I have a DataFrame with four columns. I want to convert this DataFrame to a python dictionary. I want the elements of first column be keys and the elements of other columns in same row be values.
DataFrame:
ID A B C
0 p 1 3 2
1 q 4 3 2
2 r 4 0 9
Output should be like this:
Dictionary:
{'p': [1,3,2], 'q': [4,3,2], 'r': [4,0,9]}
The to_dict() method sets the column names as dictionary keys so you'll need to reshape your DataFrame slightly. Setting the 'ID' column as the index and then transposing the DataFrame is one way to achieve this.
to_dict() also accepts an 'orient' argument which you'll need in order to output a list of values for each column. Otherwise, a dictionary of the form {index: value} will be returned for each column.
These steps can be done with the following line:
>>> df.set_index('ID').T.to_dict('list')
{'p': [1, 3, 2], 'q': [4, 3, 2], 'r': [4, 0, 9]}
In case a different dictionary format is needed, here are examples of the possible orient arguments. Consider the following simple DataFrame:
>>> df = pd.DataFrame({'a': ['red', 'yellow', 'blue'], 'b': [0.5, 0.25, 0.125]})
>>> df
a b
0 red 0.500
1 yellow 0.250
2 blue 0.125
Then the options are as follows.
dict - the default: column names are keys, values are dictionaries of index:data pairs
>>> df.to_dict('dict')
{'a': {0: 'red', 1: 'yellow', 2: 'blue'},
'b': {0: 0.5, 1: 0.25, 2: 0.125}}
list - keys are column names, values are lists of column data
>>> df.to_dict('list')
{'a': ['red', 'yellow', 'blue'],
'b': [0.5, 0.25, 0.125]}
series - like 'list', but values are Series
>>> df.to_dict('series')
{'a': 0 red
1 yellow
2 blue
Name: a, dtype: object,
'b': 0 0.500
1 0.250
2 0.125
Name: b, dtype: float64}
split - splits columns/data/index as keys with values being column names, data values by row and index labels respectively
>>> df.to_dict('split')
{'columns': ['a', 'b'],
'data': [['red', 0.5], ['yellow', 0.25], ['blue', 0.125]],
'index': [0, 1, 2]}
records - each row becomes a dictionary where key is column name and value is the data in the cell
>>> df.to_dict('records')
[{'a': 'red', 'b': 0.5},
{'a': 'yellow', 'b': 0.25},
{'a': 'blue', 'b': 0.125}]
index - like 'records', but a dictionary of dictionaries with keys as index labels (rather than a list)
>>> df.to_dict('index')
{0: {'a': 'red', 'b': 0.5},
1: {'a': 'yellow', 'b': 0.25},
2: {'a': 'blue', 'b': 0.125}}
Should a dictionary like:
{'red': '0.500', 'yellow': '0.250', 'blue': '0.125'}
be required out of a dataframe like:
a b
0 red 0.500
1 yellow 0.250
2 blue 0.125
simplest way would be to do:
dict(df.values)
working snippet below:
import pandas as pd
df = pd.DataFrame({'a': ['red', 'yellow', 'blue'], 'b': [0.5, 0.25, 0.125]})
dict(df.values)
Follow these steps:
Suppose your dataframe is as follows:
>>> df
A B C ID
0 1 3 2 p
1 4 3 2 q
2 4 0 9 r
1. Use set_index to set ID columns as the dataframe index.
df.set_index("ID", drop=True, inplace=True)
2. Use the orient=index parameter to have the index as dictionary keys.
dictionary = df.to_dict(orient="index")
The results will be as follows:
>>> dictionary
{'q': {'A': 4, 'B': 3, 'D': 2}, 'p': {'A': 1, 'B': 3, 'D': 2}, 'r': {'A': 4, 'B': 0, 'D': 9}}
3. If you need to have each sample as a list run the following code. Determine the column order
column_order= ["A", "B", "C"] # Determine your preferred order of columns
d = {} # Initialize the new dictionary as an empty dictionary
for k in dictionary:
d[k] = [dictionary[k][column_name] for column_name in column_order]
Try to use Zip
df = pd.read_csv("file")
d= dict([(i,[a,b,c ]) for i, a,b,c in zip(df.ID, df.A,df.B,df.C)])
print d
Output:
{'p': [1, 3, 2], 'q': [4, 3, 2], 'r': [4, 0, 9]}
If you don't mind the dictionary values being tuples, you can use itertuples:
>>> {x[0]: x[1:] for x in df.itertuples(index=False)}
{'p': (1, 3, 2), 'q': (4, 3, 2), 'r': (4, 0, 9)}
For my use (node names with xy positions) I found #user4179775's answer to the most helpful / intuitive:
import pandas as pd
df = pd.read_csv('glycolysis_nodes_xy.tsv', sep='\t')
df.head()
nodes x y
0 c00033 146 958
1 c00031 601 195
...
xy_dict_list=dict([(i,[a,b]) for i, a,b in zip(df.nodes, df.x,df.y)])
xy_dict_list
{'c00022': [483, 868],
'c00024': [146, 868],
... }
xy_dict_tuples=dict([(i,(a,b)) for i, a,b in zip(df.nodes, df.x,df.y)])
xy_dict_tuples
{'c00022': (483, 868),
'c00024': (146, 868),
... }
Addendum
I later returned to this issue, for other, but related, work. Here is an approach that more closely mirrors the [excellent] accepted answer.
node_df = pd.read_csv('node_prop-glycolysis_tca-from_pg.tsv', sep='\t')
node_df.head()
node kegg_id kegg_cid name wt vis
0 22 22 c00022 pyruvate 1 1
1 24 24 c00024 acetyl-CoA 1 1
...
Convert Pandas dataframe to a [list], {dict}, {dict of {dict}}, ...
Per accepted answer:
node_df.set_index('kegg_cid').T.to_dict('list')
{'c00022': [22, 22, 'pyruvate', 1, 1],
'c00024': [24, 24, 'acetyl-CoA', 1, 1],
... }
node_df.set_index('kegg_cid').T.to_dict('dict')
{'c00022': {'kegg_id': 22, 'name': 'pyruvate', 'node': 22, 'vis': 1, 'wt': 1},
'c00024': {'kegg_id': 24, 'name': 'acetyl-CoA', 'node': 24, 'vis': 1, 'wt': 1},
... }
In my case, I wanted to do the same thing but with selected columns from the Pandas dataframe, so I needed to slice the columns. There are two approaches.
Directly:
(see: Convert pandas to dictionary defining the columns used fo the key values)
node_df.set_index('kegg_cid')[['name', 'wt', 'vis']].T.to_dict('dict')
{'c00022': {'name': 'pyruvate', 'vis': 1, 'wt': 1},
'c00024': {'name': 'acetyl-CoA', 'vis': 1, 'wt': 1},
... }
"Indirectly:" first, slice the desired columns/data from the Pandas dataframe (again, two approaches),
node_df_sliced = node_df[['kegg_cid', 'name', 'wt', 'vis']]
or
node_df_sliced2 = node_df.loc[:, ['kegg_cid', 'name', 'wt', 'vis']]
that can then can be used to create a dictionary of dictionaries
node_df_sliced.set_index('kegg_cid').T.to_dict('dict')
{'c00022': {'name': 'pyruvate', 'vis': 1, 'wt': 1},
'c00024': {'name': 'acetyl-CoA', 'vis': 1, 'wt': 1},
... }
Most of the answers do not deal with the situation where ID can exist multiple times in the dataframe. In case ID can be duplicated in the Dataframe df you want to use a list to store the values (a.k.a a list of lists), grouped by ID:
{k: [g['A'].tolist(), g['B'].tolist(), g['C'].tolist()] for k,g in df.groupby('ID')}
Dictionary comprehension & iterrows() method could also be used to get the desired output.
result = {row.ID: [row.A, row.B, row.C] for (index, row) in df.iterrows()}
df = pd.DataFrame([['p',1,3,2], ['q',4,3,2], ['r',4,0,9]], columns=['ID','A','B','C'])
my_dict = {k:list(v) for k,v in zip(df['ID'], df.drop(columns='ID').values)}
print(my_dict)
with output
{'p': [1, 3, 2], 'q': [4, 3, 2], 'r': [4, 0, 9]}
With this method, columns of dataframe will be the keys and series of dataframe will be the values.`
data_dict = dict()
for col in dataframe.columns:
data_dict[col] = dataframe[col].values.tolist()
DataFrame.to_dict() converts DataFrame to dictionary.
Example
>>> df = pd.DataFrame(
{'col1': [1, 2], 'col2': [0.5, 0.75]}, index=['a', 'b'])
>>> df
col1 col2
a 1 0.1
b 2 0.2
>>> df.to_dict()
{'col1': {'a': 1, 'b': 2}, 'col2': {'a': 0.5, 'b': 0.75}}
See this Documentation for details
Related
I am currently importing a file as so:
df= pd.read_csv(r"Test.csv")
And the output looks like
Type Value
0 Food_Place_1 1
1 Food_Place_2 2
2 Car_Type_1 3
3 Car_Type_2 4
I would like to iterate through this df and depending on the Type column allocated to a dictionary like this
food_type_dict = {'Type': ['Food_Place_1', 'Food_Place_2'], 'Value': [1, 2]}
car_type_dict = {'Type': ['Car_Type_1', 'Car_Type_2'], 'Value': [3, 4]}
My plan was to convert the entire dataframe into a dictionary and filter from there. However when I try to convert using this, the output is not what I was expecting. I can't seem to remove the Value header from the dictionary
df_dict = df.set_index(['Type']).T.to_dict('dict')
Output
{'A1': {'Value': 1},....}
Create category for possible aggregate lists for nested dictionary:
#If category is set by remove digits
cat = df['Type'].str.replace('\d','')
#If category is set by first letter
#cat = df['Type'].str[0]
d = df.rename(columns={'Type':'Component'}).groupby(cat).agg(list).to_dict('index')
print (d)
{'A': {'Component': ['A1', 'A2'], 'Value': [1, 2]},
'B': {'Component': ['B1', 'B2'], 'Value': [3, 4]}}
Then instead a_type_dict use d['A'], b_type_dict use d['B'].
EDIT:
cat = df['Type'].str.split('_').str[0]
d = df.rename(columns={'Type':'Component'}).groupby(cat).agg(list).to_dict('index')
print (d)
{'Car': {'Component': ['Car_Type_1', 'Car_Type_2'], 'Value': [3, 4]},
'Food': {'Component': ['Food_Place_1', 'Food_Place_2'], 'Value': [1, 2]}}
I have a simple DataFrame:
Name Format
0 cntry int
1 dweight str
2 pspwght str
3 pweight str
4 nwspol str
I want a dictionairy as such:
{
"cntry":"int",
"dweight":"str",
"pspwght":"str",
"pweight":"str",
"nwspol":"str"
}
Where dict["cntry"] would return int or dict["dweight"] would return str.
How could I do this?
How about this:
import pandas as pd
df = pd.DataFrame({'col_1': ['A', 'B', 'C', 'D'], 'col_2': [1, 1, 2, 3], 'col_3': ['Bla', 'Foo', 'Sup', 'Asdf']})
res_dict = dict(zip(df['col_1'], df['col_3']))
Contents of res_dict:
{'A': 'Bla', 'B': 'Foo', 'C': 'Sup', 'D': 'Asdf'}
You're looking for DataFrame.to_dict()
From the documentation:
>>> df = pd.DataFrame({'col1': [1, 2],
... 'col2': [0.5, 0.75]},
... index=['row1', 'row2'])
>>> df
col1 col2
row1 1 0.50
row2 2 0.75
>>> df.to_dict()
{'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
You can always invert an internal dictionary if it's not mapped how you'd like it to be:
inv_dict = {v: k for k, v in original_dict['Name'].items()}
I think you want is:
df.set_index('Name').to_dict()['Format']
Since you want to use the values in the Name column as the keys to your dict.
Note that you might want to do:
df.set_index('Name').astype(str).to_dict()['Format']
if you want the values of the dictionary to be strings.
Goal: to read data from SQL table where a column contains JSON (arrays), extract certain keys/values from the JSON into new columns to then write to a new table. One of the joys of the original data format is that some data records are JSON arrays and some are not arrays (just JSON). Thus we may start with:
testcase = [(1, [{'a': 1, 'b': 2, 'c': 3}, {'a': 11, 'b': 12, 'c': 13}]),
(2, {'a': 30, 'b': 40}),
(3, {'a': 100, 'b': 200, 'd': 300})]
for x in testcase:
print(x)
(1, [{'a': 1, 'b': 2, 'c': 3}, {'a': 11, 'b': 12, 'c': 13}])
(2, {'a': 30, 'b': 40})
(3, {'a': 100, 'b': 200, 'd': 300})
Note the first element of each tuple is the record id. The first record is an array of length two, the second and third records are not arrays. The desired output is (as a DataFrame):
a b data
1 1 2 '{"c": 3}'
1 11 12 '{"c": 13}'
2 30 40 '{}'
3 100 200 '{"d": 300}'
Here you can see I've extracted keys 'a' and 'b' from the dicts into new columns, leaving the remaining keys/values in situ. The empty dict for id=2 is desirable behaviour.
First, I extracted the id and the data into separate lists. I take this opportunity to make the dict into a list of dicts (of length 1) so the types are now consistent:
id = [x[0] for x in testcase]
data_col = [x[1] if type(x[1]) == list else [x[1]] for x in testcase]
for x in data_col:
print(x)
[{'a': 1, 'b': 2, 'c': 3}, {'a': 11, 'b': 12, 'c': 13}]
[{'a': 30, 'b': 40}]
[{'a': 100, 'b': 200, 'd': 300}]
It feels a bit of a clunky extra step to have to extract id and data_col as separate lists, although at least we have the nice property that we're not copying data:
id[0] is testcase[0][0]
True
data_col[0] is testcase[0][1]
True
And, as I say, I had to deal with the issue that some records contained arrays of dicts and some just dicts, so this makes them all consistent.
The main nitty gritty happens here, where I perform a dict comprehension in a double list comprehension to iterate over each dict:
popped = [(id, {key: element.pop(key, None) for key in ['a', 'b']}) \
for id, row in zip(id, data_col) for element in row]
for x in popped:
print(x)
(1, {'a': 1, 'b': 2})
(1, {'a': 11, 'b': 12})
(2, {'a': 30, 'b': 40})
(3, {'a': 100, 'b': 200})
I need to be able to relate each new row with its original id, and the above achieves that, correctly reproducing the appropriate id value (1, 1, 2, 3). With a bit of housekeeping, I can then get all my target rows lined up:
import pandas as pd
from psycopg2.extras import Json
id2 = [x[0] for x in popped]
cols = [x[1] for x in popped]
data = [Json(item) for sublist in data_col for item in sublist]
popped_df = pd.DataFrame(cols, index=id2)
popped_df['data'] = data
And this gives me the desired DataFrame as shown above. But ... is all my messing about with lists necessary? I couldn't do a simple json_normalize because I don't want to extract all keys and it falls over with the combination of arrays and non-arrays.
It also needs to be as performant as possible as it's going to be processing multi-millions of rows. For this reason, I actually convert the DataFrame to a list using:
list(popped_df.itertuples())
to then pass to psycopg2.extras' execute_values()
so I may yet not bother constructing the DataFrame and just build the output list, but in this post I'm really asking if there's a cleaner, faster way to extract these specific keys from the dicts into new columns and rows, robust to whether the record is an array or not and keeping track of the associated record id.
I shied away from an end-to-end pandas approach, reading the data using pd.read_sql() as I was reading that DataFrame.to_sql() was relatively slow.
You could do something like this:
import pandas as pd
testcase = [(1, [{'a': 1, 'b': 2, 'c': 3}, {'a': 11, 'b': 12, 'c': 13}]),
(2, {'a': 30, 'b': 40}),
(3, {'a': 100, 'b': 200, 'd': 300})]
def split_dict(d, keys=['a', 'b']):
"""Split the dictionary by keys"""
preserved = {key: value for key, value in d.items() if key in keys}
complement = {key: value for key, value in d.items() if key not in keys}
return preserved, complement
def get_row(val):
preserved, complement = split_dict(val)
preserved['data'] = complement
return preserved
rows = []
index = []
for i, values in testcase:
if isinstance(values, list):
for value in values:
rows.append(get_row(value))
index.append(i)
else:
rows.append(get_row(values))
index.append(i)
df = pd.DataFrame.from_records(rows, index=index)
print(df)
Output
a b data
1 1 2 {'c': 3}
1 11 12 {'c': 13}
2 30 40 {}
3 100 200 {'d': 300}
Your data is messy, since the second element of your testcase can be either a list or a dict. In this case, you can construct a list via a for loop, then feed to the pd.DataFrame constructor:
testcase = [(1, [{'a': 1, 'b': 2, 'c': 3}, {'a': 11, 'b': 12, 'c': 13}]),
(2, {'a': 30, 'b': 40}),
(3, {'a': 100, 'b': 200, 'd': 300})]
L = []
for idx, data in testcase:
for d in ([data] if isinstance(data, dict) else data):
# string conversion not strictly necessary below
others = str({k: v for k, v in d.items() if k not in ('a', 'b')})
L.append((idx, d['a'], d['b'], others))
df = pd.DataFrame(L, columns=['index', 'a', 'b', 'data']).set_index('index')
print(df)
a b data
index
1 1 2 {'c': 3}
1 11 12 {'c': 13}
2 30 40 {}
3 100 200 {'d': 300}
I'm pulling data from the database and assuming i have something like this:
Product Name Quantity
a 3
a 5
b 2
c 7
I want to sum the Quantity based on Product name, so this is what i want:
product = {'a':8, 'b':2, 'c':7 }
Here's what I'm trying to do after fetching the data from the database:
for row in result:
product[row['product_name']] += row['quantity']
but this will give me: 'a'=5 only, not 8.
Option 1: pandas
This is one way, assuming you begin with a pandas dataframe df. This solution has O(n log n) complexity.
product = df.groupby('Product Name')['Quantity'].sum().to_dict()
# {'a': 8, 'b': 2, 'c': 7}
The idea is you can perform a groupby operation, which produces a series indexed by "Product Name". Then use the to_dict() method to convert to a dictionary.
Option 2: collections.Counter
If you begin with a list or iterator of results, and wish to use a for loop, you can use collections.Counter for O(n) complexity.
from collections import Counter
result = [['a', 3],
['a', 5],
['b', 2],
['c', 7]]
product = Counter()
for row in result:
product[row[0]] += row[1]
print(product)
# Counter({'a': 8, 'c': 7, 'b': 2})
Option 3: itertools.groupby
You can also use a dictionary comprehension with itertools.groupby. This requires sorting beforehand.
from itertools import groupby
res = {i: sum(list(zip(*j))[1]) for i, j in groupby(sorted(result), key=lambda x: x[0])}
# {'a': 8, 'b': 2, 'c': 7}
If you insist on using loops, you can do this:
# fake data to make the script runnable
result = [
{'product_name': 'a', 'quantity': 3},
{'product_name': 'a', 'quantity': 5},
{'product_name': 'b', 'quantity': 2},
{'product_name': 'c', 'quantity': 7}
]
# solution with defaultdict and loops
from collections import defaultdict
d = defaultdict(int)
for row in result:
d[row['product_name']] += row['quantity']
print(dict(d))
The output:
{'a': 8, 'b': 2, 'c': 7}
Since you mention pandas
df.set_index('ProductName').Quantity.sum(level=0).to_dict()
Out[20]: {'a': 8, 'b': 2, 'c': 7}
Use tuple to store the result.
Edit:
Not clear if the data mentioned is really a dataframe.
If yes then li = [tuple(x) for x in df.to_records(index=False)]
li = [('a', 3), ('a', 5), ('b', 2), ('c', 7)]
d = dict()
for key, val in li:
val_old = 0
if key in d:
val_old = d[key]
d[key] = val + val_old
print(d)
Output
{'a': 8, 'b': 2, 'c': 7}
How can I modify a list value inside dataframes? I am trying to adjust data received by JSON and the DataFrame is as below:
The dataframe has 'multiple dictionary' in one list.
Dataframe df:
id options
0 0 [{'a':1 ,'b':2, 'c':3, 'd':4},{'a':5 ,'b':6, 'c':7, 'd':8}]
1 1 [{'a':9 ,'b':10, 'c':11, 'd':12},{'a':13 ,'b':14, 'c':15, 'd':16}]
2 2 [{'a':9 ,'b':10, 'c':11, 'd':12},{'a':17 ,'b':18, 'c':19, 'd':20}]
If I want to use only 'a' and 'c' key / values in options how can I modify datafames? The expected result would be
Dataframe df:
id options
0 0 [{'a':1 ,'c':3},{'a':5 ,'c':7}]
1 1 [{'a':9, 'c':11},{'a':13,'c':15}]
2 2 [{'a':9 ,'c':11},{'a':17,c':19}]
I tried filtering but I could not assign the value to the dataframe
for x in totaldf['options']:
for y in x:
y = {a: y[a], 'c': y['c']} ...?
Using nested listed comprehension:
df['options'] = [[{'a': y['a'], 'c': y['b']} for y in x] for x in df['options']]
If you wanted to use a for loop it would be something like:
new_options = []
for x in df['options']:
row = []
for y in x:
row.append({a: y[a], 'c': y['c']})
new_options.append(row)
df['options'] = new_options
# An alternative vectorized solution.
df.options = df.options.apply(lambda x: [{k:v for k,v in e.items() if k in['a','c']} for e in x])
Out[398]:
id options
0 0 [{'a': 1, 'c': 3}, {'a': 5, 'c': 7}]
1 1 [{'a': 9, 'c': 11}, {'a': 13, 'c': 15}]
2 2 [{'a': 9, 'c': 11}, {'a': 17, 'c': 19}]