What is the difference between 3/2 and -3/2? - python

I am beginner in programming and Python. I am doing some simple maths operations. So 3/2 in Python interpreter gives 1 as we know. But -3/2 gives -2. Can you point out the difference here?

In Python 2, / performs integer division. What this means is that the result, if it is not an integer, is rounded down to the next integer value. When the value is negative, this naturally rounds to a greater-magnitude negative number.
Intuitively, the result of integer division is simply the mathematical floor of the result of float division. For this reason, integer division is also commonly referred to as floor division.
floor(1.5) # Returns 1.0
floor(-1.5) # Returns -2.0
It's possible to alter this behavior in Python 2 by putting from __future__ import division at the top of your module. This import will make the / operator indicate only true division (float division), and enable explicit floor division (integer division) with the // operator. These conventions are the standard in Python 3.
from __future__ import division
print(3/2) # 1.5
print(3//2) # 1
As #Dunes notes in the comments, it's worth noting that - has a higher precedence than /, and therefore -3/2 is equivalent to (-3)/2 rather than -(3/2). If the division were applied first, the result would indeed be -1.

-3/2 == -1.5 , floor(-1.5) = -2
likewise
3/2 == 1.5 , floor(1.5) = 1

Python has two division operators.
/
//
Here, // will always round the result to the nearest integer (irrespective of the type of operands). This is called floor division. But / will round to the nearest integer, if both the operands are integers wheres it does the actual division if either of the operands is a float.
The difference can be clearly understood with this example,
>>> 11/4
2
>>> 11.0/4
2.75
>>> 11//4
2
>>> 11.0//4.0
2.0
Quoting from Python Documentation on floor division,
Mathematical division that rounds down to nearest integer. The floor division operator is //. For example, the expression 11 // 4 evaluates to 2 in contrast to the 2.75 returned by float true division. Note that (-11) // 4 is -3 because that is -2.75 rounded downward. See PEP 238.
The last line in the quoted text would be the answer to your actual question.

Related

Why this overflow is occuring? [duplicate]

Is there a benefit to using one over the other? In Python 2, they both seem to return the same results:
>>> 6/3
2
>>> 6//3
2
In Python 3.x, 5 / 2 will return 2.5 and 5 // 2 will return 2. The former is floating point division, and the latter is floor division, sometimes also called integer division.
In Python 2.2 or later in the 2.x line, there is no difference for integers unless you perform a from __future__ import division, which causes Python 2.x to adopt the 3.x behavior.
Regardless of the future import, 5.0 // 2 will return 2.0 since that's the floor division result of the operation.
You can find a detailed description at PEP 238: Changing the Division Operator.
Python 2.x Clarification:
To clarify for the Python 2.x line, / is neither floor division nor true division.
/ is floor division when both args are int, but is true division when either of the args are float.
// implements "floor division", regardless of your type. So
1.0/2.0 will give 0.5, but both 1/2, 1//2 and 1.0//2.0 will give 0.
See PEP 238: Changing the Division Operator for details.
/ → Floating point division
// → Floor division
Let’s see some examples in both Python 2.7 and in Python 3.5.
Python 2.7.10 vs. Python 3.5
print (2/3) ----> 0 Python 2.7
print (2/3) ----> 0.6666666666666666 Python 3.5
Python 2.7.10 vs. Python 3.5
print (4/2) ----> 2 Python 2.7
print (4/2) ----> 2.0 Python 3.5
Now if you want to have (in Python 2.7) the same output as in Python 3.5, you can do the following:
Python 2.7.10
from __future__ import division
print (2/3) ----> 0.6666666666666666 # Python 2.7
print (4/2) ----> 2.0 # Python 2.7
Whereas there isn't any difference between floor division in both Python 2.7 and in Python 3.5.
138.93//3 ---> 46.0 # Python 2.7
138.93//3 ---> 46.0 # Python 3.5
4//3 ---> 1 # Python 2.7
4//3 ---> 1 # Python 3.5
As everyone has already answered, // is floor division.
Why this is important is that // is unambiguously floor division, in all Python versions from 2.2, including Python 3.x versions.
The behavior of / can change depending on:
Active __future__ import or not (module-local)
Python command line option, either -Q old or -Q new
>>> print 5.0 / 2
2.5
>>> print 5.0 // 2
2.0
Python 2.7 and other upcoming versions of Python:
Division (/)
Divides left hand operand by right hand operand
Example: 4 / 2 = 2
Floor division (//)
The division of operands where the result is the quotient in which the digits after the decimal point are removed. But if one of the operands is negative, the result is floored, i.e., rounded away from zero (towards negative infinity):
Examples: 9//2 = 4 and 9.0//2.0 = 4.0, -11//3 = -4, -11.0//3 = -4.0
Both / division and // floor division operator are operating in similar fashion.
The double slash, //, is floor division:
>>> 7//3
2
// is floor division. It will always give you the integer floor of the result. The other is 'regular' division.
The previous answers are good. I want to add another point. Up to some values both of them result in the same quotient. After that floor division operator (//) works fine but not division (/) operator:
>>> int(755349677599789174 / 2) # Wrong answer
377674838799894592
>>> 755349677599789174 // 2 # Correct answer
377674838799894587
The answer of the equation is rounded to the next smaller integer or float with .0 as decimal point.
>>>print 5//2
2
>>> print 5.0//2
2.0
>>>print 5//2.0
2.0
>>>print 5.0//2.0
2.0
Python 3.x Clarification
Just to complement some previous answers.
It is important to remark that:
a // b
Is floor division. As in:
math.floor(a/b)
Is not int division. As in:
int(a/b)
Is not round to 0 float division. As in:
round(a/b,0)
As a consequence, the way of behaving is different when it comes to positives an negatives numbers as in the following example:
1 // 2 is 0, as in:
math.floor(1/2)
-1 // 2 is -1, as in:
math.floor(-1/2)
Python 3
Operation
Result
Notes
x / y
quotient of x and y
x // y
floored quotient of x and y
(1)
Notes:
Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily int. The result is always rounded towards minus infinity: 1//2 is 0, (-1)//2 is -1, 1//(-2) is -1, and (-1)//(-2) is 0.
Python 2
Operation
Result
Notes
x / y
quotient of x and y
(1)
x // y
(floored) quotient of x and y
(4)(5)
Notes:
1. For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long integer, regardless of the numeric value.
4. Deprecated since version 2.3: The floor division operator, the modulo operator, and the divmod() function are no longer defined for complex numbers. Instead, convert to a floating point number using the abs() function if appropriate.
5. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily int.
Summary
x//y : EXACT integer division
int(x/y) OR math.floor(x/y): INEXACT integer division (but almost correct)
x/y: floating point division (that has the loss of significance)
Remarkable Calculation Result
import math
N = 1004291331219602346 # huge number
print(N//100) #=> 10042913312196023 is correct answer
print(math.floor(N/100)) #=> 10042913312196024 is wrong answer
print(math.ceil(N/100)) #=> 10042913312196024 is wrong answer
print(int(N/100)) #=> 10042913312196024 is wrong answer
Consideration
I think about the evaluation of int(x/y).
At first, Python evaluate the expression x/y and get INEXACT floating number z.
Second, Python evaluate the expression int(z).
We get a wrong result when the loss of significance cannot be ignored.
// is floor division. It will always give you the floor value of the result.
And the other one, /, is the floating-point division.
In the following is the difference between / and //;
I have run these arithmetic operations in Python 3.7.2.
>>> print (11 / 3)
3.6666666666666665
>>> print (11 // 3)
3
>>> print (11.3 / 3)
3.7666666666666667
>>> print (11.3 // 3)
3.0
5.0//2 results in 2.0, and not 2, because the return type of the return value from // operator follows Python coercion (type casting) rules.
Python promotes conversion of lower data type (integer) to higher data type (float) to avoid data loss.

Python:Two different compilers return two different results [duplicate]

Is there a benefit to using one over the other? In Python 2, they both seem to return the same results:
>>> 6/3
2
>>> 6//3
2
In Python 3.x, 5 / 2 will return 2.5 and 5 // 2 will return 2. The former is floating point division, and the latter is floor division, sometimes also called integer division.
In Python 2.2 or later in the 2.x line, there is no difference for integers unless you perform a from __future__ import division, which causes Python 2.x to adopt the 3.x behavior.
Regardless of the future import, 5.0 // 2 will return 2.0 since that's the floor division result of the operation.
You can find a detailed description at PEP 238: Changing the Division Operator.
Python 2.x Clarification:
To clarify for the Python 2.x line, / is neither floor division nor true division.
/ is floor division when both args are int, but is true division when either of the args are float.
// implements "floor division", regardless of your type. So
1.0/2.0 will give 0.5, but both 1/2, 1//2 and 1.0//2.0 will give 0.
See PEP 238: Changing the Division Operator for details.
/ → Floating point division
// → Floor division
Let’s see some examples in both Python 2.7 and in Python 3.5.
Python 2.7.10 vs. Python 3.5
print (2/3) ----> 0 Python 2.7
print (2/3) ----> 0.6666666666666666 Python 3.5
Python 2.7.10 vs. Python 3.5
print (4/2) ----> 2 Python 2.7
print (4/2) ----> 2.0 Python 3.5
Now if you want to have (in Python 2.7) the same output as in Python 3.5, you can do the following:
Python 2.7.10
from __future__ import division
print (2/3) ----> 0.6666666666666666 # Python 2.7
print (4/2) ----> 2.0 # Python 2.7
Whereas there isn't any difference between floor division in both Python 2.7 and in Python 3.5.
138.93//3 ---> 46.0 # Python 2.7
138.93//3 ---> 46.0 # Python 3.5
4//3 ---> 1 # Python 2.7
4//3 ---> 1 # Python 3.5
As everyone has already answered, // is floor division.
Why this is important is that // is unambiguously floor division, in all Python versions from 2.2, including Python 3.x versions.
The behavior of / can change depending on:
Active __future__ import or not (module-local)
Python command line option, either -Q old or -Q new
>>> print 5.0 / 2
2.5
>>> print 5.0 // 2
2.0
Python 2.7 and other upcoming versions of Python:
Division (/)
Divides left hand operand by right hand operand
Example: 4 / 2 = 2
Floor division (//)
The division of operands where the result is the quotient in which the digits after the decimal point are removed. But if one of the operands is negative, the result is floored, i.e., rounded away from zero (towards negative infinity):
Examples: 9//2 = 4 and 9.0//2.0 = 4.0, -11//3 = -4, -11.0//3 = -4.0
Both / division and // floor division operator are operating in similar fashion.
The double slash, //, is floor division:
>>> 7//3
2
// is floor division. It will always give you the integer floor of the result. The other is 'regular' division.
The previous answers are good. I want to add another point. Up to some values both of them result in the same quotient. After that floor division operator (//) works fine but not division (/) operator:
>>> int(755349677599789174 / 2) # Wrong answer
377674838799894592
>>> 755349677599789174 // 2 # Correct answer
377674838799894587
The answer of the equation is rounded to the next smaller integer or float with .0 as decimal point.
>>>print 5//2
2
>>> print 5.0//2
2.0
>>>print 5//2.0
2.0
>>>print 5.0//2.0
2.0
Python 3.x Clarification
Just to complement some previous answers.
It is important to remark that:
a // b
Is floor division. As in:
math.floor(a/b)
Is not int division. As in:
int(a/b)
Is not round to 0 float division. As in:
round(a/b,0)
As a consequence, the way of behaving is different when it comes to positives an negatives numbers as in the following example:
1 // 2 is 0, as in:
math.floor(1/2)
-1 // 2 is -1, as in:
math.floor(-1/2)
Python 3
Operation
Result
Notes
x / y
quotient of x and y
x // y
floored quotient of x and y
(1)
Notes:
Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily int. The result is always rounded towards minus infinity: 1//2 is 0, (-1)//2 is -1, 1//(-2) is -1, and (-1)//(-2) is 0.
Python 2
Operation
Result
Notes
x / y
quotient of x and y
(1)
x // y
(floored) quotient of x and y
(4)(5)
Notes:
1. For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long integer, regardless of the numeric value.
4. Deprecated since version 2.3: The floor division operator, the modulo operator, and the divmod() function are no longer defined for complex numbers. Instead, convert to a floating point number using the abs() function if appropriate.
5. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily int.
Summary
x//y : EXACT integer division
int(x/y) OR math.floor(x/y): INEXACT integer division (but almost correct)
x/y: floating point division (that has the loss of significance)
Remarkable Calculation Result
import math
N = 1004291331219602346 # huge number
print(N//100) #=> 10042913312196023 is correct answer
print(math.floor(N/100)) #=> 10042913312196024 is wrong answer
print(math.ceil(N/100)) #=> 10042913312196024 is wrong answer
print(int(N/100)) #=> 10042913312196024 is wrong answer
Consideration
I think about the evaluation of int(x/y).
At first, Python evaluate the expression x/y and get INEXACT floating number z.
Second, Python evaluate the expression int(z).
We get a wrong result when the loss of significance cannot be ignored.
// is floor division. It will always give you the floor value of the result.
And the other one, /, is the floating-point division.
In the following is the difference between / and //;
I have run these arithmetic operations in Python 3.7.2.
>>> print (11 / 3)
3.6666666666666665
>>> print (11 // 3)
3
>>> print (11.3 / 3)
3.7666666666666667
>>> print (11.3 // 3)
3.0
5.0//2 results in 2.0, and not 2, because the return type of the return value from // operator follows Python coercion (type casting) rules.
Python promotes conversion of lower data type (integer) to higher data type (float) to avoid data loss.

Python:why 10 / -7 is -2 in python? [duplicate]

Is there a benefit to using one over the other? In Python 2, they both seem to return the same results:
>>> 6/3
2
>>> 6//3
2
In Python 3.x, 5 / 2 will return 2.5 and 5 // 2 will return 2. The former is floating point division, and the latter is floor division, sometimes also called integer division.
In Python 2.2 or later in the 2.x line, there is no difference for integers unless you perform a from __future__ import division, which causes Python 2.x to adopt the 3.x behavior.
Regardless of the future import, 5.0 // 2 will return 2.0 since that's the floor division result of the operation.
You can find a detailed description at PEP 238: Changing the Division Operator.
Python 2.x Clarification:
To clarify for the Python 2.x line, / is neither floor division nor true division.
/ is floor division when both args are int, but is true division when either of the args are float.
// implements "floor division", regardless of your type. So
1.0/2.0 will give 0.5, but both 1/2, 1//2 and 1.0//2.0 will give 0.
See PEP 238: Changing the Division Operator for details.
/ → Floating point division
// → Floor division
Let’s see some examples in both Python 2.7 and in Python 3.5.
Python 2.7.10 vs. Python 3.5
print (2/3) ----> 0 Python 2.7
print (2/3) ----> 0.6666666666666666 Python 3.5
Python 2.7.10 vs. Python 3.5
print (4/2) ----> 2 Python 2.7
print (4/2) ----> 2.0 Python 3.5
Now if you want to have (in Python 2.7) the same output as in Python 3.5, you can do the following:
Python 2.7.10
from __future__ import division
print (2/3) ----> 0.6666666666666666 # Python 2.7
print (4/2) ----> 2.0 # Python 2.7
Whereas there isn't any difference between floor division in both Python 2.7 and in Python 3.5.
138.93//3 ---> 46.0 # Python 2.7
138.93//3 ---> 46.0 # Python 3.5
4//3 ---> 1 # Python 2.7
4//3 ---> 1 # Python 3.5
As everyone has already answered, // is floor division.
Why this is important is that // is unambiguously floor division, in all Python versions from 2.2, including Python 3.x versions.
The behavior of / can change depending on:
Active __future__ import or not (module-local)
Python command line option, either -Q old or -Q new
>>> print 5.0 / 2
2.5
>>> print 5.0 // 2
2.0
Python 2.7 and other upcoming versions of Python:
Division (/)
Divides left hand operand by right hand operand
Example: 4 / 2 = 2
Floor division (//)
The division of operands where the result is the quotient in which the digits after the decimal point are removed. But if one of the operands is negative, the result is floored, i.e., rounded away from zero (towards negative infinity):
Examples: 9//2 = 4 and 9.0//2.0 = 4.0, -11//3 = -4, -11.0//3 = -4.0
Both / division and // floor division operator are operating in similar fashion.
The double slash, //, is floor division:
>>> 7//3
2
// is floor division. It will always give you the integer floor of the result. The other is 'regular' division.
The previous answers are good. I want to add another point. Up to some values both of them result in the same quotient. After that floor division operator (//) works fine but not division (/) operator:
>>> int(755349677599789174 / 2) # Wrong answer
377674838799894592
>>> 755349677599789174 // 2 # Correct answer
377674838799894587
The answer of the equation is rounded to the next smaller integer or float with .0 as decimal point.
>>>print 5//2
2
>>> print 5.0//2
2.0
>>>print 5//2.0
2.0
>>>print 5.0//2.0
2.0
Python 3.x Clarification
Just to complement some previous answers.
It is important to remark that:
a // b
Is floor division. As in:
math.floor(a/b)
Is not int division. As in:
int(a/b)
Is not round to 0 float division. As in:
round(a/b,0)
As a consequence, the way of behaving is different when it comes to positives an negatives numbers as in the following example:
1 // 2 is 0, as in:
math.floor(1/2)
-1 // 2 is -1, as in:
math.floor(-1/2)
Python 3
Operation
Result
Notes
x / y
quotient of x and y
x // y
floored quotient of x and y
(1)
Notes:
Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily int. The result is always rounded towards minus infinity: 1//2 is 0, (-1)//2 is -1, 1//(-2) is -1, and (-1)//(-2) is 0.
Python 2
Operation
Result
Notes
x / y
quotient of x and y
(1)
x // y
(floored) quotient of x and y
(4)(5)
Notes:
1. For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long integer, regardless of the numeric value.
4. Deprecated since version 2.3: The floor division operator, the modulo operator, and the divmod() function are no longer defined for complex numbers. Instead, convert to a floating point number using the abs() function if appropriate.
5. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not necessarily int.
Summary
x//y : EXACT integer division
int(x/y) OR math.floor(x/y): INEXACT integer division (but almost correct)
x/y: floating point division (that has the loss of significance)
Remarkable Calculation Result
import math
N = 1004291331219602346 # huge number
print(N//100) #=> 10042913312196023 is correct answer
print(math.floor(N/100)) #=> 10042913312196024 is wrong answer
print(math.ceil(N/100)) #=> 10042913312196024 is wrong answer
print(int(N/100)) #=> 10042913312196024 is wrong answer
Consideration
I think about the evaluation of int(x/y).
At first, Python evaluate the expression x/y and get INEXACT floating number z.
Second, Python evaluate the expression int(z).
We get a wrong result when the loss of significance cannot be ignored.
// is floor division. It will always give you the floor value of the result.
And the other one, /, is the floating-point division.
In the following is the difference between / and //;
I have run these arithmetic operations in Python 3.7.2.
>>> print (11 / 3)
3.6666666666666665
>>> print (11 // 3)
3
>>> print (11.3 / 3)
3.7666666666666667
>>> print (11.3 // 3)
3.0
5.0//2 results in 2.0, and not 2, because the return type of the return value from // operator follows Python coercion (type casting) rules.
Python promotes conversion of lower data type (integer) to higher data type (float) to avoid data loss.

Two forward slashes in Python

I came across this sample of code from a radix sort:
def getDigit(num, base, digit_num):
# pulls the selected digit
return (num // base ** digit_num) % base
What does the // do in Python?
// is the floor division operator. It produces the floor of the quotient of its operands, without floating-point rounding for integer operands. This is also sometimes referred to as integer division, even though you can use it with floats, because dividing integers with / used to do this by default.
In Python 3, the ordinary / division operator returns floating point values even if both operands are integers, so a different operator is needed for floor division. This is different from Python 2 where / performed floor division if both operands were integers and floating point division if at least one of the operands was a floating point value.
The // operator was first introduced for forward-compatibility in Python 2.2 when it was decided that Python 3 should have this new ability. Together with the ability to enable the Python 3 behavior via from __future__ import division (also introduced in Python 2.2), this enables you to write Python 3-compatible code in Python 2.
You can just try it:
In []: 5/2
Out[]: 2
In []: 5.0/2
Out[]: 2.5
In []: 5.0//2
Out[]: 2.0
This should be self-explanatory.
(This is in Python 2.7.)
Python3 supports two types of division, floating point (/) and integer (//).
Floating point: 45/2 = 22.5
Integer: 45//2 = 22

Why does Python give the "wrong" answer for square root? What is integer division in Python 2? [duplicate]

This question already has answers here:
How can I force division to be floating point? Division keeps rounding down to 0?
(11 answers)
Closed last year.
x = 16
sqrt = x**(.5) #returns 4
sqrt = x**(1/2) #returns 1
I know I can import math and use sqrt, but I'm looking for an answer to the above. What is integer division in Python 2? This behavior is fixed in Python 3.
In Python 2, sqrt=x**(1/2) does integer division. 1/2 == 0.
So x(1/2) equals x(0), which is 1.
It's not wrong, it's the right answer to a different question.
If you want to calculate the square root without an import of the math module, you'll need to use x**(1.0/2) or x**(1/2.). One of the integers needs to be a floating number.
Note: this is not the case in Python 3, where 1/2 would be 0.5 and 1//2 would instead be integer division.
You have to write: sqrt = x**(1/2.0), otherwise an integer division is performed and the expression 1/2 returns 0.
This behavior is "normal" in Python 2.x, whereas in Python 3.x 1/2 evaluates to 0.5. If you want your Python 2.x code to behave like 3.x w.r.t. division write from __future__ import division - then 1/2 will evaluate to 0.5 and for backwards compatibility, 1//2 will evaluate to 0.
And for the record, the preferred way to calculate a square root is this:
import math
math.sqrt(x)
/ performs an integer division in Python 2:
>>> 1/2
0
If one of the numbers is a float, it works as expected:
>>> 1.0/2
0.5
>>> 16**(1.0/2)
4.0
What you're seeing is integer division. To get floating point division by default,
from __future__ import division
Or, you could convert 1 or 2 of 1/2 into a floating point value.
sqrt = x**(1.0/2)
Perhaps a simple way to remember: add a dot after the numerator (or denominator)
16 ** (1. / 2) # 4
289 ** (1. / 2) # 17
27 ** (1. / 3) # 3

Categories