Twisted execute 10 threads in same time and wait for result - python

Writing a program that verify list of emails syntax and MX records, as blocking programming is time consuming, I want do this async or by threads, this my code:
with open(file_path) as f:
# check the status of file, if away then file pointer will be at the last index
if (importState.status == ImportStateFile.STATUS_AWAY):
f.seek(importState.fileIndex, 0)
while True:
# the number of emails to process is configurable 10 or 20
emails = list(islice(f, app.config['NUMBER_EMAILS_TO_PROCESS']))
if len(emails) == 0:
break;
importState.fileIndex = importState.fileIndex + len(''.join(emails))
for email in emails:
email = email.strip('''<>;,'\r\n ''').lower()
d = threads.deferToThread(check_email, email)
d.addCallback(save_email_status, email, importState)
# set the number of emails processed
yield set_nbrs_emails_process(importState)
# do an insert of all emails
yield reactor.callFromThread(db.session.commit)
# set file status as success
yield finalize_import_file_state(importState)
reactor.callFromThread(reactor.stop)
Check email function:
def check_email(email):
pipe = subprocess.Popen(["./check_email", '--email=%s' % email], stdout=subprocess.PIPE)
status = pipe.stdout.read()
try:
status = int(status)
except ValueError:
status = -1
return status
what I need is to process 10 emails in same time and wait for result.

I'm not sure why there are threads involved in your example code. You don't need threads to interact with email with Twisted, nor to do so concurrently.
If you have an asynchronous function that returns a Deferred, you can just call it ten times and the ten different streams of work will proceed in parallel:
for i in range(10):
async_check_email_returning_deferred()
If you want to know when all ten results are available, you can use gatherResults:
from twisted.internet.defer import gatherResults
...
email_results = []
for i in range(10):
email_results.append(async_check_mail_returning_deferred())
all_results = gatherResults(email_results)
all_results is a Deferred that will fire when all of the Deferreds in email_results have fired (or when the first of them fires with a Failure).

Related

Add delay between workers in concurrent.futures and shutdown

Looking to add delay between Threadpoolexecutor workers
checked = 0
session_number = 0.00
def parseCombo(file_name, config_info, threads2):
try:
global checked
global session_number
### some non related code here
if config_info["Parsing"] == "First":
system("title "+ config_info["name"] + " [+] Start Parsing...")
with concurrent.futures.ThreadPoolExecutor(max_workers=threads2) as executor:
for number in numbers:
number = number.strip()
executor.submit(call_master, number, config_info)
time.sleep(20)
So basically, with those threads I'm making some requests to API that limit 2 requests per second.
The max workers i can set is 2, if I raise the API block all requests.
Each task take 60 seconds to complete, what I want to do, is set max_workers to 10, then the executor start with 2 tasks "workers" and wait 3 seconds to start the next 2 and so on, without waiting for the first 2 to finish.
Next thing is to shutdown the executor when one the task return value.
def beta(url, number, config_info):
try:
## some non related code here
global checked
global session_number
session_number = session_number
checked +=1
if '999' in text:
track = re.findall('\999[0-9]+\.?[0-9]*', text)
num = float(track[0].replace("999", ""))
session_number += num
log(number, track[0], config_info, url, text)
Is there a way to shutdown executor from def beta?
If possible, need it shutdown when this line is triggered
log(number, track[0], config_info, url, text)

Multiprocessing function not writing to file or printing

I'm working on a Raspberry Pi (3 B+) making a data collection device and I'm
trying to spawn a process to record the data coming in and write it to a file. I have a function for the writing that works fine when I call it directly.
When I call it using the multiprocess approach however, nothing seems to happen. I can see in task monitors in Linux that the process does in fact get spawned but no file gets written, and when I try to pass a flag to it to shut down it doesn't work, meaning I end up terminating the process and nothing seems to have happened.
I've been over this every which way and can't see what I'm doing wrong; does anyone else? In case it's relevant, these are functions inside a parent class, and one of the functions is meant to spawn another as a thread.
Code I'm using:
from datetime import datetime, timedelta
import csv
from drivers.IMU_SEN0 import IMU_SEN0
import multiprocessing, os
class IMU_data_logger:
_output_filename = ''
_csv_headers = []
_accelerometer_headers = ['Accelerometer X','Accelerometer Y','Accelerometer Z']
_gyroscope_headers = ['Gyroscope X','Gyroscope Y','Gyroscope Z']
_magnetometer_headers = ['Bearing']
_log_accelerometer = False
_log_gyroscope= False
_log_magnetometer = False
IMU = None
_writer=[]
_run_underway = False
_process=[]
_stop_value = 0
def __init__(self,output_filename='/home/pi/blah.csv',log_accelerometer = True,log_gyroscope= True,log_magnetometer = True):
"""data logging device
NOTE! Multiple instances of this class should not use the same IMU devices simultaneously!"""
self._output_filename = output_filename
self._log_accelerometer = log_accelerometer
self._log_gyroscope = log_gyroscope
self._log_magnetometer = log_magnetometer
def __del__(self):
# TODO Update this
if self._run_underway: # If there's still a run underway, end it first
self.end_recording()
def _set_up(self):
self.IMU = IMU_SEN0(self._log_accelerometer,self._log_gyroscope,self._log_magnetometer)
self._set_up_headers()
def _set_up_headers(self):
"""Set up the headers of the CSV file based on the header substrings at top and the input flags on what will be measured"""
self._csv_headers = []
if self._log_accelerometer is not None:
self._csv_headers+= self._accelerometer_headers
if self._log_gyroscope is not None:
self._csv_headers+= self._gyroscope_headers
if self._log_magnetometer is not None:
self._csv_headers+= self._magnetometer_headers
def _record_data(self,frequency,stop_value):
self._set_up() #Run setup in thread
"""Record data function, which takes a recording frequency, in herz, as an input"""
previous_read_time=datetime.now()-timedelta(1,0,0)
self._run_underway = True # Note that a run is now going
Period = 1/frequency # Period, in seconds, of a recording based on the input frequency
print("Writing output data to",self._output_filename)
with open(self._output_filename,'w',newline='') as outcsv:
self._writer = csv.writer(outcsv)
self._writer.writerow(self._csv_headers) # Write headers to file
while stop_value.value==0: # While a run continues
if datetime.now()-previous_read_time>=timedelta(0,1,0): # If we've waited a period, collect the data; otherwise keep looping
print("run underway value",self._run_underway)
if datetime.now()-previous_read_time>=timedelta(0,Period,0): # If we've waited a period, collect the data; otherwise keep looping
previous_read_time = datetime.now() # Update previous readtime
next_row = []
if self._log_accelerometer:
# Get values in m/s^2
axes = self.IMU.read_accelerometer_values()
next_row += [axes['x'],axes['y'],axes['z']]
if self._log_gyroscope:
# Read gyro values
gyro = self.IMU.read_gyroscope_values()
next_row += [gyro['x'],gyro['y'],gyro['z']]
if self._log_magnetometer:
# Read magnetometer value
b= self.IMU.read_magnetometer_bearing()
next_row += b
self._writer.writerow(next_row)
# Close the csv when done
outcsv.close()
def start_recording(self,frequency_in_hz):
# Create recording process
self._stop_value = multiprocessing.Value('i',0)
self._process = multiprocessing.Process(target=self._record_data,args=(frequency_in_hz,self._stop_value))
# Start recording process
self._process.start()
print(datetime.now().strftime("%H:%M:%S.%f"),"Data logging process spawned")
print("Logging Accelerometer:",self._log_accelerometer)
print("Logging Gyroscope:",self._log_gyroscope)
print("Logging Magnetometer:",self._log_magnetometer)
print("ID of data logging process: {}".format(self._process.pid))
def end_recording(self,terminate_wait = 2):
"""Function to end the recording multithread that's been spawned.
Args: terminate_wait: This is the time, in seconds, to wait after attempting to shut down the process before terminating it."""
# Get process id
id = self._process.pid
# Set stop event for process
self._stop_value.value = 1
self._process.join(terminate_wait) # Wait two seconds for the process to terminate
if self._process.is_alive(): # If it's still alive after waiting
self._process.terminate()
print(datetime.now().strftime("%H:%M:%S.%f"),"Process",id,"needed to be terminated.")
else:
print(datetime.now().strftime("%H:%M:%S.%f"),"Process",id,"successfully ended itself.")
====================================================================
ANSWER: For anyone following up here, it turns out the problem was my use of the VS Code debugger which apparently doesn't work with multiprocessing and was somehow preventing the success of the spawned process. Many thanks to Tomasz Swider below for helping me work through issues and, eventually, find my idiocy. The help was very deeply appreciated!!
I can see few thing wrong in your code:
First thing
stop_value == 0 will not work as the multiprocess.Value('i', 0) != 0, change that line to
while stop_value.value == 0
Second, you never update previous_read_time so it will write the readings as fast as it can, you will run out of disk quick
Third, try use time.sleep() the thing you are doing is called busy looping and it is bad, it is wasting CPU cycles needlessly.
Four, terminating with self._stop_value = 1 probably will not work there must be other way to set that value maybe self._stop_value.value = 1.
Well here is a pice of example code based on the code that you have provided that is working just fine:
import csv
import multiprocessing
import time
from datetime import datetime, timedelta
from random import randint
class IMU(object):
#staticmethod
def read_accelerometer_values():
return dict(x=randint(0, 100), y=randint(0, 100), z=randint(0, 10))
class Foo(object):
def __init__(self, output_filename):
self._output_filename = output_filename
self._csv_headers = ['xxxx','y','z']
self._log_accelerometer = True
self.IMU = IMU()
def _record_data(self, frequency, stop_value):
#self._set_up() # Run setup functions for the data collection device and store it in the self.IMU variable
"""Record data function, which takes a recording frequency, in herz, as an input"""
previous_read_time = datetime.now() - timedelta(1, 0, 0)
self._run_underway = True # Note that a run is now going
Period = 1 / frequency # Period, in seconds, of a recording based on the input frequency
print("Writing output data to", self._output_filename)
with open(self._output_filename, 'w', newline='') as outcsv:
self._writer = csv.writer(outcsv)
self._writer.writerow(self._csv_headers) # Write headers to file
while stop_value.value == 0: # While a run continues
if datetime.now() - previous_read_time >= timedelta(0, 1,
0): # If we've waited a period, collect the data; otherwise keep looping
print("run underway value", self._run_underway)
if datetime.now() - previous_read_time >= timedelta(0, Period,
0): # If we've waited a period, collect the data; otherwise keep looping
next_row = []
if self._log_accelerometer:
# Get values in m/s^2
axes = self.IMU.read_accelerometer_values()
next_row += [axes['x'], axes['y'], axes['z']]
previous_read_time = datetime.now()
self._writer.writerow(next_row)
# Close the csv when done
outcsv.close()
def start_recording(self, frequency_in_hz):
# Create recording process
self._stop_value = multiprocessing.Value('i', 0)
self._process = multiprocessing.Process(target=self._record_data, args=(frequency_in_hz, self._stop_value))
# Start recording process
self._process.start()
print(datetime.now().strftime("%H:%M:%S.%f"), "Data logging process spawned")
print("ID of data logging process: {}".format(self._process.pid))
def end_recording(self, terminate_wait=2):
"""Function to end the recording multithread that's been spawned.
Args: terminate_wait: This is the time, in seconds, to wait after attempting to shut down the process before terminating it."""
# Get process id
id = self._process.pid
# Set stop event for process
self._stop_value.value = 1
self._process.join(terminate_wait) # Wait two seconds for the process to terminate
if self._process.is_alive(): # If it's still alive after waiting
self._process.terminate()
print(datetime.now().strftime("%H:%M:%S.%f"), "Process", id, "needed to be terminated.")
else:
print(datetime.now().strftime("%H:%M:%S.%f"), "Process", id, "successfully ended itself.")
if __name__ == '__main__':
foo = Foo('/tmp/foometer.csv')
foo.start_recording(20)
time.sleep(5)
print('Ending recording')
foo.end_recording()

How would I go about using concurrent.futures and queues for a real-time scenario?

It is fairly easy to do parallel work with Python 3's concurrent.futures module as shown below.
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
future_to = {executor.submit(do_work, input, 60): input for input in dictionary}
for future in concurrent.futures.as_completed(future_to):
data = future.result()
It is also very handy to insert and retrieve items into a Queue.
q = queue.Queue()
for task in tasks:
q.put(task)
while not q.empty():
q.get()
I have a script running in background listening for updates. Now, in theory assume that, as those updates arrive, I would queue them and do work on them concurrently using the ThreadPoolExecutor.
Now, individually, all of these components work in isolation, and make sense, but how do I go about using them together? I am not aware if it is possible to feed the ThreadPoolExecutor work from the queue in real time unless the data to work from is predetermined?
In a nutshell, all I want to do is, receive updates of say 4 messages a second, shove them in a queue, and get my concurrent.futures to work on them. If I don't, then I am stuck with a sequential approach which is slow.
Let's take the canonical example in the Python documentation below:
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}
for future in concurrent.futures.as_completed(future_to_url):
url = future_to_url[future]
try:
data = future.result()
except Exception as exc:
print('%r generated an exception: %s' % (url, exc))
else:
print('%r page is %d bytes' % (url, len(data)))
The list of URLS is fixed. Is it possible to feed this list in real-time and get the worker to process it as they come by, perhaps from a queue for management purposes? I am a bit confused on whether my approach is actually possible?
The example from the Python docs, expanded to take its work from a queue. A change to note, is that this code uses concurrent.futures.wait instead of concurrent.futures.as_completed to allow new work to be started while waiting for other work to complete.
import concurrent.futures
import urllib.request
import time
import queue
q = queue.Queue()
URLS = ['http://www.foxnews.com/',
'http://www.cnn.com/',
'http://europe.wsj.com/',
'http://www.bbc.co.uk/',
'http://some-made-up-domain.com/']
def feed_the_workers(spacing):
""" Simulate outside actors sending in work to do, request each url twice """
for url in URLS + URLS:
time.sleep(spacing)
q.put(url)
return "DONE FEEDING"
def load_url(url, timeout):
""" Retrieve a single page and report the URL and contents """
with urllib.request.urlopen(url, timeout=timeout) as conn:
return conn.read()
# We can use a with statement to ensure threads are cleaned up promptly
with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor:
# start a future for a thread which sends work in through the queue
future_to_url = {
executor.submit(feed_the_workers, 0.25): 'FEEDER DONE'}
while future_to_url:
# check for status of the futures which are currently working
done, not_done = concurrent.futures.wait(
future_to_url, timeout=0.25,
return_when=concurrent.futures.FIRST_COMPLETED)
# if there is incoming work, start a new future
while not q.empty():
# fetch a url from the queue
url = q.get()
# Start the load operation and mark the future with its URL
future_to_url[executor.submit(load_url, url, 60)] = url
# process any completed futures
for future in done:
url = future_to_url[future]
try:
data = future.result()
except Exception as exc:
print('%r generated an exception: %s' % (url, exc))
else:
if url == 'FEEDER DONE':
print(data)
else:
print('%r page is %d bytes' % (url, len(data)))
# remove the now completed future
del future_to_url[future]
Output from fetching each url twice:
'http://www.foxnews.com/' page is 67574 bytes
'http://www.cnn.com/' page is 136975 bytes
'http://www.bbc.co.uk/' page is 193780 bytes
'http://some-made-up-domain.com/' page is 896 bytes
'http://www.foxnews.com/' page is 67574 bytes
'http://www.cnn.com/' page is 136975 bytes
DONE FEEDING
'http://www.bbc.co.uk/' page is 193605 bytes
'http://some-made-up-domain.com/' page is 896 bytes
'http://europe.wsj.com/' page is 874649 bytes
'http://europe.wsj.com/' page is 874649 bytes
At work I found a situation where I wanted to do parallel work on an unbounded stream of data. I created a small library inspired by the excellent answer already provided by Stephen Rauch.
I originally approached this problem by thinking about two separate threads, one that submits work to a queue and one that monitors the queue for any completed tasks and makes more room for new work to come in. This is similar to what Stephen Rauch proposed, where he consumes the stream using a feed_the_workers function that runs in a separate thread.
Talking to one of my colleagues, he helped me realize that you can get away with doing everything in a single thread if you define a buffered iterator that allows you to control how many elements are let out of the input stream every time you are ready to submit more work to the thread pool.
So we introduce the BufferedIter class
class BufferedIter(object):
def __init__(self, iterator):
self.iter = iterator
def nextN(self, n):
vals = []
for _ in range(n):
vals.append(next(self.iter))
return vals
which allows us to define the stream processor in the following way
import logging
import queue
import signal
import sys
import time
from concurrent.futures import ThreadPoolExecutor, wait, ALL_COMPLETED
level = logging.DEBUG
log = logging.getLogger(__name__)
handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(logging.Formatter('%(asctime)s %(message)s'))
handler.setLevel(level)
log.addHandler(handler)
log.setLevel(level)
WAIT_SLEEP = 1 # second, adjust this based on the timescale of your tasks
def stream_processor(input_stream, task, num_workers):
# Use a queue to signal shutdown.
shutting_down = queue.Queue()
def shutdown(signum, frame):
log.warning('Caught signal %d, shutting down gracefully ...' % signum)
# Put an item in the shutting down queue to signal shutdown.
shutting_down.put(None)
# Register the signal handler
signal.signal(signal.SIGTERM, shutdown)
signal.signal(signal.SIGINT, shutdown)
def is_shutting_down():
return not shutting_down.empty()
futures = dict()
buffer = BufferedIter(input_stream)
with ThreadPoolExecutor(num_workers) as executor:
num_success = 0
num_failure = 0
while True:
idle_workers = num_workers - len(futures)
if not is_shutting_down():
items = buffer.nextN(idle_workers)
for data in items:
futures[executor.submit(task, data)] = data
done, _ = wait(futures, timeout=WAIT_SLEEP, return_when=ALL_COMPLETED)
for f in done:
data = futures[f]
try:
f.result(timeout=0)
except Exception as exc:
log.error('future encountered an exception: %r, %s' % (data, exc))
num_failure += 1
else:
log.info('future finished successfully: %r' % data)
num_success += 1
del futures[f]
if is_shutting_down() and len(futures) == 0:
break
log.info("num_success=%d, num_failure=%d" % (num_success, num_failure))
Below we show an example for how to use the stream processor
import itertools
def integers():
"""Simulate an infinite stream of work."""
for i in itertools.count():
yield i
def task(x):
"""The task we would like to perform in parallel.
With some delay to simulate a time consuming job.
With a baked in exception to simulate errors.
"""
time.sleep(3)
if x == 4:
raise ValueError('bad luck')
return x * x
stream_processor(integers(), task, num_workers=3)
The output for this example is shown below
2019-01-15 22:34:40,193 future finished successfully: 1
2019-01-15 22:34:40,193 future finished successfully: 0
2019-01-15 22:34:40,193 future finished successfully: 2
2019-01-15 22:34:43,201 future finished successfully: 5
2019-01-15 22:34:43,201 future encountered an exception: 4, bad luck
2019-01-15 22:34:43,202 future finished successfully: 3
2019-01-15 22:34:46,208 future finished successfully: 6
2019-01-15 22:34:46,209 future finished successfully: 7
2019-01-15 22:34:46,209 future finished successfully: 8
2019-01-15 22:34:49,215 future finished successfully: 11
2019-01-15 22:34:49,215 future finished successfully: 10
2019-01-15 22:34:49,215 future finished successfully: 9
^C <=== THIS IS WHEN I HIT Ctrl-C
2019-01-15 22:34:50,648 Caught signal 2, shutting down gracefully ...
2019-01-15 22:34:52,221 future finished successfully: 13
2019-01-15 22:34:52,222 future finished successfully: 14
2019-01-15 22:34:52,222 future finished successfully: 12
2019-01-15 22:34:52,222 num_success=14, num_failure=1
I really liked the interesting approach by #pedro above. However, when processing thousands of files, I noticed that at the end a StopIteration would be thrown and some files would always be skipped. I had to make a little modification to as follows. Very useful answer again.
class BufferedIter(object):
def __init__(self, iterator):
self.iter = iterator
def nextN(self, n):
vals = []
try:
for _ in range(n):
vals.append(next(self.iter))
return vals, False
except StopIteration as e:
return vals, True
-- Call as follows
...
if not is_shutting_down():
items, is_finished = buffer.nextN(idle_workers)
if is_finished:
stop()
...
-- Where stop is a function that simply tells to shutdown
def stop():
shutting_down.put(None)
It is possible to gain the benefits of the executor without strictly having to use a Queue. New tasks are submitted from the main thread. The undone futures are tracked and waited on until all futures are done.
import concurrent.futures
import sys
import time
sys.setrecursionlimit(64) # This is only for demonstration purposes to trigger a RecursionError. Do not set in practice.
def slow_factorial(n: int) -> int:
time.sleep(0.01)
if n == 0:
return 1
else:
return n * slow_factorial(n-1)
initial_inputs = [0, 1, 5, 20, 200, 100, 50, 51, 55, 40, 44, 21, 222, 333, 202, 1000, 10, 9000, 9009, 99, 9999]
for executor_class in (concurrent.futures.ThreadPoolExecutor, concurrent.futures.ProcessPoolExecutor):
for max_workers in (4, 8, 16, 32):
start_time = time.monotonic()
with executor_class(max_workers=max_workers) as executor:
futures_to_n = {executor.submit(slow_factorial, n): n for n in initial_inputs}
while futures_to_n:
futures_done, futures_not_done = concurrent.futures.wait(futures_to_n, return_when=concurrent.futures.FIRST_COMPLETED)
# Note: Length of futures_done is often > 1.
for future in futures_done:
n = futures_to_n.pop(future)
try:
factorial_n = future.result()
except RecursionError:
n_smaller = int(n ** 0.9)
future = executor.submit(slow_factorial, n_smaller)
futures_to_n[future] = n_smaller
# print(f'Failed to compute factorial of {n}. Trying to compute factorial of a smaller number {n_smaller} instead.')
else:
# print(f'Factorial of {n} is {factorial_n}.')
pass
used_time = time.monotonic() - start_time
executor_type = executor_class.__name__.removesuffix('PoolExecutor').lower()
print(f'Workflow took {used_time:.1f}s with {max_workers} {executor_type} workers.')
print()
Output:
Workflow took 9.4s with 4 thread workers.
Workflow took 6.3s with 8 thread workers.
Workflow took 5.4s with 16 thread workers.
Workflow took 5.2s with 32 thread workers.
Workflow took 9.0s with 4 process workers.
Workflow took 5.9s with 8 process workers.
Workflow took 5.1s with 16 process workers.
Workflow took 4.9s with 32 process workers.
For more clarity, uncomment the two print statements. As per the output above, there is an asymptotic speed benefit with more workers.

if statement for a subprocess python not working

I've tried to create a little app that plays a sound when you lose connectivity for an extended period and plays another when the connection is established. Useful for wireless connections.
I'm still new to Python :) trying little projects to improve my knowledge. If you do answer I will be very grateful if you could include any information about how to use subprocess.
I've defined the subprocess but I'm not sure how to word my if statement so it loops from one function to the other. IE Function 1 = IF ping loss > 15 pings play sound and move on to function 2... If function 2 ping success > 15 pings play sound and move back to function 1. So on.
I've yet to wrap the program in a loop, at this point I'm just trying to get the ping to work with the if statement.
So right now the application just continuously loop pings.
import os
import subprocess
import winsound
import time
def NetFail():
winsound.Beep(2000 , 180), winsound.Beep(1400 , 180)
def NetSucc():
winsound.Beep(1400 , 250), winsound.Beep(2000 , 250),
ips=[]
n = 1
NetSuccess = 10
NetFailure = 10
PinSuc = 0
PinFail = 0
x = '8.8.8.8'
ips.append(x)
for ping in range(0,n):
ipd=ips[ping]
def PingFailure():
while PinFail < NetSuccess:
res = subprocess.call(['ping', '-n', '10', ipd])
if ipd in str(res):
PingSuccess()
else:
print ("ping to", ipd, "failed!"), NetFail()
def PingSuccess():
while PinFail < NetFailure: # This needs to be cleaned up so it doesn't interfere with the other function
res = subprocess.call(['ping', '-n', '10', ipd])
if ipd in str(res):
PingFail()
else:
print ("ping to", ipd, "successful!"), NetSucc()
As you use the command ping -n 10 ip, I assume that you are using a Windows system, as on Linux (or other Unix-like) it would be ping -c 10 ip.
Unfortunately, on Windows ping always return 0, so you cannot use the return value to know whether peer was reached. And even the output is not very clear...
So you should:
run in a cmd console the command ping -n 1 ip with an accessible and inaccessible ip, note the output and identify the differences. On my (french) system, it writes Impossible, I suppose that you should get Unable or the equivalent in your locale
start the ping from Python with subprocess.Popen redirecting the output to a pipe
get the output (and error output) from the command with communicate
search for the Unable word in output.
Code could be like:
errWord = 'Unable' # replace with what your locale defines...
p = subprocess.Popen([ 'ping', '-n', '1', ipd],
stdout = subprocess.PIPE, stderr=subprocess.PIPE)
out, err = p.communicate()
if errWord in out:
# process network disconnected
else:
# process network connected
Alternatively, you could search pypi for a pure Python implementation of ping such as py-ping ...
Anyway, I would not use two functions in flip-flop because it will be harder if you later wanted to test connectivity to multiple IPs. I would rather use an class
class IP(object):
UNABLE = "Unable" # word indicating unreachable host
MAX = 15 # number of success/failure to record new state
def __init__(self, ip, failfunc, succfunc, initial = True):
self.ip = ip
self.failfunc = failfunc # to warn of a disconnection
self.succfunc = succfunc # to warn of a connection
self.connected = initial # start by default in connected state
self.curr = 0 # number of successive alternate states
def test(self):
p = subprocess.Popen([ 'ping', '-n', '1', self.ip],
stdout = subprocess.PIPE, stderr=subprocess.PIPE)
out, err = p.communicate()
if self.UNABLE in out:
if self.connected:
self.curr += 1
else:
self.curr = 0 # reset count
else:
if not self.connected:
self.curr += 1
else:
self.curr = 0 # reset count
if self.curr >= self.MAX: # state has changed
self.connected = not self.connected
self.curr = 0
if self.connected: # warn for new state
self.succfunc(self)
else:
self.failfunc(self)
Then you can iterate over a list of IP objects, repeatedly calling ip.test(), and you will be warned for state changes
Not quite sure, what you want to achieve, but your if statement has to be part of the while loop if you want it to be executed each time ping is called via subprocess is called.
Also:
Here is the documentation for subprocess: https://docs.python.org/3/library/subprocess.html
For viewing the output of a process you have to call it via subprocess.call_output:
ls_output = subprocess.check_output(['ls'])
For further information have a look at this: http://sharats.me/the-ever-useful-and-neat-subprocess-module.html#a-simple-usage

Converting graph traversal to multiprocessing in Python

I've been working on a graph traversal algorithm over a simple network and I'd like to run it using multiprocessing since it it going to require a lot of I/O bounded calls when I scale it over the full network. The simple version runs pretty fast:
already_seen = {}
already_seen_get = already_seen.get
GH_add_node = GH.add_node
GH_add_edge = GH.add_edge
GH_has_node = GH.has_node
GH_has_edge = GH.has_edge
def graph_user(user, depth=0):
logger.debug("Searching for %s", user)
logger.debug("At depth %d", depth)
users_to_read = followers = following = []
if already_seen_get(user):
logging.debug("Already seen %s", user)
return None
result = [x.value for x in list(view[user])]
if result:
result = result[0]
following = result['following']
followers = result['followers']
users_to_read = set().union(following, followers)
if not GH_has_node(user):
logger.debug("Adding %s to graph", user)
GH_add_node(user)
for follower in users_to_read:
if not GH_has_node(follower):
GH_add_node(follower)
logger.debug("Adding %s to graph", follower)
if depth < max_depth:
graph_user(follower, depth + 1)
if GH_has_edge(follower, user):
GH[follower][user]['weight'] += 1
else:
GH_add_edge(user, follower, {'weight': 1})
Its actually significantly faster than my multiprocessing version:
to_write = Queue()
to_read = Queue()
to_edge = Queue()
already_seen = Queue()
def fetch_user():
seen = {}
read_get = to_read.get
read_put = to_read.put
write_put = to_write.put
edge_put = to_edge.put
seen_get = seen.get
while True:
try:
logging.debug("Begging for a user")
user = read_get(timeout=1)
if seen_get(user):
continue
logging.debug("Adding %s", user)
seen[user] = True
result = [x.value for x in list(view[user])]
write_put(user, timeout=1)
if result:
result = result.pop()
logging.debug("Got user %s and result %s", user, result)
following = result['following']
followers = result['followers']
users_to_read = list(set().union(following, followers))
[edge_put((user, x, {'weight': 1})) for x in users_to_read]
[read_put(y, timeout=1) for y in users_to_read if not seen_get(y)]
except Empty:
logging.debug("Fetches complete")
return
def write_node():
users = []
users_app = users.append
write_get = to_write.get
while True:
try:
user = write_get(timeout=1)
logging.debug("Writing user %s", user)
users_app(user)
except Empty:
logging.debug("Users complete")
return users
def write_edge():
edges = []
edges_app = edges.append
edge_get = to_edge.get
while True:
try:
edge = edge_get(timeout=1)
logging.debug("Writing edge %s", edge)
edges_app(edge)
except Empty:
logging.debug("Edges Complete")
return edges
if __name__ == '__main__':
pool = Pool(processes=1)
to_read.put(me)
pool.apply_async(fetch_user)
users = pool.apply_async(write_node)
edges = pool.apply_async(write_edge)
GH.add_weighted_edges_from(edges.get())
GH.add_nodes_from(users.get())
pool.close()
pool.join()
What I can't figure out is why the single process version is so much faster. In theory, the multiprocessing version should be writing and reading simultaneously. I suspect there is lock contention on the queues and that is the cause of the slow down but I don't really have any evidence of that. When I scale the number of fetch_user processes it seems to run faster, but then I have issues with synchronizing the data seen across them. So some thoughts I've had are
Is this even a good application for
multiprocessing? I was originally
using it because I wanted to be able
to fetch from the db in parallell.
How can I avoid resource contention when reading and writing from the same queue?
Did I miss some obvious caveat for the design?
What can I do to share a lookup table between the readers so I don't keep fetching the same user twice?
When increasing the number of fetching processes they writers eventually lock. It looks like the write queue is not being written to, but the read queue is full. Is there a better way to handle this situation than with timeouts and exception handling?
Queues in Python are synchronized. This means that only one thread at a time can read/write, this will definitely provoke a bottleneck in your app.
One better solution is to distribute the processing based on a hash function and assign the processing to the threads with a simple module operation. So for instance if you have 4 threads you could have 4 queues:
thread_queues = []
for i in range(4):
thread_queues = Queue()
for user in user_list:
user_hash=hash(user.user_id) #hash in here is just shortcut to some standard hash utility
thread_id = user_hash % 4
thread_queues[thread_id].put(user)
# From here ... your pool of threads access thread_queues but each thread ONLY accesses
# one queue based on a numeric id given to each of them.
Most of hash functions will distribute evenly your data. I normally use UMAC. But maybe you can just try with the hash function from the Python String implementation.
Another improvement would be to avoid the use of Queues and use a non-sync object, such a list.

Categories