Convert Pandas Column to DateTime - python

I have one field in a pandas DataFrame that was imported as string format.
It should be a datetime variable. How do I convert it to a datetime column and then filter based on date.
Example:
df = pd.DataFrame({'date': ['05SEP2014:00:00:00.000']})

Use the to_datetime function, specifying a format to match your data.
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')

If you have more than one column to be converted you can do the following:
df[["col1", "col2", "col3"]] = df[["col1", "col2", "col3"]].apply(pd.to_datetime)

You can use the DataFrame method .apply() to operate on the values in Mycol:
>>> df = pd.DataFrame(['05SEP2014:00:00:00.000'],columns=['Mycol'])
>>> df
Mycol
0 05SEP2014:00:00:00.000
>>> import datetime as dt
>>> df['Mycol'] = df['Mycol'].apply(lambda x:
dt.datetime.strptime(x,'%d%b%Y:%H:%M:%S.%f'))
>>> df
Mycol
0 2014-09-05

Use the pandas to_datetime function to parse the column as DateTime. Also, by using infer_datetime_format=True, it will automatically detect the format and convert the mentioned column to DateTime.
import pandas as pd
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], infer_datetime_format=True)

chrisb's answer works:
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')
however it results in a Python warning of
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
I would guess this is due to some chaining indexing.

Time Saver:
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'])

To silence SettingWithCopyWarning
If you got this warning, then that means your dataframe was probably created by filtering another dataframe. Make a copy of your dataframe before any assignment and you're good to go.
df = df.copy()
df['date'] = pd.to_datetime(df['date'], format='%d%b%Y:%H:%M:%S.%f')
errors='coerce' is useful
If some rows are not in the correct format or not datetime at all, errors= parameter is very useful, so that you can convert the valid rows and handle the rows that contained invalid values later.
df['date'] = pd.to_datetime(df['date'], format='%d%b%Y:%H:%M:%S.%f', errors='coerce')
# for multiple columns
df[['start', 'end']] = df[['start', 'end']].apply(pd.to_datetime, format='%d%b%Y:%H:%M:%S.%f', errors='coerce')
Setting the correct format= is much faster than letting pandas find out1
Long story short, passing the correct format= from the beginning as in chrisb's post is much faster than letting pandas figure out the format, especially if the format contains time component. The runtime difference for dataframes greater than 10k rows is huge (~25 times faster, so we're talking like a couple minutes vs a few seconds). All valid format options can be found at https://strftime.org/.
1 Code used to produce the timeit test plot.
import perfplot
from random import choices
from datetime import datetime
mdYHMSf = range(1,13), range(1,29), range(2000,2024), range(24), *[range(60)]*2, range(1000)
perfplot.show(
kernels=[lambda x: pd.to_datetime(x),
lambda x: pd.to_datetime(x, format='%m/%d/%Y %H:%M:%S.%f'),
lambda x: pd.to_datetime(x, infer_datetime_format=True),
lambda s: s.apply(lambda x: datetime.strptime(x, '%m/%d/%Y %H:%M:%S.%f'))],
labels=["pd.to_datetime(df['date'])",
"pd.to_datetime(df['date'], format='%m/%d/%Y %H:%M:%S.%f')",
"pd.to_datetime(df['date'], infer_datetime_format=True)",
"df['date'].apply(lambda x: datetime.strptime(x, '%m/%d/%Y %H:%M:%S.%f'))"],
n_range=[2**k for k in range(20)],
setup=lambda n: pd.Series([f"{m}/{d}/{Y} {H}:{M}:{S}.{f}"
for m,d,Y,H,M,S,f in zip(*[choices(e, k=n) for e in mdYHMSf])]),
equality_check=pd.Series.equals,
xlabel='len(df)'
)

Just like we convert object data type to float or int. Use astype()
raw_data['Mycol']=raw_data['Mycol'].astype('datetime64[ns]')

Related

The fastest way to create a new column in the pandas dataframe that satisfies two conditions

I need to create a new column ('new_date') in pandas based on the conditions on the other two columns ('date' and 'hour'), which are integers. My code is doing what I need but it's too SLOW for big dataframes. Please see my code below.
import pandas as pd
import time
df = pd.DataFrame(data={'date': [20150101, 20150102, 20150103, 20150104, 20150105], 'hour': [113000, 142500,170000,235999,81500]})
def convert_date(row):
if row['hour']!=235999:
val = pd.to_datetime(row['date'], format='%Y%m%d') # convert the integer to date format
else:
val = pd.to_datetime(row['date'], format='%Y%m%d')+pd.offsets.BDay(1) # convert the integer to date format and add one business day
return val
start_time = time.time()
df['new_date']= df.apply(convert_date, axis=1)
print(round(time.time() - start_time,2), 'Seconds')
I also used this code which is too slow too!
df['new_date']= df.apply(lambda row: pd.to_datetime(row['date'], format='%Y%m%d') if row['hour']!=235999 else pd.to_datetime(row['date'], format='%Y%m%d')+pd.offsets.BDay(1), axis=1)
You can replace the function with the following approach using .loc(). That way you wouldn't have to loop throw individual rows.
df['new_date'] = pd.to_datetime(df['date'], format='%Y%m%d')
df.loc[df['hour'] == 235999, 'new_date'] += pd.offsets.BDay(1)
You can also use the df.where() method
df['new_date'] = pd.to_datetime(df['date'], format='%Y%m%d')
df['new_date'] = df['new_date'].where(df['hour'] != 235999, df['new_date'] + pd.offsets.BDay(1))
Both approaches are more efficient than your costume function.

Change datetime format on a column of a dataframe [duplicate]

I have one field in a pandas DataFrame that was imported as string format.
It should be a datetime variable. How do I convert it to a datetime column and then filter based on date.
Example:
df = pd.DataFrame({'date': ['05SEP2014:00:00:00.000']})
Use the to_datetime function, specifying a format to match your data.
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')
If you have more than one column to be converted you can do the following:
df[["col1", "col2", "col3"]] = df[["col1", "col2", "col3"]].apply(pd.to_datetime)
You can use the DataFrame method .apply() to operate on the values in Mycol:
>>> df = pd.DataFrame(['05SEP2014:00:00:00.000'],columns=['Mycol'])
>>> df
Mycol
0 05SEP2014:00:00:00.000
>>> import datetime as dt
>>> df['Mycol'] = df['Mycol'].apply(lambda x:
dt.datetime.strptime(x,'%d%b%Y:%H:%M:%S.%f'))
>>> df
Mycol
0 2014-09-05
Use the pandas to_datetime function to parse the column as DateTime. Also, by using infer_datetime_format=True, it will automatically detect the format and convert the mentioned column to DateTime.
import pandas as pd
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], infer_datetime_format=True)
chrisb's answer works:
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')
however it results in a Python warning of
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
I would guess this is due to some chaining indexing.
Time Saver:
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'])
To silence SettingWithCopyWarning
If you got this warning, then that means your dataframe was probably created by filtering another dataframe. Make a copy of your dataframe before any assignment and you're good to go.
df = df.copy()
df['date'] = pd.to_datetime(df['date'], format='%d%b%Y:%H:%M:%S.%f')
errors='coerce' is useful
If some rows are not in the correct format or not datetime at all, errors= parameter is very useful, so that you can convert the valid rows and handle the rows that contained invalid values later.
df['date'] = pd.to_datetime(df['date'], format='%d%b%Y:%H:%M:%S.%f', errors='coerce')
# for multiple columns
df[['start', 'end']] = df[['start', 'end']].apply(pd.to_datetime, format='%d%b%Y:%H:%M:%S.%f', errors='coerce')
Setting the correct format= is much faster than letting pandas find out1
Long story short, passing the correct format= from the beginning as in chrisb's post is much faster than letting pandas figure out the format, especially if the format contains time component. The runtime difference for dataframes greater than 10k rows is huge (~25 times faster, so we're talking like a couple minutes vs a few seconds). All valid format options can be found at https://strftime.org/.
1 Code used to produce the timeit test plot.
import perfplot
from random import choices
from datetime import datetime
mdYHMSf = range(1,13), range(1,29), range(2000,2024), range(24), *[range(60)]*2, range(1000)
perfplot.show(
kernels=[lambda x: pd.to_datetime(x),
lambda x: pd.to_datetime(x, format='%m/%d/%Y %H:%M:%S.%f'),
lambda x: pd.to_datetime(x, infer_datetime_format=True),
lambda s: s.apply(lambda x: datetime.strptime(x, '%m/%d/%Y %H:%M:%S.%f'))],
labels=["pd.to_datetime(df['date'])",
"pd.to_datetime(df['date'], format='%m/%d/%Y %H:%M:%S.%f')",
"pd.to_datetime(df['date'], infer_datetime_format=True)",
"df['date'].apply(lambda x: datetime.strptime(x, '%m/%d/%Y %H:%M:%S.%f'))"],
n_range=[2**k for k in range(20)],
setup=lambda n: pd.Series([f"{m}/{d}/{Y} {H}:{M}:{S}.{f}"
for m,d,Y,H,M,S,f in zip(*[choices(e, k=n) for e in mdYHMSf])]),
equality_check=pd.Series.equals,
xlabel='len(df)'
)
Just like we convert object data type to float or int. Use astype()
raw_data['Mycol']=raw_data['Mycol'].astype('datetime64[ns]')

pd.to_datetime does not convert properly for one cell but works for rest of the cells [duplicate]

I have one field in a pandas DataFrame that was imported as string format.
It should be a datetime variable. How do I convert it to a datetime column and then filter based on date.
Example:
df = pd.DataFrame({'date': ['05SEP2014:00:00:00.000']})
Use the to_datetime function, specifying a format to match your data.
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')
If you have more than one column to be converted you can do the following:
df[["col1", "col2", "col3"]] = df[["col1", "col2", "col3"]].apply(pd.to_datetime)
You can use the DataFrame method .apply() to operate on the values in Mycol:
>>> df = pd.DataFrame(['05SEP2014:00:00:00.000'],columns=['Mycol'])
>>> df
Mycol
0 05SEP2014:00:00:00.000
>>> import datetime as dt
>>> df['Mycol'] = df['Mycol'].apply(lambda x:
dt.datetime.strptime(x,'%d%b%Y:%H:%M:%S.%f'))
>>> df
Mycol
0 2014-09-05
Use the pandas to_datetime function to parse the column as DateTime. Also, by using infer_datetime_format=True, it will automatically detect the format and convert the mentioned column to DateTime.
import pandas as pd
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], infer_datetime_format=True)
chrisb's answer works:
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')
however it results in a Python warning of
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
I would guess this is due to some chaining indexing.
Time Saver:
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'])
To silence SettingWithCopyWarning
If you got this warning, then that means your dataframe was probably created by filtering another dataframe. Make a copy of your dataframe before any assignment and you're good to go.
df = df.copy()
df['date'] = pd.to_datetime(df['date'], format='%d%b%Y:%H:%M:%S.%f')
errors='coerce' is useful
If some rows are not in the correct format or not datetime at all, errors= parameter is very useful, so that you can convert the valid rows and handle the rows that contained invalid values later.
df['date'] = pd.to_datetime(df['date'], format='%d%b%Y:%H:%M:%S.%f', errors='coerce')
# for multiple columns
df[['start', 'end']] = df[['start', 'end']].apply(pd.to_datetime, format='%d%b%Y:%H:%M:%S.%f', errors='coerce')
Setting the correct format= is much faster than letting pandas find out1
Long story short, passing the correct format= from the beginning as in chrisb's post is much faster than letting pandas figure out the format, especially if the format contains time component. The runtime difference for dataframes greater than 10k rows is huge (~25 times faster, so we're talking like a couple minutes vs a few seconds). All valid format options can be found at https://strftime.org/.
1 Code used to produce the timeit test plot.
import perfplot
from random import choices
from datetime import datetime
mdYHMSf = range(1,13), range(1,29), range(2000,2024), range(24), *[range(60)]*2, range(1000)
perfplot.show(
kernels=[lambda x: pd.to_datetime(x),
lambda x: pd.to_datetime(x, format='%m/%d/%Y %H:%M:%S.%f'),
lambda x: pd.to_datetime(x, infer_datetime_format=True),
lambda s: s.apply(lambda x: datetime.strptime(x, '%m/%d/%Y %H:%M:%S.%f'))],
labels=["pd.to_datetime(df['date'])",
"pd.to_datetime(df['date'], format='%m/%d/%Y %H:%M:%S.%f')",
"pd.to_datetime(df['date'], infer_datetime_format=True)",
"df['date'].apply(lambda x: datetime.strptime(x, '%m/%d/%Y %H:%M:%S.%f'))"],
n_range=[2**k for k in range(20)],
setup=lambda n: pd.Series([f"{m}/{d}/{Y} {H}:{M}:{S}.{f}"
for m,d,Y,H,M,S,f in zip(*[choices(e, k=n) for e in mdYHMSf])]),
equality_check=pd.Series.equals,
xlabel='len(df)'
)
Just like we convert object data type to float or int. Use astype()
raw_data['Mycol']=raw_data['Mycol'].astype('datetime64[ns]')

Convert Date object format to date datatype. Doesnt work with pandas to_datetime function [duplicate]

I have one field in a pandas DataFrame that was imported as string format.
It should be a datetime variable. How do I convert it to a datetime column and then filter based on date.
Example:
df = pd.DataFrame({'date': ['05SEP2014:00:00:00.000']})
Use the to_datetime function, specifying a format to match your data.
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')
If you have more than one column to be converted you can do the following:
df[["col1", "col2", "col3"]] = df[["col1", "col2", "col3"]].apply(pd.to_datetime)
You can use the DataFrame method .apply() to operate on the values in Mycol:
>>> df = pd.DataFrame(['05SEP2014:00:00:00.000'],columns=['Mycol'])
>>> df
Mycol
0 05SEP2014:00:00:00.000
>>> import datetime as dt
>>> df['Mycol'] = df['Mycol'].apply(lambda x:
dt.datetime.strptime(x,'%d%b%Y:%H:%M:%S.%f'))
>>> df
Mycol
0 2014-09-05
Use the pandas to_datetime function to parse the column as DateTime. Also, by using infer_datetime_format=True, it will automatically detect the format and convert the mentioned column to DateTime.
import pandas as pd
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], infer_datetime_format=True)
chrisb's answer works:
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')
however it results in a Python warning of
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
I would guess this is due to some chaining indexing.
Time Saver:
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'])
To silence SettingWithCopyWarning
If you got this warning, then that means your dataframe was probably created by filtering another dataframe. Make a copy of your dataframe before any assignment and you're good to go.
df = df.copy()
df['date'] = pd.to_datetime(df['date'], format='%d%b%Y:%H:%M:%S.%f')
errors='coerce' is useful
If some rows are not in the correct format or not datetime at all, errors= parameter is very useful, so that you can convert the valid rows and handle the rows that contained invalid values later.
df['date'] = pd.to_datetime(df['date'], format='%d%b%Y:%H:%M:%S.%f', errors='coerce')
# for multiple columns
df[['start', 'end']] = df[['start', 'end']].apply(pd.to_datetime, format='%d%b%Y:%H:%M:%S.%f', errors='coerce')
Setting the correct format= is much faster than letting pandas find out1
Long story short, passing the correct format= from the beginning as in chrisb's post is much faster than letting pandas figure out the format, especially if the format contains time component. The runtime difference for dataframes greater than 10k rows is huge (~25 times faster, so we're talking like a couple minutes vs a few seconds). All valid format options can be found at https://strftime.org/.
1 Code used to produce the timeit test plot.
import perfplot
from random import choices
from datetime import datetime
mdYHMSf = range(1,13), range(1,29), range(2000,2024), range(24), *[range(60)]*2, range(1000)
perfplot.show(
kernels=[lambda x: pd.to_datetime(x),
lambda x: pd.to_datetime(x, format='%m/%d/%Y %H:%M:%S.%f'),
lambda x: pd.to_datetime(x, infer_datetime_format=True),
lambda s: s.apply(lambda x: datetime.strptime(x, '%m/%d/%Y %H:%M:%S.%f'))],
labels=["pd.to_datetime(df['date'])",
"pd.to_datetime(df['date'], format='%m/%d/%Y %H:%M:%S.%f')",
"pd.to_datetime(df['date'], infer_datetime_format=True)",
"df['date'].apply(lambda x: datetime.strptime(x, '%m/%d/%Y %H:%M:%S.%f'))"],
n_range=[2**k for k in range(20)],
setup=lambda n: pd.Series([f"{m}/{d}/{Y} {H}:{M}:{S}.{f}"
for m,d,Y,H,M,S,f in zip(*[choices(e, k=n) for e in mdYHMSf])]),
equality_check=pd.Series.equals,
xlabel='len(df)'
)
Just like we convert object data type to float or int. Use astype()
raw_data['Mycol']=raw_data['Mycol'].astype('datetime64[ns]')

How to extract hour from a series [duplicate]

How can I convert a DataFrame column of strings (in dd/mm/yyyy format) to datetime dtype?
The easiest way is to use to_datetime:
df['col'] = pd.to_datetime(df['col'])
It also offers a dayfirst argument for European times (but beware this isn't strict).
Here it is in action:
In [11]: pd.to_datetime(pd.Series(['05/23/2005']))
Out[11]:
0 2005-05-23 00:00:00
dtype: datetime64[ns]
You can pass a specific format:
In [12]: pd.to_datetime(pd.Series(['05/23/2005']), format="%m/%d/%Y")
Out[12]:
0 2005-05-23
dtype: datetime64[ns]
If your date column is a string of the format '2017-01-01'
you can use pandas astype to convert it to datetime.
df['date'] = df['date'].astype('datetime64[ns]')
or use datetime64[D] if you want Day precision and not nanoseconds
print(type(df_launath['date'].iloc[0]))
yields
<class 'pandas._libs.tslib.Timestamp'>
the same as when you use pandas.to_datetime
You can try it with other formats then '%Y-%m-%d' but at least this works.
You can use the following if you want to specify tricky formats:
df['date_col'] = pd.to_datetime(df['date_col'], format='%d/%m/%Y')
More details on format here:
Python 2 https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
Python 3 https://docs.python.org/3.7/library/datetime.html#strftime-strptime-behavior
If you have a mixture of formats in your date, don't forget to set infer_datetime_format=True to make life easier.
df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True)
Source: pd.to_datetime
or if you want a customized approach:
def autoconvert_datetime(value):
formats = ['%m/%d/%Y', '%m-%d-%y'] # formats to try
result_format = '%d-%m-%Y' # output format
for dt_format in formats:
try:
dt_obj = datetime.strptime(value, dt_format)
return dt_obj.strftime(result_format)
except Exception as e: # throws exception when format doesn't match
pass
return value # let it be if it doesn't match
df['date'] = df['date'].apply(autoconvert_datetime)
Try this solution:
Change '2022–12–31 00:00:00' to '2022–12–31 00:00:01'
Then run this code: pandas.to_datetime(pandas.Series(['2022–12–31 00:00:01']))
Output: 2022–12–31 00:00:01
Multiple datetime columns
If you want to convert multiple string columns to datetime, then using apply() would be useful.
df[['date1', 'date2']] = df[['date1', 'date2']].apply(pd.to_datetime)
You can pass parameters to to_datetime as kwargs.
df[['start_date', 'end_date']] = df[['start_date', 'end_date']].apply(pd.to_datetime, format="%m/%d/%Y")
Use format= to speed up
If the column contains a time component and you know the format of the datetime/time, then passing the format explicitly would significantly speed up the conversion. There's barely any difference if the column is only date, though. In my project, for a column with 5 millions rows, the difference was huge: ~2.5 min vs 6s.
It turns out explicitly specifying the format is about 25x faster. The following runtime plot shows that there's a huge gap in performance depending on whether you passed format or not.
The code used to produce the plot:
import perfplot
import random
mdYHM = range(1, 13), range(1, 29), range(2000, 2024), range(24), range(60)
perfplot.show(
kernels=[lambda x: pd.to_datetime(x), lambda x: pd.to_datetime(x, format='%m/%d/%Y %H:%M')],
labels=['pd.to_datetime(x)', "pd.to_datetime(x, format='%m/%d/%Y %H:%M')"],
n_range=[2**k for k in range(19)],
setup=lambda n: pd.Series([f"{m}/{d}/{Y} {H}:{M}"
for m,d,Y,H,M in zip(*[random.choices(e, k=n) for e in mdYHM])]),
equality_check=pd.Series.equals,
xlabel='len(df)'
)

Categories