I try to compute HOG features on an image. This code:
hog = cv2.HOGDescriptor()
return hog.compute(image)
throws the following error at the second line:
error: ..\..\..\..\opencv\modules\objdetect\src\hog.cpp:630: error: (-215) (unsigned)pt.x <= (unsigned)(grad.cols - blockSize.width) && (unsigned)pt.y <= (unsigned)(grad.rows - blockSize.height) in function cv::HOGCache::getBlock
I checked that image is a valid image. Do you have an idea regarding the source of the problem please?
The error message looks like an images pixel is out of your HoG window area.
As far as I know, HoG Descriptors have some kind of "winSize" property (e.g. 64x128 pixel for the people descriptor afair).
Make sure that your image fits the descriptor window size by resizing the image or selecting the relevant sub-area!
1. Get Inbuilt Documentation: You can also change HOGDescriptor properties according to your requirements,
Following command on your python console will help you know the structure of class HOGDescriptor:
import cv2
help(cv2.HOGDescriptor())
2. Example Code: Here is a snippet of code to initialize an cv2.HOGDescriptor with different parameters (The terms I used here are standard terms which are well defined in OpenCV documentation here):
import cv2
image = cv2.imread("test.jpg",0)
winSize = (64,64)
blockSize = (16,16)
blockStride = (8,8)
cellSize = (8,8)
nbins = 9
derivAperture = 1
winSigma = 4.
histogramNormType = 0
L2HysThreshold = 2.0000000000000001e-01
gammaCorrection = 0
nlevels = 64
hog = cv2.HOGDescriptor(winSize,blockSize,blockStride,cellSize,nbins,derivAperture,winSigma,
histogramNormType,L2HysThreshold,gammaCorrection,nlevels)
#compute(img[, winStride[, padding[, locations]]]) -> descriptors
winStride = (8,8)
padding = (8,8)
locations = ((10,20),)
hist = hog.compute(image,winStride,padding,locations)
3. Reasoning: The resultant hog descriptor will have dimension as:
9 orientations X (4 corner blocks that get 1 normalization + 6x4 blocks on the edges that get 2 normalizations + 6x6 blocks that get 4 normalizations) = 1764. as I have given only one location for hog.compute().
4. One more way to initialize is from xml file which contains all parameter values:
hog = cv2.HOGDescriptor("hog.xml")
To get an xml file one can do following:
hog = cv2.HOGDescriptor()
hog.save("hog.xml")
and edit the respective parameter values in xml file.
Solution to your problem: You can change 'winSize' value to what you want it to be. so that your image size won't be out HoG window area.
Related
I've been trying to do a code that labels a binary matrix, i.e. I want to do a function that finds all connected components in an image and assigns a unique label to all points in the same component. The problem is that I found a function, imbinarize(), that creates a binary image and I want to know how to do it without that function (because I don't know how to do it).
EDIT: I realized that it isn't needed to binarize the image, because it is being assumed that all the images that are put as argument are already binarized. So, I changed my code. It happens that code is not working, and I think the problem is in one of the cycles, but I can't understand why.
import numpy as np
%matplotlib inline
from matplotlib import pyplot as plt
def connected_components(image):
M = image * 1
# write your code here
(row, column) = M.shape #shape of the matrix
#Second step
L = 2
#Third step
q = []
#Fourth step
#Method to look for ones starting on the pixel (0, 0) and going from left to right and top-down
for i in np.arange(row):
for j in np.arange(column):
if M[i][j] == 1:
M[i][j] = L
q.append(M[i-1][j])
q.append(M[i+1][j])
q.append(M[i][j-1])
q.append(M[i][j+1])
#Fifth step
while len(q) != 0: #same as saying 'while q is not empty'
if q[0] == 1:
M[0] = L
q.append(M[i-1][j])
q.append(M[i+1][j])
q.append(M[i][j-1])
q.append(M[i][j+1])
#Sixth step
L = L + 1
#Seventh step: goes to the beginning of the for-cycle
return labels
pyplot.binarize in its most simple form thresholds an image such that any intensity whose value is beyond a certain threshold is assigned a binary 1 / True and a binary 0 / False otherwise. It is actually more sophisticated than this as it uses some image morphology for noise removal as well as use adaptive thresholds to find the most optimal value to separate between foreground and background. As I see this post as more for validating the connected components algorithm you've created, I'm going to assume that the basic algorithm is fine and the actual algorithm to be out of scope for your needs.
Once you read in the image with matplotlib, it is most likely going to be three channels so you'll need to convert the image into grayscale first, then threshold after. We can make this more adaptive based on the number of channels that exist.
Therefore, let's define a function to threshold the image for us. You'll need to play around with the threshold until you get good results. Also take note that plt.imread reads in float32 values, so the threshold will be defined between [0-1]. We can try 0.5 as a good start:
def binarize(im, threshold=0.5):
if len(im.shape) == 3:
gray = 0.299*im[...,0] + 0.587*im[...,1] + 0.114*im[...,2]
else:
gray = im
return (gray >= threshold).astype(np.uint8)
This will check if the input image is in RGB. If it is, convert to grayscale accordingly. The method to convert from RGB to grayscale uses the SMPTE Rec. 709 standard. Once we have the grayscale image, simply return a new image where everything that meets the threshold and beyond gets assigned an integer 1 and everything else is integer 0. I've converted the result to an integer type because your connected components algorithm assumes a 0/1 labelling.
You can then replace your code with:
#First step
Image = plt.imread(image) #reads the image on the argument
M = binarize(Image) #imbinarize() converts an image to a binary matrix
(row, column) = np.M.shape #shape of the matrix
Minor Note
In your test code, you are supplying a test image directly whereas your actual code performs an imread operation. imread expects a string so by specifying the actual array, your code will produce an error. If you want to accommodate for both an array and a string, you should check to see if the input is a string vs. an array:
if type(image) is str:
Image = plt.imread(image) #reads the image on the argument
else:
Image = image
M = binarize(Image) #imbinarize() converts an image to a binary matrix
(row, column) = np.M.shape #shape of the matrix
What are the ways to count and extract all subimages given a master image?
Sample 1
Input:
Output should be 8 subgraphs.
Sample 2
Input:
Output should have 6 subgraphs.
Note: These image samples are taken from internet. Images can be of random dimensions.
Is there a way to draw lines of separation in these image and then split based on those details ?
e.g :
I don't think, there'll be a general solution to extract all single figures properly from arbitrary tables of figures (as shown in the two examples) – at least using some kind of "simple" image-processing techniques.
For "perfect" tables with constant grid layout and constant colour space between single figures (as shown in the two examples), the following approach might be an idea:
Calculate the mean standard deviation in x and y direction, and threshold using some custom parameter. The mean standard deviation within the constant colour spaces should be near zero. A custom parameter will be needed here, since there'll be artifacts, e.g. from JPG compression, which effects might be more or less severe.
Do some binary closing on the mean standard deviations using custom parameters. There might be small constant colour spaces around captions or similar, cf. the second example. Again, custom parameters will be needed here, too.
From the resulting binary "signal", we can extract the start and stop positions for each subimage, thus the subimage itself by slicing from the original image. Attention: That works only, if the tables show a constant grid layout!
That'd be some code for the described approach:
import cv2
import numpy as np
from skimage.morphology import binary_closing
def extract_from_table(image, std_thr, kernel_x, kernel_y):
# Threshold on mean standard deviation in x and y direction
std_x = np.mean(np.std(image, axis=1), axis=1) > std_thr
std_y = np.mean(np.std(image, axis=0), axis=1) > std_thr
# Binary closing to close small whitespaces, e.g. around captions
std_xx = binary_closing(std_x, np.ones(kernel_x))
std_yy = binary_closing(std_y, np.ones(kernel_y))
# Find start and stop positions of each subimage
start_y = np.where(np.diff(np.int8(std_xx)) == 1)[0]
stop_y = np.where(np.diff(np.int8(std_xx)) == -1)[0]
start_x = np.where(np.diff(np.int8(std_yy)) == 1)[0]
stop_x = np.where(np.diff(np.int8(std_yy)) == -1)[0]
# Extract subimages
return [image[y1:y2, x1:x2, :]
for y1, y2 in zip(start_y, stop_y)
for x1, x2 in zip(start_x, stop_x)]
for file in (['image1.jpg', 'image2.png']):
img = cv2.imread(file)
cv2.imshow('image', img)
subimages = extract_from_table(img, 5, 21, 11)
print('{} subimages found.'.format(len(subimages)))
for i in subimages:
cv2.imshow('subimage', i)
cv2.waitKey(0)
The print output is:
8 subimages found.
6 subimages found.
Also, each subimage is shown for visualization purposes.
For both images, the same parameters were suitable, but that's just some coincidence here!
----------------------------------------
System information
----------------------------------------
Platform: Windows-10-10.0.16299-SP0
Python: 3.9.1
NumPy: 1.20.1
OpenCV: 4.5.1
scikit-image: 0.18.1
----------------------------------------
I could only extract the sub-images using simple array slicing technique. I am not sure if this is what you are looking for. But if one knows the table columns and rows, I think you can extract the sub-images.
image = cv2.imread('table.jpg')
p = 2 #number of rows
q = 4 #number of columns
width, height, channels = image.shape
width_patch = width//p
height_patch = height//q
x=0
for i in range(0, width - width_patch, width_patch):
for j in range(0, height - height_patch, height_patch):
crop = image[i:i+width_patch, j:j+height_patch]
cv2.imwrite("image_{0}.jpg".format(x),crop)
x+=1
# cv2.imshow('crop', crop)
# cv2.waitKey(0)```
I am trying to convert some MATLAB code to Python, related to image-processing.
When I did
% matlab R2017a
nhood = true(5); % will give 5x5 matrix containing 1s size 5x5
J = imclose(Image,nhood);
in MATLAB, the result is different than when I did
import cv2 as cv
kernel = np.ones((5,5),np.uint8) # will give result like true(5)
J = cv.morphologyEx(Image,cv.MORPH_CLOSE,kernel)
in Python.
This is the result of MATLAB:
And this is for the Python:
The difference is 210 pixels, see below. The red circle shows the pixels that exist in Python with 1 value but not in the MATLAB.
Sorry if it’s so small, my image size is 2048x2048 and have values 0 and 1, and the error just 210 pixels.
When I use another library such as skimage.morphology.closing and mahotas.close with the same parameter, it will give me the same result as MORPH.CLOSE.
What I want to ask is:
Am I using the wrong parameter in Python like the kernel = np.ones((5,5),np.uint8)?
If not, is there any library that will give me the same exact result like imclose() MATLAB?
Which of the MATLAB and Python results is correct?
I already looked at this Q&A. When I use borderValue = 0 in MORPH.CLOSE, my result will give me error 2115 pixels that contain 1 value in MATLAB but not in the Python.
[ UPDATE ]
the input image is Input Image
the cropped of the difference pixels is cropped difference image
So for the difference pixels image, it turns out that the pixels are not only in that position but scattered in several positions. You can see it here
And if seen from the results, the location of the pixel error coincides at the ends of the row or column of the matrix.
I hope it can make more hints for this question.
This is the program in MATLAB that i use to check the error,
mask = zeros(2048,2048); %inisialisasi error matrix
error = 0;
for x = 1:size(J_Matlab,1)
for y = 1:size(J_Matlab,2)
if J_Matlab(x,y)== J_Python(x,y)
mask(x,y) = 0; % no differences
else
mask(x,y) = 1;
error = error + 1;
end
end
end
so i load the Python data into MATLAB, then i compare it in with the MATLAB data. And if you want to check the data that i use for the input in closing function, you can look it in the comment section ( in drive link )
so for this problem, my teacher said that it was ok to use either MATLAB or Python program because the error is not significant. but if i found the solution, i will post it here ASAP. Thanks for the instruction, suggestions, and critics for my first post.
I am trying to get the size of each separate object in this image so that I can separate them by size. My aim is to be able to loop through them and separate them by size. I have looked everywhere and can't really find anything anywhere. I have tried connected component analysis but I am unsure of how to retrieve size values from it.
_, lab = cv2.connectedComponents(img)
Use connectedComponentsWithStats.
# Choose 4 or 8 for connectivity type
connectivity = 4
output = cv2.connectedComponentsWithStats(img, connectivity, cv2.CV_32S)
num_labels = output[0]
stats = output[2]
for label in range(1,num_labels):
blob_area = stats[label, cv2.CC_STAT_AREA]
blob_width = stats[label, cv2.CC_STAT_WIDTH]
blob_height = stats[label, cv2.CC_STAT_HEIGHT]
num_labels will give the total number of labels. You can use stats matrix to retrieve size of each blob by iterating through each label.
So I have an array (it's large - 2048x2048), and I would like to do some element wise operations dependent on where they are. I'm very confused how to do this (I was told not to use for loops, and when I tried that my IDE froze and it was going really slow).
Onto the question:
h = aperatureimage
h[:,:] = 0
indices = np.where(aperatureimage>1)
for True in h:
h[index] = np.exp(1j*k*z)*np.exp(1j*k*(x**2+y**2)/(2*z))/(1j*wave*z)
So I have an index, which is (I'm assuming here) essentially a 'cropped' version of my larger aperatureimage array. *Note: Aperature image is a grayscale image converted to an array, it has a shape or text on it, and I would like to find all the 'white' regions of the aperature and perform my operation.
How can I access the individual x/y values of index which will allow me to perform my exponential operation? When I try index[:,None], leads to the program spitting out 'ValueError: broadcast dimensions too large'. I also get array is not broadcastable to correct shape. Any help would be appreciated!
One more clarification: x and y are the only values I would like to change (essentially the points in my array where there is white, z, k, and whatever else are defined previously).
EDIT:
I'm not sure the code I posted above is correct, it returns two empty arrays. When I do this though
index = (aperatureimage==1)
print len(index)
Actually, nothing I've done so far works correctly. I have a 2048x2048 image with a 128x128 white square in the middle of it. I would like to convert this image to an array, look through all the values and determine the index values (x,y) where the array is not black (I only have white/black, bilevel image didn't work for me). I would then like to take all the values (x,y) where the array is not 0, and multiply them by the h[index] value listed above.
I can post more information if necessary. If you can't tell, I'm stuck.
EDIT2: Here's some code that might help - I think I have the problem above solved (I can now access members of the array and perform operations on them). But - for some reason the Fx values in my for loop never increase, it loops Fy forever....
import sys, os
from scipy.signal import *
import numpy as np
import Image, ImageDraw, ImageFont, ImageOps, ImageEnhance, ImageColor
def createImage(aperature, type):
imsize = aperature*8
middle = imsize/2
im = Image.new("L", (imsize,imsize))
draw = ImageDraw.Draw(im)
box = ((middle-aperature/2, middle-aperature/2), (middle+aperature/2, middle+aperature/2))
import sys, os
from scipy.signal import *
import numpy as np
import Image, ImageDraw, ImageFont, ImageOps, ImageEnhance, ImageColor
def createImage(aperature, type):
imsize = aperature*8 #Add 0 padding to make it nice
middle = imsize/2 # The middle (physical 0) of our image will be the imagesize/2
im = Image.new("L", (imsize,imsize)) #Make a grayscale image with imsize*imsize pixels
draw = ImageDraw.Draw(im) #Create a new draw method
box = ((middle-aperature/2, middle-aperature/2), (middle+aperature/2, middle+aperature/2)) #Bounding box for aperature
if type == 'Rectangle':
draw.rectangle(box, fill = 'white') #Draw rectangle in the box and color it white
del draw
return im, middle
def Diffraction(aperaturediameter = 1, type = 'Rectangle', z = 2000000, wave = .001):
# Constants
deltaF = 1/8 # Image will be 8mm wide
z = 1/3.
wave = 0.001
k = 2*pi/wave
# Now let's get to work
aperature = aperaturediameter * 128 # Aperaturediameter (in mm) to some pixels
im, middle = createImage(aperature, type) #Create an image depending on type of aperature
aperaturearray = np.array(im) # Turn image into numpy array
# Fourier Transform of Aperature
Ta = np.fft.fftshift(np.fft.fft2(aperaturearray))/(len(aperaturearray))
# Transforming and calculating of Transfer Function Method
H = aperaturearray.copy() # Copy image so H (transfer function) has the same dimensions as aperaturearray
H[:,:] = 0 # Set H to 0
U = aperaturearray.copy()
U[:,:] = 0
index = np.nonzero(aperaturearray) # Find nonzero elements of aperaturearray
H[index[0],index[1]] = np.exp(1j*k*z)*np.exp(-1j*k*wave*z*((index[0]-middle)**2+(index[1]-middle)**2)) # Free space transfer for ap array
Utfm = abs(np.fft.fftshift(np.fft.ifft2(Ta*H))) # Compute intensity at distance z
# Fourier Integral Method
apindex = np.nonzero(aperaturearray)
U[index[0],index[1]] = aperaturearray[index[0],index[1]] * np.exp(1j*k*((index[0]-middle)**2+(index[1]-middle)**2)/(2*z))
Ufim = abs(np.fft.fftshift(np.fft.fft2(U))/len(U))
# Save image
fim = Image.fromarray(np.uint8(Ufim))
fim.save("PATH\Fim.jpg")
ftfm = Image.fromarray(np.uint8(Utfm))
ftfm.save("PATH\FTFM.jpg")
print "that may have worked..."
return
if __name__ == '__main__':
Diffraction()
You'll need numpy, scipy, and PIL to work with this code.
When I run this, it goes through the code, but there is no data in them (everything is black). Now I have a real problem here as I don't entirely understand the math I'm doing (this is for HW), and I don't have a firm grasp on Python.
U[index[0],index[1]] = aperaturearray[index[0],index[1]] * np.exp(1j*k*((index[0]-middle)**2+(index[1]-middle)**2)/(2*z))
Should that line work for performing elementwise calculations on my array?
Could you perhaps post a minimal, yet complete, example? One that we can copy/paste and run ourselves?
In the meantime, in the first two lines of your current example:
h = aperatureimage
h[:,:] = 0
you set both 'aperatureimage' and 'h' to 0. That's probably not what you intended. You might want to consider:
h = aperatureimage.copy()
This generates a copy of aperatureimage while your code simply points h to the same array as aperatureimage. So changing one changes the other.
Be aware, copying very large arrays might cost you more memory then you would prefer.
What I think you are trying to do is this:
import numpy as np
N = 2048
M = 64
a = np.zeros((N, N))
a[N/2-M:N/2+M,N/2-M:N/2+M]=1
x,y = np.meshgrid(np.linspace(0, 1, N), np.linspace(0, 1, N))
b = a.copy()
indices = np.where(a>0)
b[indices] = np.exp(x[indices]**2+y[indices]**2)
Or something similar. This, in any case, sets some values in 'b' based on the x/y coordinates where 'a' is bigger than 0. Try visualizing it with imshow. Good luck!
Concerning the edit
You should normalize your output so it fits in the 8 bit integer. Currently, one of your arrays has a maximum value much larger than 255 and one has a maximum much smaller. Try this instead:
fim = Image.fromarray(np.uint8(255*Ufim/np.amax(Ufim)))
fim.save("PATH\Fim.jpg")
ftfm = Image.fromarray(np.uint8(255*Utfm/np.amax(Utfm)))
ftfm.save("PATH\FTFM.jpg")
Also consider np.zeros_like() instead of copying and clearing H and U.
Finally, I personally very much like working with ipython when developing something like this. If you put the code in your Diffraction function in the top level of your script (in place of 'if __ name __ &c.'), then you can access the variables directly from ipython. A quick command like np.amax(Utfm) would show you that there are indeed values!=0. imshow() is always nice to look at matrices.