Timeit module for qgis plugin - python

I'd like to use the python module timeit to time some functions in my QGIS plugin.
Here, I've called the time it function within a function that I call at the end of the last function. It seems, though, that the plugin is taking even longer to run than usual and I am wondering if i'm calling the timer in the wrong place. Is there a better way to set this up?
class myPluginName:
def firstFunction(self):
...
self.secondFunction()
def secondFunction(self):
...
self.timeThings()
def run(self):
self.firstFunction()
def timeThings(self):
QMessageBox.information(None, 'First Function', 'Time : %s' % timeit.timeit(self.firstFunction,number=1)
QMessageBox.information(None, 'Second Function', 'Time : %s' % timeit.timeit(self.secondFunction,number=1)
UPDATE: After following some advice, i've tried to implement the wrapper in the following way. I get however, a TypeError: firstFunction() takes exactly 1 argument (2 given) on ret = func(**args, **kwargs)
def time_func(func):
try:
name = func.__name__
except:
name = func.f__name
def tf_wrapper(*args, **kwargs):
t = time.time()
ret = func(*args, **kwargs)
QMessageLog.logMessage("{}: {}".format(name, time.time() - t))
return ret
return tf_wrapper
class myPlugin:
def initGui(self):
QObject.connect(self.dlg.ui.comboBox,SIGNAL("currentIndexChanged(int)"), self.firstFunction)
#time_func
def firstFunc(self):
registry = QgsMapLayerRegistry.instance()
firstID = str(self.dlg.ui.firstCombo.itemData(self.dlg.ui.firstCombo.currentIndex()))
secondID = str(self.dlg.ui.secondCombo.itemData(self.dlg.ui.secondCombo.currentIndex()))
self.firstLayer = registry.mapLayer(firstID)
self.secondLayer = registry.mapLayer(secondID)
#time_func
def secondFunc(self):
...
self.thirdFunc()
def thirdFunct(self):
...
def run(self):
self.dlg.ui.firstCombo.clear()
self.dlg.ui.secondCombo.clear()
for layer in self.iface.legendInterface().layers():
if layer.type() == QgsMapLayer.VectorLayer:
self.dlg.ui.firstCombo.addItem(layer.name(), layer.id())
self.dlg.ui.secondCombo.addItem(layer.name(), layer.id())
result = self.dlg.exec_()
if result == 1:
self.secondFunction()

OK, I don't know your exact situation, but I'd set it up though decorators:
import time
def time_func(func):
try:
name = func.__name__
except:
name = func.f_name
def tf_wrapper(*args, **kwargs):
t = time.time()
ret = func(*args, **kwargs)
print("{}: {}".format(name, time.time() - t)) # Or use QMessageBox
return ret
return tf_wrapper
class myPluginName:
#time_func
def firstFunction(self):
pass
#time_func
def secondFunction(self):
pass
def run(self):
self.firstFunction()
myPluginName().firstFunction()
With this code, any function wrapped in time_func will have the time taken to execute the function printed when it returns, along with its name. E.g. running it will print:
firstFunction: 1.430511474609375e-06
For your TypeError, you need to change;
def firstFunction(self):
pass
To:
def firstFunction(self, index):
pass

Related

How to get the class name of a method in Python?

Here's my problem and the code:
I try to use a decorator to reecord the time cost; but I cannot get the class name.
import functools
import time
def log_time(func):
#functools.wraps(func)
def record(*args, **kwargs):
# print(func)
# print(func.__name__)
# print(func.__class__)
# print(func.__class__.__name__)
func_name = func.__name__
start_time = time.time()
result = func(*args, **kwargs)
print(f"{func_name} costs time: {time.time() - start_time:.2f}s")
return result
return record
class FakeProject:
#log_time
def __init__(self, value):
self.load_data = [i for i in range(value)]
fake_project = FakeProject(100000000)
above code has log message as __init__ cost time: 3.65s;
But I want the FakeProject.__init__ cost time: 3.65s instead.
How can I get the class name and print it? Anyone can help? Thanks anyway
I try to print
print(func)
print(func.__name__)
print(func.__class__)
print(func.__class__.__name__)
and I get
<function FakeProject.__init__ at 0x0000022F3F365318>
__init__
<class 'function'>
function
In this particular case, you can just use the __qualname__:
import functools
import time
def log_time(func):
#functools.wraps(func)
def record(*args, **kwargs):
func_name = func.__qualname__
start_time = time.time()
result = func(*args, **kwargs)
print(f"{func_name} costs time: {time.time() - start_time:.2f}s")
return result
return record
class FakeProject:
#log_time
def __init__(self, value):
self.load_data = [i for i in range(value)]
fake_project = FakeProject(100000000)
This outputs:
FakeProject.__init__ costs time: 5.26s

Get string of multiline function call from stack

Background:
For proof reasons I have to extract the parameternames of a called function.
Function calls may be coded multiline because of the companys coding guidelines
Example:
toBeMonitored(genHelloWorld(),
10,
20)
def toBeMonitored(a, b, c):
varNames = inspect.stack().doParse()
print(varNames)
def genHelloWorld():
return "Hello World"
>20)\n
Question: Is there any way to retrieve the full string from the stack or anywhere else:
"toBeMonitored(genHelloWorld(),
10,
20)"
This two decorators getting info from inside function and getting full text of function call (not 100% precise, function name occurrence based):
import inspect
def inspect_inside(func): #Inspect from function
def wrapper(*args, **kwargs):
print('Function:', func.__name__)
argnames = inspect.getargspec(func).args
for i,k in enumerate(args):
print(argnames[i],'=',k)
for k in kwargs:
print(k,'=',kwargs[k])
return func(*args, **kwargs)
return wrapper
def inspect_outside(func): #Getting place of function call
def wrapper(*args, **kwargs):
frame = inspect.currentframe()
try:
filename = frame.f_back.f_code.co_filename
lineno = frame.f_back.f_lineno
with open(filename) as f:
filelines = f.readlines()
caller_text = ""
for i in range(lineno-1,0,-1):
caller_text = filelines[i] + caller_text
if filelines[i].find(func.__name__) >= 0:
break
print(caller_text)
finally:
del frame
return func(*args, **kwargs)
return wrapper
#inspect_inside
def toBeMonitored(a,b,c):
...
toBeMonitored("Hello World",
10,
20)
#inspect_outside
def toBeMonitored(a,b,c):
...
toBeMonitored("Hello World",
10,
20)
Result:
Function: toBeMonitored
a = Hello World
b = 10
c = 20
toBeMonitored("Hello World",
10,
20)

Is it possible to check if a function is decorated inside another function?

Is there any way to check inside function f1 in my example if calling a function (here decorated or not_decorated) has a specific decorator (in code #out)? Is such information passed to a function?
def out(fun):
def inner(*args, **kwargs):
fun(*args, **kwargs)
return inner
#out
def decorated():
f1()
def not_decorated():
f1()
def f1():
if is_decorated_by_out: # here I want to check it
print('I am')
else:
print('I am not')
decorated()
not_decorated()
Expected output:
I am
I am not
To be clear, this is egregious hackery, so I don't recommend it, but since you've ruled out additional parameters, and f1 will be the same whether wrapped or not, you've left hacks as your only option. The solution is to add a local variable to the wrapper function for the sole purpose of being found by means of stack inspection:
import inspect
def out(fun):
def inner(*args, **kwargs):
__wrapped_by__ = out
fun(*args, **kwargs)
return inner
def is_wrapped_by(func):
try:
return inspect.currentframe().f_back.f_back.f_back.f_locals.get('__wrapped_by__') is func
except AttributeError:
return False
#out
def decorated():
f1()
def not_decorated():
f1()
def f1():
if is_wrapped_by(out):
print('I am')
else:
print('I am not')
decorated()
not_decorated()
Try it online!
This assumes a specific degree of nesting (the manual back-tracking via f_back to account for is_wrapped_by itself, f1, decorated and finally to inner (from out). If you want to determine if out was involved anywhere in the call stack, make is_wrapped_by loop until the stack is exhausted:
def is_wrapped_by(func):
frame = None
try:
# Skip is_wrapped_by and caller
frame = inspect.currentframe().f_back.f_back
while True:
if frame.f_locals.get('__wrapped_by__') is func:
return True
frame = frame.f_back
except AttributeError:
pass
finally:
# Leaving frame on the call stack can cause cycle involving locals
# which delays cleanup until cycle collector runs;
# explicitly break cycle to save yourself the headache
del frame
return False
If you are open to creating an additional parameter in f1 (you could also use a default parameter), you can use functools.wraps and check for the existence of the __wrapped__ attribute. To do so, pass the wrapper function to f:
import functools
def out(fun):
#functools.wraps(fun)
def inner(*args, **kwargs):
fun(*args, **kwargs)
return inner
#out
def decorated():
f1(decorated)
def not_decorated():
f1(not_decorated)
def f1(_func):
if getattr(_func, '__wrapped__', False):
print('I am')
else:
print('I am not')
decorated()
not_decorated()
Output:
I am
I am not
Suppose you have a function decoration like this one
def double_arg(fun):
def inner(x):
return fun(x*2)
return inner
however you can't access it (it's inside a 3rd party lib or something). In this case you can wrap it into another function that adds the name of the decoration to the resulting function
def keep_decoration(decoration):
def f(g):
h = decoration(g)
h.decorated_by = decoration.__name__
return h
return f
and replace the old decoration by the wrapper.
double_arg = keep_decoration(double_arg)
You can even write a helper function that checks whether a function is decorated or not.
def is_decorated_by(f, decoration_name):
try:
return f.decorated_by == decoration_name
except AttributeError:
return False
Example of use...
#double_arg
def inc_v1(x):
return x + 1
def inc_v2(x):
return x + 1
print(inc_v1(5))
print(inc_v2(5))
print(is_decorated_by(inc_v1, 'double_arg'))
print(is_decorated_by(inc_v2, 'double_arg'))
Output
11
6
True
False

Using decorator yields NameError on a defined function

Why does this :
def fn(proc, *args, **kwargs):
cache = proc.cache = {}
def cached_execution(cache, *args, **kwargs):
if proc in cache:
if args in cache[proc]:
return cache[proc][args]
res = proc(args)
cache[proc] = {args: res}
return res
return cached_execution(cache, proc, *args, **kwargs)
#fn
def cached_fibo(n):
if n == 1 or n == 0:
return n
else:
return cached_fibo(n-1) + cached_fibo(n-2)
print cached_fibo(100)
throw an exception like this:
NameError: global name 'cached_fibo' is not defined
What fundamental concept am I missing?
(Conceptually, **kwargs is for decoration only. Not utilizing in retrieving the cached result, but don't worry about it).
A decorator should return a function, not the result of calling a function.
But this leads us to the next mistake: when you're passing cache and proc to cached_execution function they land in *args which in turn gets passed to proc. This doesn't make sense. Just let cache and proc be captured within the inner method:
def fn(proc, *args, **kwargs):
cache = proc.cache = {}
def cached_execution(*args, **kwargs):
if proc in cache:
if args in cache[proc]:
return cache[proc][args]
res = proc(*args)
cache[proc] = {args: res}
return res
return cached_execution
Another problem: you were not unpacking args. You should call proc(*args) instead of proc(args) (already fixed above).
The wrapper seems a little malformed. Here is an updated version:
def fn(proc):
cache = proc.cache = {}
def cached_execution(*args, **kwargs):
if proc in cache:
if args in cache[proc]:
return cache[proc][args]
res = proc(args[0])
cache[proc] = {args: res}
return res
return cached_execution
You were trying to run the wrapper function inside the wrapper instead of returning it to be run as the function, causing issues.
The next issue is that the argument you supply is a list of tuples *args at proc(args) when you only want the first one, so needs to turn into proc(args[0])

Python/Django: Are there any decorators to tell that input is not none?

I am new to Django and come from Java/Spring background.
I am wondering if there are decorators something like following that can be done in Django or Python?
Want
def addToList(#not_none a, #not_none b):
# so that I do not check for nullity explicitly
do_things_with_a(a)
do_things_with_b(b)
Since this is something which is pretty easy to get in Java, just looking if Python/Django has it
One doesn't typically constraint data-types in Python. Also, decorators can only be applied to classes and to methods/functions.
Although, you shouldn't really be doing this, this is how you would.
(You could amend this to accept argument names to enforce constraints on with a little work).
def not_none(f):
def func(*args, **kwargs):
if any(arg is None for arg in args):
raise ValueError('function {}: does not take arguments of None'.format(f.__name__))
return f(*args, **kwargs)
return func
#not_none
def test(a, b):
print a, b
You can write a decorator rejectNone as follows:
def rejectNone(f):
def myF(*args, **kwargs):
if None in args or None in kwargs.values():
raise Exception('One of the arguments passed to {0} is None.'.format(f.__name__)
return f(*args, **kwargs)
return myF
#rejectNone
def f(a, b, k=3):
print a * b
You will now get an Exception if you try to call f with a None argument. Note that decorators can be applied to functions or class methods but you can't put them in front of function parameters.
I know this is late, but to those who it may be helpful.
I have a simple repo based off of Jon's answer that accepts arguments for nullable fields here.
def not_none(nullable_parameters=None):
def the_actual_test(f, args, filter_array):
has_none = False
bad_parameters = []
if type(filter_array) is str:
filter_array = [filter_array]
if not filter_array:
if any(arg[1] is None for arg in args):
raise ValueError('function {}: Parameters cannot be None. '.format(f.__name__))
elif type(filter_array) is list:
for a in args:
for ff in filter_array:
if a[0] != ff:
if a[1] is None:
has_none = True
bad_parameters.append(a[0])
break
if has_none:
raise ValueError('function {}: Parameters {} cannot be None. '.format(f.__name__, bad_parameters))
def real_decorator(f):
v_names = f.__code__.co_varnames
def wrapper(*args, **kwargs):
n_args = []
for a in range(0, len(args)):
n_args.append((v_names[a], args[a]))
the_actual_test(f, n_args, nullable_parameters)
result = f(*args, **kwargs)
return result
return wrapper
return real_decorator
Usage
from not_none import not_none
#not_none()
def no_none(a,b):
return (a,b)
#not_none(nullable_parameters=["b"])
def allow_b_as_none(a,b):
return (a,b)
#passes
no_none(1,1)
#fails
no_none(None,1)
#passes
allow_b_as_none(1,None)
#fails
allow_b_as_none(None,1)
After my first answer got deleted. Here is an updated version:
I tried to use the very nice answer from Bigbob556677, but for me it didn't work with **kwargs, so I edited it and put it in a Gist, here: https://gist.github.com/devTechi/6e633ded72cc83637f34b1a3f4a96984 (code also below)
I didn't test it with just *args, but with (I posted more or less just the gist-link) **kwargs it works nicely.
def not_none(nullable_parameters=None):
# values given by real_decorator (see below)
def the_actual_test(f, expected_args_with_given, allowed_nullable_args):
has_none = False
bad_parameters = []
for key, value in expected_args_with_given.items():
if (value is None and nullable_parameters is None) or \
(value is None and key not in nullable_parameters):
bad_parameters.append(key)
has_none = True
if has_none:
raise ValueError("[Function '{}' of '{}'] - IMPORTANT: Parameters '{}' cannot be None. ".format(f.__name__, f.__module__, bad_parameters))
# here the code REALLY begins
def not_null_decorator(original_func):
import inspect
has_self = False
# f.__code__.co_varnames --> local variables (not only parameters), see: https://python-reference.readthedocs.io/en/latest/docs/code/varnames.html
# get declared arguments from ogirinal function
argspec = inspect.getargspec(original_func)
if 'self' in argspec.args:
argnames = argspec.args[1:] # no self
has_self = True
else:
argnames = argspec.args
args_dict = dict.fromkeys(argnames)
def get_args(*args, **kwargs):
for arg in args:
if arg in args_dict.keys():
args_dict[arg] = arg
for key, value in kwargs.items():
if key in args_dict.keys():
args_dict[key] = value
return args_dict
def wrapper_with_self(self, *args, **kwargs):
the_actual_test(original_func, get_args(*args, **kwargs), nullable_parameters)
return original_func(self, *args, **kwargs)
def wrapper(*args, **kwargs):
the_actual_test(original_func, get_args(*args, **kwargs), nullable_parameters)
return original_func(*args, **kwargs)
if has_self:
return wrapper_with_self
else:
return wrapper
return not_null_decorator
Usage:
from .nullable_decorator import not_none
#not_none(nullable_parameters=["nullable_arg1", "nullable_arg2"])
def some_function(self, nullable_arg1=None, nullable_arg2=None, non_nullable_arg1=None):
pass
#not_none()
def some_other_function(self, non_nullable_arg1=None, non_nullable_arg2=None):
pass

Categories