matplotlib scatter plot change distance in x-axis - python

I want to plot some Data with Matplotlib scatter plot.
I used the following code to plot the Data as a scatter with using the same axes for the different subplots.
import numpy as np
import matplotlib.pyplot as plt
epsilon= np.array([1,2,3,4,5])
f, (ax1, ax2, ax3, ax4) = plt.subplots(4, sharex= True, sharey=True)
ax1.scatter(epsilon, mean_percent_100_0, color='r', label='Totaldehnung= 0.000')
ax1.scatter(epsilon, mean_percent_100_03, color='g',label='Totaldehnung= 0.003')
ax1.scatter(epsilon, mean_percent_100_05, color='b',label='Totaldehnung= 0.005')
ax1.set_title('TOR_R')
ax2.scatter(epsilon, mean_percent_111_0,color='r')
ax2.scatter(epsilon, mean_percent_111_03,color='g')
ax2.scatter(epsilon, mean_percent_111_05,color='b')
ax3.scatter(epsilon, mean_percent_110_0,color='r')
ax3.scatter(epsilon, mean_percent_110_03,color='g')
ax3.scatter(epsilon, mean_percent_110_05,color='b')
ax4.scatter(epsilon, mean_percent_234_0,color='r')
ax4.scatter(epsilon, mean_percent_234_03,color='g')
ax4.scatter(epsilon, mean_percent_234_05,color='b')
# Fine-tune figure; make subplots close to each other and hide x ticks for
# all but bottom plot.
f.subplots_adjust(hspace=0.13)
plt.setp([a.get_xticklabels() for a in f.axes[:-1]], visible=False)
plt.locator_params(axis = 'y', nbins = 4)
ax1.grid()
ax2.grid()
ax3.grid()
ax4.grid()
plt.show()
Now i want to have a x-axis with smaller space between each point. I tried to change the range but it was not working. Can someone help me?

To make the x ticks come closer you might have to set the dimensions of the figure.
Since, in your case, the figure is already created, Set the size of the plot using set_size_inches method of the figure object.
This question contains a few other ways to do the same.
Adding the following line before the plt.show()
fig.set_size_inches(2,8)
Gives me this :
Which I hope is what you are trying to do.

Related

How i can delete xlabel of plot? [duplicate]

I'm trying to plot a figure without tickmarks or numbers on either of the axes (I use axes in the traditional sense, not the matplotlib nomenclature!). An issue I have come across is where matplotlib adjusts the x(y)ticklabels by subtracting a value N, then adds N at the end of the axis.
This may be vague, but the following simplified example highlights the issue, with '6.18' being the offending value of N:
import matplotlib.pyplot as plt
import random
prefix = 6.18
rx = [prefix+(0.001*random.random()) for i in arange(100)]
ry = [prefix+(0.001*random.random()) for i in arange(100)]
plt.plot(rx,ry,'ko')
frame1 = plt.gca()
for xlabel_i in frame1.axes.get_xticklabels():
xlabel_i.set_visible(False)
xlabel_i.set_fontsize(0.0)
for xlabel_i in frame1.axes.get_yticklabels():
xlabel_i.set_fontsize(0.0)
xlabel_i.set_visible(False)
for tick in frame1.axes.get_xticklines():
tick.set_visible(False)
for tick in frame1.axes.get_yticklines():
tick.set_visible(False)
plt.show()
The three things I would like to know are:
How to turn off this behaviour in the first place (although in most cases it is useful, it is not always!) I have looked through matplotlib.axis.XAxis and cannot find anything appropriate
How can I make N disappear (i.e. X.set_visible(False))
Is there a better way to do the above anyway? My final plot would be 4x4 subplots in a figure, if that is relevant.
Instead of hiding each element, you can hide the whole axis:
frame1.axes.get_xaxis().set_visible(False)
frame1.axes.get_yaxis().set_visible(False)
Or, you can set the ticks to an empty list:
frame1.axes.get_xaxis().set_ticks([])
frame1.axes.get_yaxis().set_ticks([])
In this second option, you can still use plt.xlabel() and plt.ylabel() to add labels to the axes.
If you want to hide just the axis text keeping the grid lines:
frame1 = plt.gca()
frame1.axes.xaxis.set_ticklabels([])
frame1.axes.yaxis.set_ticklabels([])
Doing set_visible(False) or set_ticks([]) will also hide the grid lines.
If you are like me and don't always retrieve the axes, ax, when plotting the figure, then a simple solution would be to do
plt.xticks([])
plt.yticks([])
I've colour coded this figure to ease the process.
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
You can have full control over the figure using these commands, to complete the answer I've add also the control over the spines:
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# X AXIS -BORDER
ax.spines['bottom'].set_visible(False)
# BLUE
ax.set_xticklabels([])
# RED
ax.set_xticks([])
# RED AND BLUE TOGETHER
ax.axes.get_xaxis().set_visible(False)
# Y AXIS -BORDER
ax.spines['left'].set_visible(False)
# YELLOW
ax.set_yticklabels([])
# GREEN
ax.set_yticks([])
# YELLOW AND GREEN TOGHETHER
ax.axes.get_yaxis().set_visible(False)
I was not actually able to render an image without borders or axis data based on any of the code snippets here (even the one accepted at the answer). After digging through some API documentation, I landed on this code to render my image
plt.axis('off')
plt.tick_params(axis='both', left=False, top=False, right=False, bottom=False, labelleft=False, labeltop=False, labelright=False, labelbottom=False)
plt.savefig('foo.png', dpi=100, bbox_inches='tight', pad_inches=0.0)
I used the tick_params call to basically shut down any extra information that might be rendered and I have a perfect graph in my output file.
Somewhat of an old thread but, this seems to be a faster method using the latest version of matplotlib:
set the major formatter for the x-axis
ax.xaxis.set_major_formatter(plt.NullFormatter())
One trick could be setting the color of tick labels as white to hide it!
plt.xticks(color='w')
plt.yticks(color='w')
or to be more generalized (#Armin Okić), you can set it as "None".
When using the object oriented API, the Axes object has two useful methods for removing the axis text, set_xticklabels() and set_xticks().
Say you create a plot using
fig, ax = plt.subplots(1)
ax.plot(x, y)
If you simply want to remove the tick labels, you could use
ax.set_xticklabels([])
or to remove the ticks completely, you could use
ax.set_xticks([])
These methods are useful for specifying exactly where you want the ticks and how you want them labeled. Passing an empty list results in no ticks, or no labels, respectively.
You could simply set xlabel to None, straight in your axis. Below an working example using seaborn
from matplotlib import pyplot as plt
import seaborn as sns
tips = sns.load_dataset("tips")
ax = sns.boxplot(x="day", y="total_bill", data=tips)
ax.set(xlabel=None)
plt.show()
Just do this in case you have subplots
fig, axs = plt.subplots(1, 2, figsize=(16, 8))
ax[0].set_yticklabels([]) # x-axis
ax[0].set_xticklabels([]) # y-axis

Gridlines that overlap with axes spines have different width from other gridlines

I'm using Seaborn to make some plots using the whitegrid style. After calling despine(), I'm seeing that the gridlines that would overlap with the axes spines have smaller linewidth than the other gridlines. But it seems like this only happens when I save the plots as pdf. I'm sharing
three different figures with different despine configurations that show the effect.
Does anyone know why this occurs? And is there a simple fix?
PDF plot with all spines
PDF plot that despines all axes
PDF plot that despines left, top, and right axes
Code:
splot = sns.boxplot(data=df, palette=color, whis=np.inf, width=0.5, linewidth = 0.5)
splot.set_ylabel('Normalized WS')
plt.xticks(rotation=90)
plt.tight_layout()
sns.despine(left=True, bottom=True)
plt.savefig('test.pdf', bbox_inches='tight')
Essentially what's happening here is that the grid lines are centered on the tick position, so the outer half of the extreme grid lines are not drawn because they extend past the limits of the axes.
One approach is to disable clipping for the grid lines:
import numpy as np
import seaborn as sns
sns.set(style="whitegrid", rc={"grid.linewidth": 5})
x = np.random.randn(100, 6)
ax = sns.boxplot(data=x)
ax.yaxis.grid(True, clip_on=False)
sns.despine(left=True)
My hacking solution now is to not despine the top and bottom axes and make them the same width as the gridlines. This is not ideal. If someone can point out a way to fix the root cause, I will really appreciate that.

Matplotlib ylim and xlim not working in combination of scatter plot and line plot or fill_between

I encounter a plotting issue I don't understand. Below code shall draw a straight line, fill the area above the line with a colour and plot several scattered dots in it. That all works but if I combine scatter and any of line or fill_between I cannot set the plot limits. The plot area is much larger than it had to be.
So how do I set the plot limits?
from matplotlib import pyplot as plt
import numpy as np
x = np.linspace(0,160,100)
MCSample = np.random.normal(112,10,1000)
YSample = np.random.normal(100,2.41,1000)
y_limit = max(160, np.max(YSample))
fig, ax = plt.subplots(1, 1)
ax.plot(x,x, label="Limit State function")
ax.scatter(MCSample,YSample, marker='.', color='b', alpha=0.5)
ax.fill_between(x,y_limit,x, alpha=0.1, color='r')
ax.set_xlim=(0,160)
ax.set_ylim=(0,y_limit)
plt.show()
I'm using Python 3.5.1 and Matplotlib 1.5.1.
In your code you are setting ax.set_xlim to equal (0,160).
All you have to do to make your code work is to get rid of the equal signs as shown below:
ax.set_xlim(0,160)
ax.set_ylim(0,y_limit) # no equals sign on these 2 lines
Now you are applying those limits to the graph rather than defining them to equal the limits.

Two seaborn distplots one same axis

I am trying to figure a nice way to plot two distplots (from seaborn) on the same axis. It is not coming out as pretty as I want since the histogram bars are covering each other. And I don't want to use countplot or barplot simply because they don't look as pretty. Naturally if there is no other way I shall do it in that fashion, but distplot looks very good. But, as said, the bars are now covering each other (see pic).
Thus is there any way to fit two distplot frequency bars onto one bin so that they do not overlap? Or placing the counts on top of each other? Basically I want to do this in seaborn:
Any ideas to clean it up are most welcome. Thanks.
MWE:
sns.set_context("paper",font_scale=2)
sns.set_style("white")
rc('text', usetex=False)
fig, ax = plt.subplots(figsize=(7,7),sharey=True)
sns.despine(left=True)
mats=dict()
mats[0]=[1,1,1,1,1,2,3,3,2,3,3,3,3,3]
mats[1]=[3,3,3,3,3,4,4,4,5,6,1,1,2,3,4,5,5,5]
N=max(max(set(mats[0])),max(set(mats[1])))
binsize = np.arange(0,N+1,1)
B=['Thing1','Thing2']
for i in range(len(B)):
ax = sns.distplot(mats[i],
kde=False,
label=B[i],
bins=binsize)
ax.set_xlabel('My label')
ax.get_yaxis().set_visible(False)
ax.legend()
plt.show()
As #mwaskom has said seaborn is wrapping matplotlib plotting functions (well to most part) to deliver more complex and nicer looking charts.
What you are looking for is "simple enough" to get it done with matplotlib:
sns.set_context("paper", font_scale=2)
sns.set_style("white")
plt.rc('text', usetex=False)
fig, ax = plt.subplots(figsize=(4,4))
sns.despine(left=True)
# mats=dict()
mats0=[1,1,1,1,1,2,3,3,2,3,3,3,3,3]
mats1=[3,3,3,3,3,4,4,4,5,6,1,1,2,3,4,5,5,5]
N=max(mats0 + mats1)
# binsize = np.arange(0,N+1,1)
binsize = N
B=['Thing1','Thing2']
ax.hist([mats0, mats1], binsize, histtype='bar',
align='mid', label=B, alpha=0.4)#, rwidth=0.6)
ax.set_xlabel('My label')
ax.get_yaxis().set_visible(False)
# ax.set_xlim(0,N+1)
ax.legend()
plt.show()
Which yields:
You can uncomment ax.set_xlim(0,N+1) to give more space around this histogram.

Matplotlib: data being plotted over legend when using twinx

I'm trying to use Python and Matplotlib to plot a number of different data sets. I'm using twinx to have one data set plotted on the primary axis and another on the secondary axis. I would like to have two separate legends for these data sets.
In my current solution, the data from the secondary axis is being plotted over the top of the legend for the primary axis, while data from the primary axis is not being plotted over the secondary axis legend.
I have generated a simplified version based on the example here: http://matplotlib.org/users/legend_guide.html
Here is what I have so far:
import matplotlib.pyplot as plt
import pylab
fig, ax1 = plt.subplots()
fig.set_size_inches(18/1.5, 10/1.5)
ax2 = ax1.twinx()
ax1.plot([1,2,3], label="Line 1", linestyle='--')
ax2.plot([3,2,1], label="Line 2", linewidth=4)
ax1.legend(loc=2, borderaxespad=1.)
ax2.legend(loc=1, borderaxespad=1.)
pylab.savefig('test.png',bbox_inches='tight', dpi=300, facecolor='w', edgecolor='k')
With the result being the following plot:
As shown in the plot, the data from ax2 is being plotted over the ax1 legend and I would like the legend to be over the top of the data. What am I missing here?
Thanks for the help.
You could replace your legend setting lines with these:
ax1.legend(loc=1, borderaxespad=1.).set_zorder(2)
ax2.legend(loc=2, borderaxespad=1.).set_zorder(2)
And it should do the trick.
Note that locations have changed to correspond to the lines and there is .set_zorder() method applied after the legend is defined.
The higher integer in zorder the 'higher' layer it will be painted on.
The trick is to draw your first legend, remove it, and then redraw it on the second axis with add_artist():
legend_1 = ax1.legend(loc=2, borderaxespad=1.)
legend_1.remove()
ax2.legend(loc=1, borderaxespad=1.)
ax2.add_artist(legend_1)
Tribute to #ImportanceOfBeingErnest :
https://github.com/matplotlib/matplotlib/issues/3706#issuecomment-378407795

Categories