How do I remove duplicates from a list, while preserving order? Using a set to remove duplicates destroys the original order.
Is there a built-in or a Pythonic idiom?
Here you have some alternatives: http://www.peterbe.com/plog/uniqifiers-benchmark
Fastest one:
def f7(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
Why assign seen.add to seen_add instead of just calling seen.add? Python is a dynamic language, and resolving seen.add each iteration is more costly than resolving a local variable. seen.add could have changed between iterations, and the runtime isn't smart enough to rule that out. To play it safe, it has to check the object each time.
If you plan on using this function a lot on the same dataset, perhaps you would be better off with an ordered set: http://code.activestate.com/recipes/528878/
O(1) insertion, deletion and member-check per operation.
(Small additional note: seen.add() always returns None, so the or above is there only as a way to attempt a set update, and not as an integral part of the logical test.)
The best solution varies by Python version and environment constraints:
Python 3.7+ (and most interpreters supporting 3.6, as an implementation detail):
First introduced in PyPy 2.5.0, and adopted in CPython 3.6 as an implementation detail, before being made a language guarantee in Python 3.7, plain dict is insertion-ordered, and even more efficient than the (also C implemented as of CPython 3.5) collections.OrderedDict. So the fastest solution, by far, is also the simplest:
>>> items = [1, 2, 0, 1, 3, 2]
>>> list(dict.fromkeys(items)) # Or [*dict.fromkeys(items)] if you prefer
[1, 2, 0, 3]
Like list(set(items)) this pushes all the work to the C layer (on CPython), but since dicts are insertion ordered, dict.fromkeys doesn't lose ordering. It's slower than list(set(items)) (takes 50-100% longer typically), but much faster than any other order-preserving solution (takes about half the time of hacks involving use of sets in a listcomp).
Important note: The unique_everseen solution from more_itertools (see below) has some unique advantages in terms of laziness and support for non-hashable input items; if you need these features, it's the only solution that will work.
Python 3.5 (and all older versions if performance isn't critical)
As Raymond pointed out, in CPython 3.5 where OrderedDict is implemented in C, ugly list comprehension hacks are slower than OrderedDict.fromkeys (unless you actually need the list at the end - and even then, only if the input is very short). So on both performance and readability the best solution for CPython 3.5 is the OrderedDict equivalent of the 3.6+ use of plain dict:
>>> from collections import OrderedDict
>>> items = [1, 2, 0, 1, 3, 2]
>>> list(OrderedDict.fromkeys(items))
[1, 2, 0, 3]
On CPython 3.4 and earlier, this will be slower than some other solutions, so if profiling shows you need a better solution, keep reading.
Python 3.4 and earlier, if performance is critical and third-party modules are acceptable
As #abarnert notes, the more_itertools library (pip install more_itertools) contains a unique_everseen function that is built to solve this problem without any unreadable (not seen.add) mutations in list comprehensions. This is the fastest solution too:
>>> from more_itertools import unique_everseen
>>> items = [1, 2, 0, 1, 3, 2]
>>> list(unique_everseen(items))
[1, 2, 0, 3]
Just one simple library import and no hacks.
The module is adapting the itertools recipe unique_everseen which looks like:
def unique_everseen(iterable, key=None):
"List unique elements, preserving order. Remember all elements ever seen."
# unique_everseen('AAAABBBCCDAABBB') --> A B C D
# unique_everseen('ABBCcAD', str.lower) --> A B C D
seen = set()
seen_add = seen.add
if key is None:
for element in filterfalse(seen.__contains__, iterable):
seen_add(element)
yield element
else:
for element in iterable:
k = key(element)
if k not in seen:
seen_add(k)
yield element
but unlike the itertools recipe, it supports non-hashable items (at a performance cost; if all elements in iterable are non-hashable, the algorithm becomes O(n²), vs. O(n) if they're all hashable).
Important note: Unlike all the other solutions here, unique_everseen can be used lazily; the peak memory usage will be the same (eventually, the underlying set grows to the same size), but if you don't listify the result, you just iterate it, you'll be able to process unique items as they're found, rather than waiting until the entire input has been deduplicated before processing the first unique item.
Python 3.4 and earlier, if performance is critical and third party modules are unavailable
You have two options:
Copy and paste in the unique_everseen recipe to your code and use it per the more_itertools example above
Use ugly hacks to allow a single listcomp to both check and update a set to track what's been seen:
seen = set()
[x for x in seq if x not in seen and not seen.add(x)]
at the expense of relying on the ugly hack:
not seen.add(x)
which relies on the fact that set.add is an in-place method that always returns None so not None evaluates to True.
Note that all of the solutions above are O(n) (save calling unique_everseen on an iterable of non-hashable items, which is O(n²), while the others would fail immediately with a TypeError), so all solutions are performant enough when they're not the hottest code path. Which one to use depends on which versions of the language spec/interpreter/third-party modules you can rely on, whether or not performance is critical (don't assume it is; it usually isn't), and most importantly, readability (because if the person who maintains this code later ends up in a murderous mood, your clever micro-optimization probably wasn't worth it).
In CPython 3.6+ (and all other Python implementations starting with Python 3.7+), dictionaries are ordered, so the way to remove duplicates from an iterable while keeping it in the original order is:
>>> list(dict.fromkeys('abracadabra'))
['a', 'b', 'r', 'c', 'd']
In Python 3.5 and below (including Python 2.7), use the OrderedDict. My timings show that this is now both the fastest and shortest of the various approaches for Python 3.5 (when it gained a C implementation; prior to 3.5 it's still the clearest solution, though not the fastest).
>>> from collections import OrderedDict
>>> list(OrderedDict.fromkeys('abracadabra'))
['a', 'b', 'r', 'c', 'd']
Not to kick a dead horse (this question is very old and already has lots of good answers), but here is a solution using pandas that is quite fast in many circumstances and is dead simple to use.
import pandas as pd
my_list = [0, 1, 2, 3, 4, 1, 2, 3, 5]
>>> pd.Series(my_list).drop_duplicates().tolist()
# Output:
# [0, 1, 2, 3, 4, 5]
In Python 3.7 and above, dictionaries are guaranteed to remember their key insertion order. The answer to this question summarizes the current state of affairs.
The OrderedDict solution thus becomes obsolete and without any import statements we can simply issue:
>>> lst = [1, 2, 1, 3, 3, 2, 4]
>>> list(dict.fromkeys(lst))
[1, 2, 3, 4]
sequence = ['1', '2', '3', '3', '6', '4', '5', '6']
unique = []
[unique.append(item) for item in sequence if item not in unique]
unique → ['1', '2', '3', '6', '4', '5']
from itertools import groupby
[ key for key,_ in groupby(sortedList)]
The list doesn't even have to be sorted, the sufficient condition is that equal values are grouped together.
Edit: I assumed that "preserving order" implies that the list is actually ordered. If this is not the case, then the solution from MizardX is the right one.
Community edit: This is however the most elegant way to "compress duplicate consecutive elements into a single element".
I think if you wanna maintain the order,
you can try this:
list1 = ['b','c','d','b','c','a','a']
list2 = list(set(list1))
list2.sort(key=list1.index)
print list2
OR similarly you can do this:
list1 = ['b','c','d','b','c','a','a']
list2 = sorted(set(list1),key=list1.index)
print list2
You can also do this:
list1 = ['b','c','d','b','c','a','a']
list2 = []
for i in list1:
if not i in list2:
list2.append(i)`
print list2
It can also be written as this:
list1 = ['b','c','d','b','c','a','a']
list2 = []
[list2.append(i) for i in list1 if not i in list2]
print list2
Just to add another (very performant) implementation of such a functionality from an external module1: iteration_utilities.unique_everseen:
>>> from iteration_utilities import unique_everseen
>>> lst = [1,1,1,2,3,2,2,2,1,3,4]
>>> list(unique_everseen(lst))
[1, 2, 3, 4]
Timings
I did some timings (Python 3.6) and these show that it's faster than all other alternatives I tested, including OrderedDict.fromkeys, f7 and more_itertools.unique_everseen:
%matplotlib notebook
from iteration_utilities import unique_everseen
from collections import OrderedDict
from more_itertools import unique_everseen as mi_unique_everseen
def f7(seq):
seen = set()
seen_add = seen.add
return [x for x in seq if not (x in seen or seen_add(x))]
def iteration_utilities_unique_everseen(seq):
return list(unique_everseen(seq))
def more_itertools_unique_everseen(seq):
return list(mi_unique_everseen(seq))
def odict(seq):
return list(OrderedDict.fromkeys(seq))
from simple_benchmark import benchmark
b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
{2**i: list(range(2**i)) for i in range(1, 20)},
'list size (no duplicates)')
b.plot()
And just to make sure I also did a test with more duplicates just to check if it makes a difference:
import random
b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
{2**i: [random.randint(0, 2**(i-1)) for _ in range(2**i)] for i in range(1, 20)},
'list size (lots of duplicates)')
b.plot()
And one containing only one value:
b = benchmark([f7, iteration_utilities_unique_everseen, more_itertools_unique_everseen, odict],
{2**i: [1]*(2**i) for i in range(1, 20)},
'list size (only duplicates)')
b.plot()
In all of these cases the iteration_utilities.unique_everseen function is the fastest (on my computer).
This iteration_utilities.unique_everseen function can also handle unhashable values in the input (however with an O(n*n) performance instead of the O(n) performance when the values are hashable).
>>> lst = [{1}, {1}, {2}, {1}, {3}]
>>> list(unique_everseen(lst))
[{1}, {2}, {3}]
1 Disclaimer: I'm the author of that package.
For another very late answer to another very old question:
The itertools recipes have a function that does this, using the seen set technique, but:
Handles a standard key function.
Uses no unseemly hacks.
Optimizes the loop by pre-binding seen.add instead of looking it up N times. (f7 also does this, but some versions don't.)
Optimizes the loop by using ifilterfalse, so you only have to loop over the unique elements in Python, instead of all of them. (You still iterate over all of them inside ifilterfalse, of course, but that's in C, and much faster.)
Is it actually faster than f7? It depends on your data, so you'll have to test it and see. If you want a list in the end, f7 uses a listcomp, and there's no way to do that here. (You can directly append instead of yielding, or you can feed the generator into the list function, but neither one can be as fast as the LIST_APPEND inside a listcomp.) At any rate, usually, squeezing out a few microseconds is not going to be as important as having an easily-understandable, reusable, already-written function that doesn't require DSU when you want to decorate.
As with all of the recipes, it's also available in more-iterools.
If you just want the no-key case, you can simplify it as:
def unique(iterable):
seen = set()
seen_add = seen.add
for element in itertools.ifilterfalse(seen.__contains__, iterable):
seen_add(element)
yield element
For no hashable types (e.g. list of lists), based on MizardX's:
def f7_noHash(seq)
seen = set()
return [ x for x in seq if str( x ) not in seen and not seen.add( str( x ) )]
pandas users should check out pandas.unique.
>>> import pandas as pd
>>> lst = [1, 2, 1, 3, 3, 2, 4]
>>> pd.unique(lst)
array([1, 2, 3, 4])
The function returns a NumPy array. If needed, you can convert it to a list with the tolist method.
5 x faster reduce variant but more sophisticated
>>> l = [5, 6, 6, 1, 1, 2, 2, 3, 4]
>>> reduce(lambda r, v: v in r[1] and r or (r[0].append(v) or r[1].add(v)) or r, l, ([], set()))[0]
[5, 6, 1, 2, 3, 4]
Explanation:
default = (list(), set())
# use list to keep order
# use set to make lookup faster
def reducer(result, item):
if item not in result[1]:
result[0].append(item)
result[1].add(item)
return result
>>> reduce(reducer, l, default)[0]
[5, 6, 1, 2, 3, 4]
here is a simple way to do it:
list1 = ["hello", " ", "w", "o", "r", "l", "d"]
sorted(set(list1 ), key=list1.index)
that gives the output:
["hello", " ", "w", "o", "r", "l", "d"]
Borrowing the recursive idea used in definining Haskell's nub function for lists, this would be a recursive approach:
def unique(lst):
return [] if lst==[] else [lst[0]] + unique(filter(lambda x: x!= lst[0], lst[1:]))
e.g.:
In [118]: unique([1,5,1,1,4,3,4])
Out[118]: [1, 5, 4, 3]
I tried it for growing data sizes and saw sub-linear time-complexity (not definitive, but suggests this should be fine for normal data).
In [122]: %timeit unique(np.random.randint(5, size=(1)))
10000 loops, best of 3: 25.3 us per loop
In [123]: %timeit unique(np.random.randint(5, size=(10)))
10000 loops, best of 3: 42.9 us per loop
In [124]: %timeit unique(np.random.randint(5, size=(100)))
10000 loops, best of 3: 132 us per loop
In [125]: %timeit unique(np.random.randint(5, size=(1000)))
1000 loops, best of 3: 1.05 ms per loop
In [126]: %timeit unique(np.random.randint(5, size=(10000)))
100 loops, best of 3: 11 ms per loop
I also think it's interesting that this could be readily generalized to uniqueness by other operations. Like this:
import operator
def unique(lst, cmp_op=operator.ne):
return [] if lst==[] else [lst[0]] + unique(filter(lambda x: cmp_op(x, lst[0]), lst[1:]), cmp_op)
For example, you could pass in a function that uses the notion of rounding to the same integer as if it was "equality" for uniqueness purposes, like this:
def test_round(x,y):
return round(x) != round(y)
then unique(some_list, test_round) would provide the unique elements of the list where uniqueness no longer meant traditional equality (which is implied by using any sort of set-based or dict-key-based approach to this problem) but instead meant to take only the first element that rounds to K for each possible integer K that the elements might round to, e.g.:
In [6]: unique([1.2, 5, 1.9, 1.1, 4.2, 3, 4.8], test_round)
Out[6]: [1.2, 5, 1.9, 4.2, 3]
You can reference a list comprehension as it is being built by the symbol '_[1]'. For example, the following function unique-ifies a list of elements without changing their order by referencing its list comprehension.
def unique(my_list):
return [x for x in my_list if x not in locals()['_[1]']]
Demo:
l1 = [1, 2, 3, 4, 1, 2, 3, 4, 5]
l2 = [x for x in l1 if x not in locals()['_[1]']]
print l2
Output:
[1, 2, 3, 4, 5]
Eliminating the duplicate values in a sequence, but preserve the order of the remaining items. Use of general purpose generator function.
# for hashable sequence
def remove_duplicates(items):
seen = set()
for item in items:
if item not in seen:
yield item
seen.add(item)
a = [1, 5, 2, 1, 9, 1, 5, 10]
list(remove_duplicates(a))
# [1, 5, 2, 9, 10]
# for unhashable sequence
def remove_duplicates(items, key=None):
seen = set()
for item in items:
val = item if key is None else key(item)
if val not in seen:
yield item
seen.add(val)
a = [ {'x': 1, 'y': 2}, {'x': 1, 'y': 3}, {'x': 1, 'y': 2}, {'x': 2, 'y': 4}]
list(remove_duplicates(a, key=lambda d: (d['x'],d['y'])))
# [{'x': 1, 'y': 2}, {'x': 1, 'y': 3}, {'x': 2, 'y': 4}]
1. These solutions are fine…
For removing duplicates while preserving order, the excellent solution(s) proposed elsewhere on this page:
seen = set()
[x for x in seq if not (x in seen or seen.add(x))]
and variation(s), e.g.:
seen = set()
[x for x in seq if x not in seen and not seen.add(x)]
are indeed popular because they are simple, minimalistic, and deploy the correct hashing for optimal efficency. The main complaint about these seems to be that using the invariant None "returned" by method seen.add(x) as a constant (and therefore excess/unnecessary) value in a logical expression—just for its side-effect—is hacky and/or confusing.
2. …but they waste one hash lookup per iteration.
Surprisingly, given the amount of discussion and debate on this topic, there is actually a significant improvement to the code that seems to have been overlooked. As shown, each "test-and-set" iteration requires two hash lookups: the first to test membership x not in seen and then again to actually add the value seen.add(x). Since the first operation guarantees that the second will always be successful, there is a wasteful duplication of effort here. And because the overall technique here is so efficient, the excess hash lookups will likely end up being the most expensive proportion of what little work remains.
3. Instead, let the set do its job!
Notice that the examples above only call set.add with the foreknowledge that doing so will always result in an increase in set membership. The set itself never gets an chance to reject a duplicate; our code snippet has essentially usurped that role for itself. The use of explicit two-step test-and-set code is robbing set of its core ability to exclude those duplicates itself.
4. The single-hash-lookup code:
The following version cuts the number of hash lookups per iteration in half—from two down to just one.
seen = set()
[x for x in seq if len(seen) < len(seen.add(x) or seen)]
If you need one liner then maybe this would help:
reduce(lambda x, y: x + y if y[0] not in x else x, map(lambda x: [x],lst))
... should work but correct me if i'm wrong
MizardX's answer gives a good collection of multiple approaches.
This is what I came up with while thinking aloud:
mylist = [x for i,x in enumerate(mylist) if x not in mylist[i+1:]]
You could do a sort of ugly list comprehension hack.
[l[i] for i in range(len(l)) if l.index(l[i]) == i]
Relatively effective approach with _sorted_ a numpy arrays:
b = np.array([1,3,3, 8, 12, 12,12])
numpy.hstack([b[0], [x[0] for x in zip(b[1:], b[:-1]) if x[0]!=x[1]]])
Outputs:
array([ 1, 3, 8, 12])
l = [1,2,2,3,3,...]
n = []
n.extend(ele for ele in l if ele not in set(n))
A generator expression that uses the O(1) look up of a set to determine whether or not to include an element in the new list.
A simple recursive solution:
def uniquefy_list(a):
return uniquefy_list(a[1:]) if a[0] in a[1:] else [a[0]]+uniquefy_list(a[1:]) if len(a)>1 else [a[0]]
this will preserve order and run in O(n) time. basically the idea is to create a hole wherever there is a duplicate found and sink it down to the bottom. makes use of a read and write pointer. whenever a duplicate is found only the read pointer advances and write pointer stays on the duplicate entry to overwrite it.
def deduplicate(l):
count = {}
(read,write) = (0,0)
while read < len(l):
if l[read] in count:
read += 1
continue
count[l[read]] = True
l[write] = l[read]
read += 1
write += 1
return l[0:write]
x = [1, 2, 1, 3, 1, 4]
# brute force method
arr = []
for i in x:
if not i in arr:
arr.insert(x[i],i)
# recursive method
tmp = []
def remove_duplicates(j=0):
if j < len(x):
if not x[j] in tmp:
tmp.append(x[j])
i = j+1
remove_duplicates(i)
remove_duplicates()
One liner list comprehension:
values_non_duplicated = [value for index, value in enumerate(values) if value not in values[ : index]]
If you routinely use pandas, and aesthetics is preferred over performance, then consider the built-in function pandas.Series.drop_duplicates:
import pandas as pd
import numpy as np
uniquifier = lambda alist: pd.Series(alist).drop_duplicates().tolist()
# from the chosen answer
def f7(seq):
seen = set()
seen_add = seen.add
return [ x for x in seq if not (x in seen or seen_add(x))]
alist = np.random.randint(low=0, high=1000, size=10000).tolist()
print uniquifier(alist) == f7(alist) # True
Timing:
In [104]: %timeit f7(alist)
1000 loops, best of 3: 1.3 ms per loop
In [110]: %timeit uniquifier(alist)
100 loops, best of 3: 4.39 ms per loop
A solution without using imported modules or sets:
text = "ask not what your country can do for you ask what you can do for your country"
sentence = text.split(" ")
noduplicates = [(sentence[i]) for i in range (0,len(sentence)) if sentence[i] not in sentence[:i]]
print(noduplicates)
Gives output:
['ask', 'not', 'what', 'your', 'country', 'can', 'do', 'for', 'you']
An in-place method
This method is quadratic, because we have a linear lookup into the list for every element of the list (to that we have to add the cost of rearranging the list because of the del s).
That said, it is possible to operate in place if we start from the end of the list and proceed toward the origin removing each term that is present in the sub-list at its left
This idea in code is simply
for i in range(len(l)-1,0,-1):
if l[i] in l[:i]: del l[i]
A simple test of the implementation
In [91]: from random import randint, seed
In [92]: seed('20080808') ; l = [randint(1,6) for _ in range(12)] # Beijing Olympics
In [93]: for i in range(len(l)-1,0,-1):
...: print(l)
...: print(i, l[i], l[:i], end='')
...: if l[i] in l[:i]:
...: print( ': remove', l[i])
...: del l[i]
...: else:
...: print()
...: print(l)
[6, 5, 1, 4, 6, 1, 6, 2, 2, 4, 5, 2]
11 2 [6, 5, 1, 4, 6, 1, 6, 2, 2, 4, 5]: remove 2
[6, 5, 1, 4, 6, 1, 6, 2, 2, 4, 5]
10 5 [6, 5, 1, 4, 6, 1, 6, 2, 2, 4]: remove 5
[6, 5, 1, 4, 6, 1, 6, 2, 2, 4]
9 4 [6, 5, 1, 4, 6, 1, 6, 2, 2]: remove 4
[6, 5, 1, 4, 6, 1, 6, 2, 2]
8 2 [6, 5, 1, 4, 6, 1, 6, 2]: remove 2
[6, 5, 1, 4, 6, 1, 6, 2]
7 2 [6, 5, 1, 4, 6, 1, 6]
[6, 5, 1, 4, 6, 1, 6, 2]
6 6 [6, 5, 1, 4, 6, 1]: remove 6
[6, 5, 1, 4, 6, 1, 2]
5 1 [6, 5, 1, 4, 6]: remove 1
[6, 5, 1, 4, 6, 2]
4 6 [6, 5, 1, 4]: remove 6
[6, 5, 1, 4, 2]
3 4 [6, 5, 1]
[6, 5, 1, 4, 2]
2 1 [6, 5]
[6, 5, 1, 4, 2]
1 5 [6]
[6, 5, 1, 4, 2]
In [94]:
This question already has answers here:
Sort a part of a list in place
(3 answers)
Closed 3 years ago.
Suppose I have a list [2, 4, 1, 3, 5].
I want to sort the list just from index 1 to the end, which gives me [2, 1, 3, 4, 5]
How can I do it in Python?
(No extra spaces would be appreciated)
TL;DR:
Use sorted with a slicing assignment to keep the original list object without creating a new one:
l = [2, 4, 1, 3, 5]
l[1:] = sorted(l[1:])
print(l)
Output:
[2, 1, 3, 4, 5]
Longer Answer:
After the list is created, we will make a slicing assignment:
l[1:] =
Now you might be wondering what does [1:], it is slicing the list and starts from the second index, so the first index will be dropped. Python's indexing starts from zero, : means get everything after the index before, but if it was [1:3] it will only get values that are in between the indexes 1 and 3, let's say your list is:
l = [1, 2, 3, 4, 5]
If you use:
print(l[1:])
It will result in:
[2, 3, 4, 5]
And if you use:
print(l[1:3])
It will result in:
[2, 3]
About slicing, read more here if you want to.
And after slicing we have an equal sign =, that just simply changes what's before the = sign to what's after the = sign, so in this case, we use l[1:], and that gives [2, 3, 4, 5], it will change that to whatever is after the = sign.
If you use:
l[1:] = [100, 200, 300, 400]
print(l)
It will result in:
[1, 100, 200, 300, 400]
To learn more about it check out this.
After that, we got sorted, which is default builtin function, it simple sorts the list from small to big, let's say we have the below list:
l = [3, 2, 1, 4]
If you use:
print(sorted(l))
It will result in:
[1, 2, 3, 4]
To learn more about it check this.
After that we come back to our first topic about slicing, with l[1:], but from here you know that it isn't only used for assignments, you can apply functions to it and deal with it, like here we use sorted.
Maybe temporarily put something there that's smaller than the rest? Should be faster than the other solutions. And gets as close to your "No extra spaces" wish as you can get when using sort or sorted.
>>> tmp = l[0]
>>> l[0] = float('-inf')
>>> l.sort()
>>> l[0] = tmp
>>> l
[2, 1, 3, 4, 5]
Benchmarks
For the example list, 1,000,000 iterations (and mine of course preparing that special value only once):
sort_u10 0.8149 seconds
sort_chris 0.8569 seconds
sort_heap 0.7550 seconds
sort_heap2 0.5982 seconds # using -1 instead of -inf
For 50,000 lists like [int(x) for x in os.urandom(100)]:
sort_u10 0.4778 seconds
sort_chris 0.4786 seconds
sort_heap 0.8106 seconds
sort_heap2 0.4437 seconds # using -1 instead of -inf
Benchmark code:
import timeit, os
def sort_u10(l):
l[1:] = sorted(l[1:])
def sort_chris(l):
l = l[:1] + sorted(l[1:])
def sort_heap(l, smallest=float('-inf')):
tmp = l[0]
l[0] = smallest
l.sort()
l[0] = tmp
def sort_heap2(l):
tmp = l[0]
l[0] = -1
l.sort()
l[0] = tmp
for _ in range(3):
for sort in sort_u10, sort_chris, sort_heap, sort_heap2, sort_rev:
number, repeat = 1_000_000, 5
data = iter([[2, 4, 1, 3, 5] for _ in range(number * repeat)])
# number, repeat = 50_000, 5
# data = iter([[int(x) for x in os.urandom(100)] for _ in range(number * repeat)])
t = timeit.repeat(lambda: sort(next(data)), number=number, repeat=repeat)
print('%10s %.4f seconds' % (sort.__name__, min(t)))
print()
Use sorted with slicing:
l[:1] + sorted(l[1:])
Output:
[2, 1, 3, 4, 5]
For the special case that you actually have, according to our comments:
Q: I'm curious: Why do you want this? – Heap Overflow
A: I'm trying to make a next_permutation() in python – nwice13
Q: Do you really need to sort for that, though? Not just reverse? – Heap Overflow
A: Yup, reverse is ok, but I just curious to ask about sorting this way. – nwice13
I'd do that like this:
l[1:] = l[:0:-1]
You can define your own function in python using slicing and sorted and this function (your custom function) should take start and end index of the list.
Since list is mutable in python, I have written the function in such a way it doesn't modify the list passed. Feel free to modify the function. You can modify the list passed to this function to save memory if required.
def sortedList(li, start=0, end=None):
if end is None:
end = len(li)
fi = []
fi[:start] = li[:start]
fi[start:end] = sorted(li[start:end])
return fi
li = [2, 1, 4, 3, 0]
print(li)
print(sortedList(li, 1))
Output:
[2, 1, 4, 3, 0]
[2, 0, 1, 3, 4]
Assume I have an array like [2,3,4], I am looking for a way in NumPy (or Tensorflow) to convert it to [0,0,1,1,1,2,2,2,2] to apply tf.math.segment_sum() on a tensor that has a size of 2+3+4.
No elegant idea comes to my mind, only loops and list comprehension.
Would something like this work for you?
import numpy
arr = numpy.array([2, 3, 4])
numpy.repeat(numpy.arange(arr.size), arr)
# array([0, 0, 1, 1, 1, 2, 2, 2, 2])
You don't need to use numpy. You can use nothing but list comprehensions:
>>> foo = [2,3,4]
>>> sum([[i]*foo[i] for i in range(len(foo))], [])
[0, 0, 1, 1, 1, 2, 2, 2, 2]
It works like this:
You can create expanded arrays by multiplying a simple one with a constant, so [0] * 2 == [0,0]. So for each index in the array, we expand with [i]*foo[i]. In other words:
>>> [[i]*foo[i] for i in range(len(foo))]
[[0, 0], [1, 1, 1], [2, 2, 2, 2]]
Then we use sum to reduce the lists into a single list:
>>> sum([[i]*foo[i] for i in range(len(foo))], [])
[0, 0, 1, 1, 1, 2, 2, 2, 2]
Because we are "summing" lists, not integers, we pass [] to sum to make an empty list the starting value of the sum.
(Note that this likely will be slower than numpy, though I have not personally compared it to something like #Patol75's answer.)
I really like the answer from #Patol75 since it's neat. However, there is no pure tensorflow solution yet, so I provide one which maybe kinda complex. Just for reference and fun!
BTW, I didn't see tf.repeat this API in tf master. Please check this PR which adds tf.repeat support equivalent to numpy.repeat.
import tensorflow as tf
repeats = tf.constant([2,3,4])
values = tf.range(tf.size(repeats)) # [0,1,2]
max_repeats = tf.reduce_max(repeats) # max repeat is 4
tiled = tf.tile(tf.reshape(values, [-1,1]), [1,max_repeats]) # [[0,0,0,0],[1,1,1,1],[2,2,2,2]]
mask = tf.sequence_mask(repeats, max_repeats) # [[1,1,0,0],[1,1,1,0],[1,1,1,1]]
res = tf.boolean_mask(tiled, mask) # [0,0,1,1,1,2,2,2,2]
Patol75's answer uses Numpy but Gort the Robot's answer is actually faster (on your example list at least).
I'll keep this answer up as another solution, but it's slower than both.
Given that a = [2,3,4] this could be done using a loop like so:
b = []
for i in range(len(a)):
for j in range(a[i]):
b.append(range(len(a))[i])
Which, as a list comprehension one-liner, is this diabolical thing:
b = [range(len(a))[i] for i in range(len(a)) for j in range(a[i])]
Both end up with b = [0,0,1,1,1,2,2,2,2].
I have a numerical list:
myList = [1, 2, 3, 100, 5]
Now if I sort this list to obtain [1, 2, 3, 5, 100].
What I want is the indices of the elements from the
original list in the sorted order i.e. [0, 1, 2, 4, 3]
--- ala MATLAB's sort function that returns both
values and indices.
If you are using numpy, you have the argsort() function available:
>>> import numpy
>>> numpy.argsort(myList)
array([0, 1, 2, 4, 3])
http://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html
This returns the arguments that would sort the array or list.
Something like next:
>>> myList = [1, 2, 3, 100, 5]
>>> [i[0] for i in sorted(enumerate(myList), key=lambda x:x[1])]
[0, 1, 2, 4, 3]
enumerate(myList) gives you a list containing tuples of (index, value):
[(0, 1), (1, 2), (2, 3), (3, 100), (4, 5)]
You sort the list by passing it to sorted and specifying a function to extract the sort key (the second element of each tuple; that's what the lambda is for. Finally, the original index of each sorted element is extracted using the [i[0] for i in ...] list comprehension.
myList = [1, 2, 3, 100, 5]
sorted(range(len(myList)),key=myList.__getitem__)
[0, 1, 2, 4, 3]
I did a quick performance check on these with perfplot (a project of mine) and found that it's hard to recommend anything else but
np.argsort(x)
(note the log scale):
Code to reproduce the plot:
import perfplot
import numpy as np
def sorted_enumerate(seq):
return [i for (v, i) in sorted((v, i) for (i, v) in enumerate(seq))]
def sorted_enumerate_key(seq):
return [x for x, y in sorted(enumerate(seq), key=lambda x: x[1])]
def sorted_range(seq):
return sorted(range(len(seq)), key=seq.__getitem__)
b = perfplot.bench(
setup=np.random.rand,
kernels=[sorted_enumerate, sorted_enumerate_key, sorted_range, np.argsort],
n_range=[2 ** k for k in range(15)],
xlabel="len(x)",
)
b.save("out.png")
The answers with enumerate are nice, but I personally don't like the lambda used to sort by the value. The following just reverses the index and the value, and sorts that. So it'll first sort by value, then by index.
sorted((e,i) for i,e in enumerate(myList))
Updated answer with enumerate and itemgetter:
sorted(enumerate(a), key=lambda x: x[1])
# [(0, 1), (1, 2), (2, 3), (4, 5), (3, 100)]
Zip the lists together: The first element in the tuple will the index, the second is the value (then sort it using the second value of the tuple x[1], x is the tuple)
Or using itemgetter from the operatormodule`:
from operator import itemgetter
sorted(enumerate(a), key=itemgetter(1))
Essentially you need to do an argsort, what implementation you need depends if you want to use external libraries (e.g. NumPy) or if you want to stay pure-Python without dependencies.
The question you need to ask yourself is: Do you want the
indices that would sort the array/list
indices that the elements would have in the sorted array/list
Unfortunately the example in the question doesn't make it clear what is desired because both will give the same result:
>>> arr = np.array([1, 2, 3, 100, 5])
>>> np.argsort(np.argsort(arr))
array([0, 1, 2, 4, 3], dtype=int64)
>>> np.argsort(arr)
array([0, 1, 2, 4, 3], dtype=int64)
Choosing the argsort implementation
If you have NumPy at your disposal you can simply use the function numpy.argsort or method numpy.ndarray.argsort.
An implementation without NumPy was mentioned in some other answers already, so I'll just recap the fastest solution according to the benchmark answer here
def argsort(l):
return sorted(range(len(l)), key=l.__getitem__)
Getting the indices that would sort the array/list
To get the indices that would sort the array/list you can simply call argsort on the array or list. I'm using the NumPy versions here but the Python implementation should give the same results
>>> arr = np.array([3, 1, 2, 4])
>>> np.argsort(arr)
array([1, 2, 0, 3], dtype=int64)
The result contains the indices that are needed to get the sorted array.
Since the sorted array would be [1, 2, 3, 4] the argsorted array contains the indices of these elements in the original.
The smallest value is 1 and it is at index 1 in the original so the first element of the result is 1.
The 2 is at index 2 in the original so the second element of the result is 2.
The 3 is at index 0 in the original so the third element of the result is 0.
The largest value 4 and it is at index 3 in the original so the last element of the result is 3.
Getting the indices that the elements would have in the sorted array/list
In this case you would need to apply argsort twice:
>>> arr = np.array([3, 1, 2, 4])
>>> np.argsort(np.argsort(arr))
array([2, 0, 1, 3], dtype=int64)
In this case :
the first element of the original is 3, which is the third largest value so it would have index 2 in the sorted array/list so the first element is 2.
the second element of the original is 1, which is the smallest value so it would have index 0 in the sorted array/list so the second element is 0.
the third element of the original is 2, which is the second-smallest value so it would have index 1 in the sorted array/list so the third element is 1.
the fourth element of the original is 4 which is the largest value so it would have index 3 in the sorted array/list so the last element is 3.
If you do not want to use numpy,
sorted(range(len(seq)), key=seq.__getitem__)
is fastest, as demonstrated here.
The other answers are WRONG.
Running argsort once is not the solution.
For example, the following code:
import numpy as np
x = [3,1,2]
np.argsort(x)
yields array([1, 2, 0], dtype=int64) which is not what we want.
The answer should be to run argsort twice:
import numpy as np
x = [3,1,2]
np.argsort(np.argsort(x))
gives array([2, 0, 1], dtype=int64) as expected.
Most easiest way you can use Numpy Packages for that purpose:
import numpy
s = numpy.array([2, 3, 1, 4, 5])
sort_index = numpy.argsort(s)
print(sort_index)
But If you want that you code should use baisc python code:
s = [2, 3, 1, 4, 5]
li=[]
for i in range(len(s)):
li.append([s[i],i])
li.sort()
sort_index = []
for x in li:
sort_index.append(x[1])
print(sort_index)
We will create another array of indexes from 0 to n-1
Then zip this to the original array and then sort it on the basis of the original values
ar = [1,2,3,4,5]
new_ar = list(zip(ar,[i for i in range(len(ar))]))
new_ar.sort()
`
s = [2, 3, 1, 4, 5]
print([sorted(s, reverse=False).index(val) for val in s])
For a list with duplicate elements, it will return the rank without ties, e.g.
s = [2, 2, 1, 4, 5]
print([sorted(s, reverse=False).index(val) for val in s])
returns
[1, 1, 0, 3, 4]
Import numpy as np
FOR INDEX
S=[11,2,44,55,66,0,10,3,33]
r=np.argsort(S)
[output]=array([5, 1, 7, 6, 0, 8, 2, 3, 4])
argsort Returns the indices of S in sorted order
FOR VALUE
np.sort(S)
[output]=array([ 0, 2, 3, 10, 11, 33, 44, 55, 66])
Code:
s = [2, 3, 1, 4, 5]
li = []
for i in range(len(s)):
li.append([s[i], i])
li.sort()
sort_index = []
for x in li:
sort_index.append(x[1])
print(sort_index)
Try this, It worked for me cheers!
firstly convert your list to this:
myList = [1, 2, 3, 100, 5]
add a index to your list's item
myList = [[0, 1], [1, 2], [2, 3], [3, 100], [4, 5]]
next :
sorted(myList, key=lambda k:k[1])
result:
[[0, 1], [1, 2], [2, 3], [4, 5], [3, 100]]
A variant on RustyRob's answer (which is already the most performant pure Python solution) that may be superior when the collection you're sorting either:
Isn't a sequence (e.g. it's a set, and there's a legitimate reason to want the indices corresponding to how far an iterator must be advanced to reach the item), or
Is a sequence without O(1) indexing (among Python's included batteries, collections.deque is a notable example of this)
Case #1 is unlikely to be useful, but case #2 is more likely to be meaningful. In either case, you have two choices:
Convert to a list/tuple and use the converted version, or
Use a trick to assign keys based on iteration order
This answer provides the solution to #2. Note that it's not guaranteed to work by the language standard; the language says each key will be computed once, but not the order they will be computed in. On every version of CPython, the reference interpreter, to date, it's precomputed in order from beginning to end, so this works, but be aware it's not guaranteed. In any event, the code is:
sizediterable = ...
sorted_indices = sorted(range(len(sizediterable)), key=lambda _, it=iter(sizediterable): next(it))
All that does is provide a key function that ignores the value it's given (an index) and instead provides the next item from an iterator preconstructed from the original container (cached as a defaulted argument to allow it to function as a one-liner). As a result, for something like a large collections.deque, where using its .__getitem__ involves O(n) work (and therefore computing all the keys would involve O(n²) work), sequential iteration remains O(1), so generating the keys remains just O(n).
If you need something guaranteed to work by the language standard, using built-in types, Roman's solution will have the same algorithmic efficiency as this solution (as neither of them rely on the algorithmic efficiency of indexing the original container).
To be clear, for the suggested use case with collections.deque, the deque would have to be quite large for this to matter; deques have a fairly large constant divisor for indexing, so only truly huge ones would have an issue. Of course, by the same token, the cost of sorting is pretty minimal if the inputs are small/cheap to compare, so if your inputs are large enough that efficient sorting matters, they're large enough for efficient indexing to matter too.