Creating new numpy scalar through C API and implementing a custom view - python

Short version
Given a built-in quaternion data type, how can I view a numpy array of quaternions as a numpy array of floats with an extra dimension of size 4 (without copying memory)?
Long version
Numpy has built-in support for floats and complex floats. I need to use quaternions -- which generalize complex numbers, but rather than having two components, they have four. There's already a very nice package that uses the C API to incorporate quaternions directly into numpy, which seems to do all the operations perfectly fast. There are a few more quaternion functions that I need to add to it, but I think I can mostly handle those.
However, I would also like to be able to use these quaternions in other functions that I need to write using the awesome numba package. Unfortunately, numba cannot currently deal with custom types. But I don't need the fancy quaternion functions in those numba-ed functions; I just need the numbers themselves. So I'd like to be able to just re-cast an array of quaternions as an array of floats with one extra dimension (of size 4). In particular, I'd like to just use the data that's already in the array without copying, and view it as a new array. I've found the PyArray_View function, but I don't know how to implement it.
(I'm pretty confident the data are held contiguously in memory, which I assume would be required for having a simple view of them. Specifically, elsize = 8*4 and alignment = 8 in the quaternion package.)

Turns out that was pretty easy. The magic of numpy means it's already possible. While thinking about this, I just tried the following with complex numbers:
import numpy as np
a = np.array([1+2j, 3+4j, 5+6j])
a.view(np.float).reshape(a.shape[0],2)
And this gave exactly what I was looking for. Somehow the same basic idea works with the quaternion type. I guess the internals just rely on that elsize, divide by sizeof(float) and use that to set the new size in the last dimension???
To answer my own question then, the same idea can be applied to the quaternion module:
import numpy as np, quaternions
a = np.array([np.quaternion(1,2,3,4), np.quaternion(5,6,7,8), np.quaternion(9,0,1,2)])
a.view(np.float).reshape(a.shape[0],4)
The view transformation and reshaping combined seem to take about 1 microsecond on my laptop, independent of the size of the input array (presumably because there's no memory copying, other than a few members in some basic python object).
The above is valid for simple 1-d arrays of quaternions. To apply it to general shapes, I just write a function inside the quaternion namespace:
def as_float_array(a):
"View the quaternion array as an array of floats with one extra dimension of size 4"
return a.view(np.float).reshape(a.shape+(4,))
Different shapes don't seem to slow the function down significantly.
Also, it's easy to convert back to from a float array to a quaternion array:
def as_quat_array(a):
"View a float array as an array of floats with one extra dimension of size 4"
if(a.shape[-1]==4) :
return a.view(np.quaternion).reshape(a.shape[:-1])
return a.view(np.quaternion).reshape(a.shape[:-1]+(a.shape[-1]//4,))

Related

Are there dynamic arrays in numpy?

Let's say I create 2 numpy arrays, one of which is an empty array and one which is of size 1000x1000 made up of zeros:
import numpy as np;
A1 = np.array([])
A2 = np.zeros([1000,1000])
When I want to change a value in A2, this seems to work fine:
A2[n,m] = 17
The above code would change the value of position [n][m] in A2 to 17.
When I try the above with A1 I get this error:
A1[n,m] = 17
IndexError: index n is out of bounds for axis 0 with size 0
I know why this happens, because there is no defined position [n,m] in A1 and that makes sense, but my question is as follows:
Is there a way to define a dynamic array without that updates the array with new rows and columns if A[n,m] = somevalue is entered when n or m or both are greater than the bound of an Array A?
It doesn't have to be in numpy, any library or method that can update array size would be awesome. If it is a method, I can imagine there being an if loop that checks if [n][m] is out of bounds and does something about it.
I am coming from a MATLAB background where it's easy to do this. I tried to find something about this in the documentation in numpy.array but I've been unsuccessful.
EDIT:
I want to know if some way to create a dynamic list is possible at all in Python, not just in the numpy library. It appears from this question that it doesn't work with numpy Creating a dynamic array using numpy in python.
This can't be done in numpy, and it technically can't be done in MATLAB either. What MATLAB is doing behind-the-scenes is creating an entire new matrix, then copying all the data to the new matrix, then deleting the old matrix. It is not dynamically resizing, that isn't actually possible because of how arrays/matrices work. This is extremely slow, especially for large arrays, which is why MATLAB nowadays warns you not to do it.
Numpy, like MATLAB, cannot resize arrays (actually, unlike MATLAB it technically can, but only if you are lucky so I would advise against trying). But in order to avoid the sort of confusion and slow code this causes in MATLAB, numpy requires that you explicitly make the new array (using np.zeros) then copy the data over.
Python, unlike MATLAB, actually does have a truly resizable data structure: the list. Lists still require there to be enough elements, since this avoids silent indexing errors that are hard to catch in MATLAB, but you can resize an array with very good performance. You can make an effectively n-dimensional list by using nested lists of lists. Then, once the list is done, you can convert it to a numpy array.

Using numpy arrays of sympy numbers

Is it advisable, while working with arrays of symbolic expresions, to use numpy arrays?
Something like
u0=numpy.array([Number(1.0), Number(1.0), Number(1.0)])
I mean, is it faster to use numpy arrays instead of python lists?
If so, certain operations with numpy arrays seem to convert automatically to float symbolic expresions, for example:
u0=np.array([Number(1.0), Number(1.0), Number(1.0)])
u = np.zeros((10, 3))
u[0] = u0
Now while
type(u0[0]) >> sympy.core.numbers.Float ,
type(u[0][0]) >> numpy.float64
How can I avoid numpy to convert the symbolic expresions copied to float64?
I doubt there's much speed difference vs. a list, since using any non-NumPy data type (i.e., any SymPy data type) in a NumPy array results in dtype=object, meaning the array is just an array of pointers (which a list is too).
It's really unclear why you want to use a NumPy array?
The first question is, why don't you want to use float64? Assumedly you are using
Symbolic expressions (such as x**2 or pi),
Rational numbers, or
sympy.Float objects with higher precision
Those are the only reasons I can think of that you would want to prefer a SymPy type over a NumPy one.
The main advantage of using a NumPy array would be if you want to take advantage of NumPy's superior indexing syntax. As Stelios pointed out, you can get much of this by using SymPy's tensor module. This is really the only reason to use them, and you have to be careful and be aware of which NumPy methods/functions will work and which won't.
The reason is that any NumPy mathematical function will not work (or at best, will convert the array to float64 first). The reason is that NumPy functions are designed to work on NumPy data types. They don't know about the above data types. To get exact values (symbolic expressions or rational numbers), or higher precision floating point values (for the case of sympy.Float), you need to use SymPy functions, which do not work on NumPy arrays.
If on the other hand (again, it's not clear what exactly you are trying to do), you want to do calculations in SymPy and then use NumPy functions to numerically evaluate the expressions, you should use SymPy to create your expressions, and then lambdify (or ufuncify if performance becomes an issue) to convert the expressions to equivalent NumPy functions, which can operate on NumPy arrays of NumPy dtypes.
I think it is ok to work with numpy arrays, if necessary. You should bear in mind that arrays are fundamentally different from lists. Most importantly,
all array elements have to be of the same type and you cannot change the type.
In particular, you define the array u0 which is per default an array of floats.
That is why you cannot assign any sympy objects to it.
I myself use numpy arrays to accommodate sympy expressions. Most notably, in cases where I need more than 2 dimensions and therefore cannot use Sympy matrices.
If the only reason to use arrays instead of lists is speed, it might not be advisable. Especially, since you have to be a bit careful with types (as you find out) and there should be less surprises when using lists or rather sympy.Matrix.
In your example, you can fix the problem by defining a proper data type:
u = np.zeros((10, 3), dtype=sp.Symbol)

Questions regarding numpy in Python

I wrote a program using normal Python, and I now think it would be a lot better to use numpy instead of standard lists. The problem is there are a number of things where I'm confused how to use numpy, or whether I can use it at all.
In general how do np.arrays work? Are they dynamic in size like a C++ vector or do I have declare their length and type beforehand like a standard C++ array? In my program I've got a lot of cases where I create a list
ex_list = [] and then cycle through something and append to it ex_list.append(some_lst). Can I do something like with a numpy array? What if I knew the size of ex_list, could I declare and empty one and then add to it?
If I can't, let's say I only call this list, would it be worth it to convert it to numpy afterwards, i.e. is calling a numpy list faster?
Can I do more complicated operations for each element using a numpy array (not just adding 5 to each etc), example below.
full_pallete = [(int(1+i*(255/127.5)),0,0) for i in range(0,128)]
full_pallete += [col for col in right_palette if col[1]!=0 or col[2]!=0 or col==(0,0,0)]
In other words, does it make sense to convert to a numpy array and then cycle through it using something other than for loop?
Numpy arrays can be appended to (see http://docs.scipy.org/doc/numpy/reference/generated/numpy.append.html), although in general calling the append function many times in a loop has a heavy performance cost - it is generally better to pre-allocate a large array and then fill it as necessary. This is because the arrays themselves do have fixed size under the hood, but this is hidden from you in python.
Yes, Numpy is well designed for many operations similar to these. In general, however, you don't want to be looping through numpy arrays (or arrays in general in python) if they are very large. By using inbuilt numpy functions, you basically make use of all sorts of compiled speed up benefits. As an example, rather than looping through and checking each element for a condition, you would use numpy.where().
The real reason to use numpy is to benefit from pre-compiled mathematical functions and data processing utilities on large arrays - both those in the core numpy library as well as many other packages that use them.

implementing exotic complex numbers to use with numpy

i'm using python + numpy + scipy to do some convolution filtering over a complex-number array.
field = np.zeros((field_size, field_size), dtype=complex)
...
field = scipy.signal.convolve(field, kernel, 'same')
So, when i want to use a complex array in numpy all i need to do is pass the dtype=complex parameter.
For my research i need to implement two other types of complex numbers: dual (i*i=0) and double (i*i=1). It's not a big deal - i just take the python source code for complex numbers and change the multiplication function.
The problem: how do i make a numpy array of those exotic numeric types?
It looks like you are trying to create a new dtype for e.g. dual numbers. It is possible to do this with the following code:
dual_type = np.dtype([("a", np.float), ("b", np.float)])
dual_array = np.zeros((10,), dtype=dual_type)
However this is just a way of storing the data type, and doesn't tell numpy anything about the special algebra which it obeys.
You can partially achieve the desired effect by subclassing numpy.ndarray and overriding the relevant member functions, such as __mul__ for multiply and so on. This should work fine for any python code, but I am fairly sure that any C or fortran-based routines (i.e. most of numpy and scipy) would multiply the numbers directly, rather than calling the __mul__. I suspect that convolve would fall into this basket, therefore it would not respect the rules which you define unless you wrote your own pure python version.
Here's my solution:
from iComplex import SplitComplex as c_split
...
ctype = c_split
constructor = np.vectorize(ctype, otypes=[np.object])
field = constructor(np.zeros((field_size, field_size)))
That is the easy way to create numpy object array.
What about scipy.signal.convolve - it doesn't seem to work with my complex numbers and i had to make my own convolution and it works deadly slow. So now i am looking for ways to speed it up.
Would it work to turn things inside-out? I mean instead of an array as the outer container holding small containers holding a couple floating point values as a complex number, turn that around so that your complex number is the outer container. You'd have two arrays, one of plain floats as the real part, and another array as the imaginary part. The basic super-fast convolver can do its job although you'd have to write code to use it four times, for all combinations of real/imaginary of the two factors.
In color image processing, I have often refactored my code from using arrays of RGB values to three arrays of scalar values, and found a good speed-up due to simpler convolutions and other operations working much faster on arrays of bytes or floats.
YMMV, since locality of the components of the complex (or color) can be important.

Numpy equivalent of MATLAB's cell array

I want to create a MATLAB-like cell array in Numpy. How can I accomplish this?
Matlab cell arrays are most similar to Python lists, since they can hold any object - but scipy.io.loadmat imports them as numpy object arrays - which is an array with dtype=object.
To be honest though you are just as well off using Python lists - if you are holding general objects you will loose almost all of the advantages of numpy arrays (which are designed to hold a sequence of values which each take the same amount of memory).

Categories