I am trying to solve these 2 equations bellow and I am having no luck, if anyone can point out where i am going wrong that would be great thanks!
def f(t,alpha):
return t*t/(2*alpha) * (1-sqrt(1-4*alpha))
def f_1 (t,x,params):
alpha=params[0]
return [X[1],-((3/f(t,alpha)*X[0]))]
T=ode_solver()
T.y_0=[1,0]
T.function=f_1
T.scale_abs=[1e-4,1e-4,1e,-5]
T.error_rel=1e-4
T.ode_solve(t_span[0,1000],params=[0.001],num_points=1000)
T.plot_solution(i=0)
Try using scipy.
Look this example:
from scipy.integrate import odeint
from pylab import * # for plotting commands
def deriv(y,t, alpha): # return derivatives of the array y #edit: put an extra arg
#use the arg whatever you want
a = -2.0
b = -0.1
return array([ y[1], a*y[0]+b*y[1] ])
time = linspace(0.0,10.0,1000)
yinit = array([0.0005,0.2]) # initial values
alpha = 123 #declare the extra(s) agrg
y = odeint(deriv,yinit,time,args=(alpha, )) #pass the extras args as tuple
figure()
plot(time,y[:,0]) # y[:,0] is the first column of y
xlabel('t')
ylabel('y')
show()
Result:
Font: http://bulldog2.redlands.edu/facultyfolder/deweerd/tutorials/Tutorial-ODEs.pdf
An interesting link: http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.integrate.ode.html
Related
How to put initial condition of ODE at a specific time point using odeint in Python?
So I have y(0) = 5 as initial condition,
following code works::
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
# function that returns dy/dt
def model(y,t):
k = 0.3
dydt = -k * y
return dydt
# initial condition
y0 = 5
# time points
t = np.linspace(0,20)
# solve ODE
y = odeint(model,y0,t)
# plot results
plt.plot(t,y)
plt.xlabel('time')
plt.ylabel('y(t)')
plt.show()
I wanna see the graph in both negative and positive time line.
So I change t = np.linspace(0,20) to t = np.linspace(-5,20), but then the initial condition is taken as y(-5) = 5.
How to solve this?
I do not think you can, according to the docs
But you can solve for positive and negative t's separately and then stich them together. Replace the relevant lines with
tp = np.linspace(0,20)
tm = np.linspace(0,-5)
# solve ODE
yp = odeint(model,y0,tp)
ym = odeint(model,y0,tm)
# stich together; note we flip the time direction with [::-1] construct
t = np.concatenate([tm[::-1],tp])
y = np.concatenate([ym[::-1],yp])
this produces
I have a differential equation:
from scipy.integrate import odeint
import matplotlib.pyplot as plt
# function that returns dy/dt
def model(y,t):
k = 0.3
dydt = -k * y
return dydt
# initial condition
y0 = 5
# time points
t = np.linspace(0,10)
t1=2
# solve ODE
y = odeint(model,y0,t)
And I want to evaluate the solution of this differential equation on two different points. For example I want y(t=2) and y(t=3).
I can solve the problem in the following way:
Suppose that you need y(2). Then you, define
t = np.linspace(0,2)
and just print
print y[-1]
In order to get the value of y(2). However I think that this procedure is slow, since I need to do the same again in order to calculate y(3), and if I want another point I need to do same again. So there is some faster way to do this?
isn't this just:
y = odeint(model, y0, [0, 2, 3])[1:]
i.e. the third parameter just specifies the values of t that you want back.
as an example of printing the results out, we'd just follow the above with:
print(f'y(2) = {y[0,0]}')
print(f'y(3) = {y[1,0]}')
which gives me:
y(2) = 2.7440582441900494
y(3) = 2.032848408317066
which seems the same as the anytical solution:
5 * np.exp(-0.3 * np.array([2,3]))
You can get exactly what you want if you use solve_ivp with the dense-output option
from scipy.integrate import solve_ivp
# function that returns dy/dt
def model(t,y):
k = 0.3
dydt = -k * y
return dydt
# initial condition
y0 = [5]
# solve ODE
res = solve_ivp(model,[0,10],y0,dense_output=True)
y = lambda t: res.sol(t)[0]
for t in [2,3,3.4]:
print(f'y({t}) = {y(t)}')
with the output
y(2) = 2.743316182689662
y(3) = 2.0315223673200338
y(3.4) = 1.802238620366918
Here is my code.
import numpy as np
from scipy.integrate import odeint
#Constant
R0=1.475
gamma=2.
ScaleMeVfm3toEskm3 = 8.92*np.power(10.,-7.)
def EOSe(p):
return np.power((p/450.785),(1./gamma))
def M(m,r):
return (4./3.)*np.pi*np.power(r,3.)*p
# function that returns dz/dt
def model(z,r):
p, m = z
dpdr = -((R0*EOSe(p)*m)/(np.power(r,2.)))*(1+(p/EOSe(p)))*(1+((4*math.pi*(np.power(r,3))*p)/(m)))*((1-((2*R0)*m)/(r))**(-1.))
dmdr = 4.*math.pi*(r**2.)*EOSe(p)
dzdr = [dpdr,dmdr]
return dzdr
# initial condition
r0=10.**-12.
p0=10**-6.
z0 = [p0, M(r0, p0)]
# radius
r = np.linspace(r0, 15, 100000)
# solve ODE
z = odeint(model,z0,r)
The result of z[:,0] keeps decreasing as I expected. But what I want is only positive values. One may run the code and try print(z[69306]) and it will show [2.89636405e-11 5.46983202e-01]. That is the last point I want the odeint to stop integration.
Of course, the provided code shows
RuntimeWarning: invalid value encountered in power
return np.power((p/450.785),(1./gamma))
because the result of p starts being negative. For any further points, the odeint yields the result [nan nan].
However, I could use np.nanmin() to find the minimum of z[:,0] that is not nan. But I have a set of p0 values for my work. I will need to call odeint in a loop like
P=np.linspace(10**-8.,10**-2.,10000)
for p0 in P:
#the code for solving ode provided above.
which takes more time.
I think it would reduce a time for execution if I can just stop at before z[:,0] going to be negative a value?
Here is the modified code using solve_ivp:
import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pylab as plt
# Constants
R0 = 1.475
gamma = 2.
def EOSe(p):
return np.power(np.abs(p)/450.785, 1./gamma)
def M(m, r):
return (4./3.)*np.pi*np.power(r,3.)*p
# function that returns dz/dt
# note: the argument order is reversed compared to `odeint`
def model(r, z):
p, m = z
dpdr = -R0*EOSe(p)*m/r**2*(1 + p/EOSe(p))*(1 + 4*np.pi*r**3*p/m)*(1 - 2*R0*m/r)**(-1)
dmdr = 4*np.pi * r**2 * EOSe(p)
dzdr = [dpdr, dmdr]
return dzdr
# initial condition
r0 = 1e-3
r_max = 50
p0 = 1e-6
z0 = [p0, M(r0, p0)]
# Define the event function
# from the doc: "The solver will find an accurate value
# of t at which event(t, y(t)) = 0 using a root-finding algorithm. "
def stop_condition(r, z):
return z[0]
stop_condition.terminal = True
# solve ODE
r_span = (r0, r_max)
sol = solve_ivp(model, r_span, z0,
events=stop_condition)
print(sol.message)
print('last p, m = ', sol.y[:, -1], 'for r_event=', sol.t_events[0][0])
r_sol = sol.t
p_sol = sol.y[0, :]
m_sol = sol.y[1, :]
# Graph
plt.subplot(2, 1, 1);
plt.plot(r_sol, p_sol, '.-b')
plt.xlabel('r'); plt.ylabel('p');
plt.subplot(2, 1, 2);
plt.plot(r_sol, m_sol, '.-r')
plt.xlabel('r'); plt.ylabel('m');
Actually, using events in this case do not prevent a warning because of negative p. The reason is that the solver is going to evaluate the model for p<O anyway. A solution is to take the absolute value of p in the square root (as in the code above). Using np.sign(p)*np.power(np.abs(p)/450.785, 1./gamma) gives interesting result too.
I am trying to solve this differential equation as part of my assignment. I am not able to understand on how can i put the condition for u in the code. In the code shown below, i arbitrarily provided
u = 5.
2dx(t)dt=−x(t)+u(t)
5dy(t)dt=−y(t)+x(t)
u=2S(t−5)
x(0)=0
y(0)=0
where S(t−5) is a step function that changes from zero to one at t=5. When it is multiplied by two, it changes from zero to two at that same time, t=5.
def model(x,t,u):
dxdt = (-x+u)/2
return dxdt
def model2(y,x,t):
dydt = -(y+x)/5
return dydt
x0 = 0
y0 = 0
u = 5
t = np.linspace(0,40)
x = odeint(model,x0,t,args=(u,))
y = odeint(model2,y0,t,args=(u,))
plt.plot(t,x,'r-')
plt.plot(t,y,'b*')
plt.show()
I do not know the SciPy Library very well, but regarding the example in the documentation I would try something like this:
def model(x, t, K, PT)
"""
The model consists of the state x in R^2, the time in R and the two
parameters K and PT regarding the input u as step function, where K
is the infimum of u and PT is the delay of the step.
"""
x1, x2 = x # Split the state into two variables
u = K if t>=PT else 0 # This is the system input
# Here comes the differential equation in vectorized form
dx = [(-x1 + u)/2,
(-x2 + x1)/5]
return dx
x0 = [0, 0]
K = 2
PT = 5
t = np.linspace(0,40)
x = odeint(model, x0, t, args=(K, PT))
plt.plot(t, x[:, 0], 'r-')
plt.plot(t, x[:, 1], 'b*')
plt.show()
You have a couple of issues here, and the step function is only a small part of it. You can define a step function with a simple lambda and then simply capture it from the outer scope without even passing it to your function. Because sometimes that won't be the case, we'll be explicit and pass it.
Your next problem is the order of arguments in the function to integrate. As per the docs (y,t,...). Ie, First the function, then the time vector, then the other args arguments. So for the first part we get:
u = lambda t : 2 if t>5 else 0
def model(x,t,u):
dxdt = (-x+u(t))/2
return dxdt
x0 = 0
y0 = 0
t = np.linspace(0,40)
x = odeint(model,x0,t,args=(u,))
Moving to the next part, the trouble is, you can't feed x as an arg to y because it's a vector of values for x(t) for particular times and so y+x doesn't make sense in the function as you wrote it. You can follow your intuition from math class if you pass an x function instead of the x values. Doing so requires that you interpolate the x values using the specific time values you are interested in (which scipy can handle, no problem):
from scipy.interpolate import interp1d
xfunc = interp1d(t.flatten(),x.flatten(),fill_value="extrapolate")
#flatten cuz the shape is off , extrapolate because odeint will go out of bounds
def model2(y,t,x):
dydt = -(y+x(t))/5
return dydt
y = odeint(model2,y0,t,args=(xfunc,))
Then you get:
#Sven's answer is more idiomatic for vector programming like scipy/numpy. But I hope my answer provides a clearer path from what you know already to a working solution.
I am totally new to python, and try to integrate following ode:
$\dot{x} = -2x-y^2$
$\dot{y} = -y-x^2
This results in an array with everything 0 though
What am I doing wrong? It is mostly copied code, and with another, not coupled ode it worked fine.
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import ode
def fun(t, z):
"""
Right hand side of the differential equations
dx/dt = -omega * y
dy/dt = omega * x
"""
x, y = z
f = [-2*x-y**2, -y-x**2]
return f
# Create an `ode` instance to solve the system of differential
# equations defined by `fun`, and set the solver method to 'dop853'.
solver = ode(fun)
solver.set_integrator('dopri5')
# Set the initial value z(0) = z0.
t0 = 0.0
z0 = [0, 0]
solver.set_initial_value(z0, t0)
# Create the array `t` of time values at which to compute
# the solution, and create an array to hold the solution.
# Put the initial value in the solution array.
t1 = 2.5
N = 75
t = np.linspace(t0, t1, N)
sol = np.empty((N, 2))
sol[0] = z0
# Repeatedly call the `integrate` method to advance the
# solution to time t[k], and save the solution in sol[k].
k = 1
while solver.successful() and solver.t < t1:
solver.integrate(t[k])
sol[k] = solver.y
k += 1
# Plot the solution...
plt.plot(t, sol[:,0], label='x')
plt.plot(t, sol[:,1], label='y')
plt.xlabel('t')
plt.grid(True)
plt.legend()
plt.show()
Your initial state (z0) is [0,0]. The time derivative (fun) for this initial state is also [0,0]. Hence, for this initial condition, [0,0] is the correct solution for all times.
If you change your initial condition to some other value, you should observe more interesting result.