit the following errors, your code seems to work.
Remove < from the urls
Remove EOL in line 42
Add a + between "identifiers=" and string
Here are some of the lines of the output I get:
ENSG00000272325 ENST00000607016 NUDT3 4 6 Reverse nudix (nucleoside diphosphate linked moiety X)-type motif 3 [Source:HGNC Symbol;Acc:HGNC:8050]
ENSG00000272980 ENST00000400926 CCR6 5 6 Forward chemokine (C-C motif) receptor 6 [Source:HGNC Symbol;Acc:HGNC:1607]
ENSG00000274211 ENST00000612932 SOCS7 8 17 Forward suppressor of cytokine signaling 7 [Source:HGNC Symbol;Acc:HGNC:29846]
ENSG00000274588 ENST00000611977 DGKK 4 23 X Reverse diacylglycerol kinase, kappa [Source:HGNC Symbol;Acc:HGNC:32395]
ENSG00000275004 ENST00000613655 ZNF280B 4 22 Reverse zinc finger protein 280B [Source:HGNC Symbol;Acc:HGNC:23022]
ENSG00000275004 ENST00000619852 ZNF280B 4 22 Reverse zinc finger protein 280B [Source:HGNC Symbol;Acc:HGNC:23022]
ENSG00000275832 ENST00000622683 ARHGAP23 6 17 Forward Rho GTPase activating protein 23 [Source:HGNC Symbol;Acc:HGNC:29293]
ENSG00000277258 ENST00000616199 PCGF2 3 17 Reverse polycomb group ring finger 2 [Source:HGNC Symbol;Acc:HGNC:12929]
ENSG00000278871 ENST00000623344 KDM5D 8 24 Y Reverse lysine (K)-specific demethylase 5D [Source:HGNC Symbol;Acc:HGNC:11115]
ENSG00000279096 ENST00000622918 AL356289.1 11 1 Forward HCG1780467 {ECO:0000313|EMBL:EAX06861.1}; PRO0529 {ECO:0000313|EMBL:AAF16687.1} [Source:UniProtKB/TrEMBL;Acc:Q9UI23]