I would like to represent the elliptical orbit of a binary system of two stars. What I aim to, is something like this:
Where I have a grid of the sizes along the axes, an in-scale star at the focus, and the orbit of the secondary star. The decimal numbers along the orbit are the orbital phases. The arrow at the bottom is the Earth direction, and the thick part at the orbit is related to the observation for that specific case - I don't need it. What I want to change from this plot is:
Orbital phase: instead of numbers along the orbit, I would like "dashed rays" from the focus to the orbit, and the orbital phase above them:
I don't want the cross along (0, 0);
I would like to re-orient the orbit, in order that the 0.0 phase is around the top left part of the plot, and the Earth direction is an upward pointing straight arrow (the parameters of my system are different from the one plotted here).
I tried to look for python examples, but the only thing I came out with (from here), is a polar plot:
which is not really representative of what I want, but still is a beginning:
import numpy as np
import matplotlib.pyplot as plt
cos = np.cos
pi = np.pi
a = 10
e = 0.1
theta = np.linspace(0,2*pi, 360)
r = (a*(1-e**2))/(1+e*cos(theta))
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)
ax.set_yticklabels([])
ax.plot(theta,r)
print(np.c_[r,theta])
plt.show()
Here's something that gets you very close. You do not need polar coordinates to plot a decent ellipse. There is a so-called artist you can readily utilize.
You probably have to customize the axis labels and maybe insert an arrow or two if you want:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
# initializing the figure:
fig = plt.figure()
# the (carthesian) axis:
ax = fig.add_subplot(111,aspect='equal')
ax.grid(True)
# parameters of the ellipse:
a = 5.0
e = 4.0
b = np.sqrt(a**2.0 - e**2.0)
# the center of the ellipse:
x = 6.0
y = 6.0
# the angle by which the ellipse is rotated:
angle = -45.0
#angle = 0.0
# plotting the ellipse, using an artist:
ax.add_artist(Ellipse(xy=[x,y], width=2.0*a, height=2.0*b, \
angle=angle, facecolor='none'))
ax.set_xlim(0,2.0*x)
ax.set_ylim(0,2.0*y)
# marking the focus (actually, both)
# and accounting for the rotation of the ellipse by angle
xf = [x - e*np.cos(angle * np.pi/180.0),
x + e*np.cos(angle * np.pi/180.0)]
yf = [y - e*np.sin(angle * np.pi/180.0),
y + e*np.sin(angle * np.pi/180.0)]
ax.plot(xf,yf,'xr')
# plotting lines from the focus to the ellipse:
# these should be your "rays"
t = np.arange(np.pi,3.0*np.pi,np.pi/5.0)
p = b**2.0 / a
E = e / a
r = [p/(1-E*np.cos(ti)) for ti in t]
# converting the radius based on the focus
# into x,y coordinates on the ellipse:
xr = [ri*np.cos(ti) for ri,ti in zip(r,t)]
yr = [ri*np.sin(ti) for ri,ti in zip(r,t)]
# accounting for the rotation by anlge:
xrp = [xi*np.cos(angle * np.pi/180.0) - \
yi*np.sin(angle * np.pi/180.0) for xi,yi in zip(xr,yr)]
yrp = [xi*np.sin(angle * np.pi/180.0) + \
yi*np.cos(angle * np.pi/180.0) for xi,yi in zip(xr,yr)]
for q in range(0,len(t)):
ax.plot([xf[0], xf[0]+xrp[q]],[yf[0], yf[0]+yrp[q]],'--b')
# put labels outside the "rays"
offset = 0.75
rLabel = [ri+offset for ri in r]
xrl = [ri*np.cos(ti) for ri,ti in zip(rLabel,t)]
yrl = [ri*np.sin(ti) for ri,ti in zip(rLabel,t)]
xrpl = [xi*np.cos(angle * np.pi/180.0) - \
yi*np.sin(angle * np.pi/180.0) for xi,yi in zip(xrl,yrl)]
yrpl = [xi*np.sin(angle * np.pi/180.0) + \
yi*np.cos(angle * np.pi/180.0) for xi,yi in zip(xrl,yrl)]
# for fancy label rotation reduce the range of the angle t:
tlabel = [(ti -np.pi)*180.0/np.pi for ti in t]
for q in range(0,len(tlabel)):
if tlabel[q] >= 180.0:
tlabel[q] -= 180.0
# convert the angle t from radians into degrees:
tl = [(ti-np.pi)*180.0/np.pi for ti in t]
for q in range(0,len(t)):
rotate_label = angle + tlabel[q]
label_text = '%.1f' % tl[q]
ax.text(xf[0]+xrpl[q],yf[0]+yrpl[q],label_text,\
va='center', ha='center',rotation=rotate_label)
plt.show()
The example above will result in this figure:
Explanations:
You can use an artist to plot the ellipse, instead of using polar coordinates
The nomenclature is based on the definitions available on Wikipedia
The angle in the artist setup rotates the ellipse. This angle is later used to rotate coordinates for the rays and labels (this is just math)
The rays are derived from the polar form of the ellipse relative to a focus.
The angle t runs from pi to 3.0*pi because I assumed that this would correspond to your idea of where the rays should start. You get the same rays for 0 to 2.0*pi. I used np.arange instead of linspace because I wanted a defined increment (pi/5.0, or 36 degrees) in this example.
The labels at the end of the rays are placed as text, the variable offset controls the distance between the ellipse and the labels. Adjust this as needed.
For the alignment of the label text orientation with the rays, I reduced the angle, t, to the range 0 to 180 degrees. This makes for better readability compared to the full range of 0 to 360 degrees.
For the label text I just used the angle, t, for simplicity. Replace this with whatever information better suits your purpose.
The angle, t, was converted from radians to degrees before the loop that places the label. Inside the loop, each element of tl is converted to a string. This allows for more formatting control (e.g. %.3f if you needed 3 decimals)
Related
I am trying to create a 3D surface that has a 1/4 rectangle for the exterior and 1/4 circle for the interior. I had help before to create the 3D surface with an ellipse as an exterior but I cannot do this for a rectangle for some reason. I have done the math by hand which makes sense, but my code does not. I would greatly appreciate any help with this.
import numpy as np
import pyvista as pv
# parameters for the waveguide
# diameter of the inner circle
waveguide_throat = 30
# axes of the outer ellipse
ellipse_x = 250
ellipse_y = 170
# shape parameters for the z profile
depth_factor = 4
angle_factor = 40
# number of grid points in radial and angular direction
array_length = 100
phase_plug = 0
phase_plug_dia = 20
plug_offset = 5
dome_dia = 28
# theta is angle where x and y intersect
theta = np.arctan(ellipse_x / ellipse_y)
# chi is for x direction and lhi is for y direction
chi = np.linspace(0, theta, 100)
lhi = np.linspace(theta, np.pi/2, 100)
# mgrid to create structured grid
r, phi = np.mgrid[0:1:array_length*1j, 0:np.pi/2:array_length*1j]
# Rectangle exterior, circle interior
x = (ellipse_y * np.tan(chi)) * r + ((waveguide_throat / 2 * (1 - r)) * np.cos(phi))
y = (ellipse_x / np.tan(lhi)) * r + ((waveguide_throat / 2 * (1 - r)) * np.sin(phi))
# compute z profile
angle_factor = angle_factor / 10000
z = (ellipse_x / 2 * r / angle_factor) ** (1 / depth_factor)
plotter = pv.Plotter()
waveguide_mesh = pv.StructuredGrid(x, y, z)
plotter.add_mesh(waveguide_mesh)
plotter.show()
The linear interpolation you're trying to use is a general tool that should work (with one small caveat). So the issue is first with your rectangular edge.
Here's a sanity check which plots your interior and exterior lines:
# debugging: plot interior and exterior
exterior_points = np.array([
ellipse_y * np.tan(chi),
ellipse_x / np.tan(lhi),
np.zeros_like(chi)
]).T
phi_aux = np.linspace(0, np.pi/2, array_length)
interior_points = np.array([
waveguide_throat / 2 * np.cos(phi_aux),
waveguide_throat / 2 * np.sin(phi_aux),
np.zeros_like(phi_aux)
]).T
plotter = pv.Plotter()
plotter.add_mesh(pv.wrap(exterior_points))
plotter.add_mesh(pv.wrap(interior_points))
plotter.show()
The bottom left is your interior circle, looks good. The top right is what's supposed to be a rectangle, but isn't.
To see why your original surface looks the way it does, we have to note one more thing (this is the small caveat I mentioned): the orientation of your curves is also the opposite. This implies that you interpolate the "top" (in the screenshot) point of your interior curve with the "bottom" point of the exterior curve. This explains the weird fan shape.
So you need to fix the exterior curve, and make sure the orientation of the two edges is the same. Note that you can just create the two 1d arrays for the two edges, and then interpolate them. You don't have to come up with a symbolic formula that you plug into the interpolation step. If you have 1d arrays of the same shape x_interior, y_interior, x_exterior, y_exterior then you can then do x_exterior * r + x_interior * (1 - r) and the same for y. This means removing the mgrid call, only using an array r of shape (n, 1), and making use of array broadcasting to do the interpolation. This means doing r = np.linspace(0, 1, array_length)[:, None].
So the question is how to define your rectangle. You need to have the same number of points on the rectangular curve than what you have on the circle (I would strongly recommend using the array_length parameter everywhere to ensure this!). Since you want to span the whole rectangle, I believe you have to choose an array index (i.e. a certain angle in the circular arc) which will map to the corner of the rectangle. Then it's a simple matter of varying only y for the points until that index, and x for the rest (or vice versa).
Here's what I mean: you know that the rectangle's corner is at angle theta in your code (although I think you have x and y mixed up if we assume the conventional relationship between "x", "y" and the tangent of the angle). Since theta goes from 0 to pi/2, and your phi values also go from 0 to pi/2, you should choose index (array_length * (2*theta/np.pi)).round().astype(int) - 1 (or something similar) that will map to the rectangle's corner. If you have a square, this gives you theta = pi/4, and consequently (array_length / 2).round().astype(int) - 1. For array_length = 3 this is index (2 - 1) == 1, which is the middle index for 3-length arrays. (The more points you have along the edge, the less it will matter if you commit an off-by-one error here.)
The only remaining complication then is that we have to explicitly broadcast the 1d z array to the common shape. And we can use the same math you used to get a rectangular edge that is equidistant in angles.
Your code fixed with this suggestion (note that I've added 1 to the corner index because I'm using it as a right-exclusive range index):
import numpy as np
import pyvista as pv
# parameters for the waveguide
# diameter of the inner circle
waveguide_throat = 30
# axes of the outer ellipse
ellipse_x = 250
ellipse_y = 170
# shape parameters for the z profile
depth_factor = 4
angle_factor = 40
# number of grid points in radial and angular direction
array_length = 100
# quarter circle interior line
phi = np.linspace(0, np.pi/2, array_length)
x_interior = waveguide_throat / 2 * np.cos(phi)
y_interior = waveguide_throat / 2 * np.sin(phi)
# theta is angle where x and y intersect
theta = np.arctan2(ellipse_y, ellipse_x)
# find array index which maps to the corner of the rectangle
corner_index = (array_length * (2*theta/np.pi)).round().astype(int)
# construct rectangular coordinates manually
x_exterior = np.zeros_like(x_interior)
y_exterior = x_exterior.copy()
phi_aux = np.linspace(0, theta, corner_index)
x_exterior[:corner_index] = ellipse_x
y_exterior[:corner_index] = ellipse_x * np.tan(phi_aux)
phi_aux = np.linspace(np.pi/2, theta, array_length - corner_index, endpoint=False)[::-1] # mind the reverse!
x_exterior[corner_index:] = ellipse_y / np.tan(phi_aux)
y_exterior[corner_index:] = ellipse_y
# interpolate between two curves
r = np.linspace(0, 1, array_length)[:, None] # shape (array_length, 1) for broadcasting
x = x_exterior * r + x_interior * (1 - r)
y = y_exterior * r + y_interior * (1 - r)
# debugging: plot interior and exterior
exterior_points = np.array([
x_exterior,
y_exterior,
np.zeros_like(x_exterior),
]).T
interior_points = np.array([
x_interior,
y_interior,
np.zeros_like(x_interior),
]).T
plotter = pv.Plotter()
plotter.add_mesh(pv.wrap(exterior_points))
plotter.add_mesh(pv.wrap(interior_points))
plotter.show()
# compute z profile
angle_factor = angle_factor / 10000
z = (ellipse_x / 2 * r / angle_factor) ** (1 / depth_factor)
# explicitly broadcast to the shape of x and y
z = np.broadcast_to(z, x.shape)
plotter = pv.Plotter()
waveguide_mesh = pv.StructuredGrid(x, y, z)
plotter.add_mesh(waveguide_mesh, style='wireframe')
plotter.show()
The curves look reasonable:
As does the interpolated surface:
I am using this function to draw a circle. How can I modify to draw ellipse?
def circle_points(resolution, center, radius):
"""
Generate points which define a circle on an image.Centre refers to the centre of the circle
"""
radians = np.linspace(0, 2*np.pi, resolution)
c = center[1] + radius*np.cos(radians)#polar co-ordinates
r = center[0] + radius*np.sin(radians)
return np.array([c, r]).T
A simple way is to stretch x-axis and y-axis by a different factor, i.e. to replace radius by x_semiaxis and y_semiaxis, to mean the semi-axes of the ellipse:
def ellipse_points(resolution, center, x_semiaxis, y_semiaxis):
"""
Generate points which define a ellipse on an image.
Centre refers to the centre of the ellipse.
"""
radians = np.linspace(0, 2 * np.pi, resolution)
x = center[0] + x_semiaxis * np.cos(radians)
y = center[1] + y_semiaxis * np.sin(radians)
return np.array([x, y])
Note that I use the more traditional formula to have x by the cosine, and y by the sine, and I avoid including the transposition, just to make plotting easier. You can easily bring it back.
import matplotlib.pyplot as plt
plt.scatter(*ellipse_points(1000, (10, 20), 200, 100))
plt.scatter((10,), (20,)) # plot the center too
plt.gca().set_aspect('equal')
I'm trying to simulate radiation emitting from a point source. To do this, given the coordinates of a source and the desired length of emitted rays, I randomly generate a direction vector in spherical coordinates, convert it to cartesian, and return the correct end point. However, when I run this, and visualize the resulting point cloud (consisting of all the randomly generated end points) in Blender, I see that it's more densely populated at the "poles" of the sphere. I'd like the points to be uniformly distributed along the sphere. How can I achieve this?
The random generation function:
def getRadiationEmissionLineSeg(p, t):
if(p.size == 4):
#polar angle spans [0, pi] from +Z axis to -Z axis
#azimuthal angle spans [0, 2*pi] orthogonal to the zenith (in the XY plane)
theta = math.pi * random.random()
phi = 2 * math.pi * random.random()
#use r = 1 to get a unit direction vector
v = sphericalToCartesian(1, theta, phi)
#parametric vector form: vec = p + tv
#p = point that lies on vector (origin point in case of a ray)
#t = parameter (-inf, inf) for lines, [0, inf) for rays
#v = direction vector (must be normalized)
return p + t * v
The spherical coordinates -> cartesian conversion function:
def sphericalToCartesian(r, theta, phi):
x = r * math.sin(theta) * math.cos(phi)
y = r * math.sin(theta) * math.sin(phi)
z = r * math.cos(theta)
return npy.array([x, y, z, 0])
When you transform points by spherical coordinates and angle theta approaches pi, the circle which is an image of [0,2pi]x{theta} gets smaller and smaller. Since theta is uniformly distributed, there will be more points near poles. It could be seen on image of grid.
If you want to generate uniformly distributed points on sphere, you can use the fact that if you cut a sphere with two parallel planes, the area of the strip of spherical surface between the planes depends only on the distance between the planes. Hence, you can get a uniform distribution on the sphere using two uniformly distributed random variables:
z coordinate between -r and r,
an angle theta between [0, 2pi) corresponding to a longitude.
Then you can easily calculate x and y coordiantes.
Example code:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
r = 1
n = 1000
z = np.random.random(n)*2*r - r
phi = np.random.random(n)*2*np.pi
x = np.sqrt(1 - z**2)*np.cos(phi)
y = np.sqrt(1 - z**2)*np.sin(phi)
fig = plt.figure(figsize=(8, 8))
ax = plt.axes(projection='3d')
ax.scatter(x, y, z)
plt.show()
Results for n=100,250,1000:
I'm working on a Python-based data analysis. I have some x-y data points, and some ellipses, and I want to determine whether points are inside any of the ellipses. The way that I've been doing this works, but it's kludgy. As I think about distributing my software to other people, I find myself wanting a cleaner way.
Right now, I'm using matplotlib.patches.Ellipse objects. Matplotlib Ellipses have a useful method called contains_point(). You can work in data coordinates on a Matplotlib Axes object by calling Axes.transData.transform().
The catch is that I have to create a Figure and an Axes object to hold the Ellipses. And when my program runs, an annoying Matplotlib Figure object will get rendered, showing the Ellipses, which I don't actually need to see. I have tried several methods to suppress this output. I have succeeded in deleting the Ellipses from the Axes, using Axes.clear(), resulting in an empty graph. But I can't get Matplolib's pyplot.close(fig_number) to delete the Figure itself before calling pyplot.show().
Any advice is appreciated, thanks!
Inspired by how a carpenter draws an ellipse using two nails and a piece of string, here is a numpy-friendly implementation to test whether points lie inside given ellipses.
One of the definitions of an ellipse, is that the sum of the distances to the two foci is constant, equal to the width (or height if it would be larger) of the ellipse. The distance between the center and the foci is sqrt(a*a - b*b), where a and b are half of the width and height. Using that distance and rotation by the desired angle finds the locations of the foci. numpy.linalg.norm can be used to calculate the distances using numpy's efficient array operations.
After the calculations, a plot is generated to visually check whether everything went correct.
import numpy as np
from numpy.linalg import norm # calculate the length of a vector
x = np.random.uniform(0, 40, 20000)
y = np.random.uniform(0, 20, 20000)
xy = np.dstack((x, y))
el_cent = np.array([20, 10])
el_width = 28
el_height = 17
el_angle = 20
# distance between the center and the foci
foc_dist = np.sqrt(np.abs(el_height * el_height - el_width * el_width) / 4)
# vector from center to one of the foci
foc_vect = np.array([foc_dist * np.cos(el_angle * np.pi / 180), foc_dist * np.sin(el_angle * np.pi / 180)])
# the two foci
el_foc1 = el_cent + foc_vect
el_foc2 = el_cent - foc_vect
# for each x,y: calculate z as the sum of the distances to the foci;
# np.ravel is needed to change the array of arrays (of 1 element) into a single array
z = np.ravel(norm(xy - el_foc1, axis=-1) + norm(xy - el_foc2, axis=-1) )
# points are exactly on the ellipse when the sum of distances is equal to the width
# z = np.where(z <= max(el_width, el_height), 1, 0)
# now create a plot to check whether everything makes sense
from matplotlib import pyplot as plt
from matplotlib import patches as mpatches
fig, ax = plt.subplots()
# show the foci as red dots
plt.plot(*el_foc1, 'ro')
plt.plot(*el_foc2, 'ro')
# create a filter to separate the points inside the ellipse
filter = z <= max(el_width, el_height)
# draw all the points inside the ellipse with the plasma colormap
ax.scatter(x[filter], y[filter], s=5, c=z[filter], cmap='plasma')
# draw all the points outside with the cool colormap
ax.scatter(x[~filter], y[~filter], s=5, c=z[~filter], cmap='cool')
# add the original ellipse to verify that the boundaries match
ellipse = mpatches.Ellipse(xy=el_cent, width=el_width, height=el_height, angle=el_angle,
facecolor='None', edgecolor='black', linewidth=2,
transform=ax.transData)
ax.add_patch(ellipse)
ax.set_aspect('equal', 'box')
ax.autoscale(enable=True, axis='both', tight=True)
plt.show()
The simplest solution here is to use shapely.
If you have an array of shape Nx2 containing a set of vertices (xy) then it is trivial to construct the appropriate shapely.geometry.polygon object and check if an arbitrary point or set of points (points) is contained within -
import shapely.geometry as geom
ellipse = geom.Polygon(xy)
for p in points:
if ellipse.contains(geom.Point(p)):
# ...
Alternatively, if the ellipses are defined by their parameters (i.e. rotation angle, semimajor and semiminor axis) then the array containing the vertices must be constructed and then the same process applied. I would recommend using the polar form relative to center as this is the most compatible with how shapely constructs the polygons.
import shapely.geometry as geom
from shapely import affinity
n = 360
a = 2
b = 1
angle = 45
theta = np.linspace(0, np.pi*2, n)
r = a * b / np.sqrt((b * np.cos(theta))**2 + (a * np.sin(theta))**2)
xy = np.stack([r * np.cos(theta), r * np.sin(theta)], 1)
ellipse = affinity.rotate(geom.Polygon(xy), angle, 'center')
for p in points:
if ellipse.contains(geom.Point(p)):
# ...
This method is advantageous because it supports any properly defined polygons - not just ellipses, it doesn't rely on matplotlib methods to perform the containment checking, and it produces a very readable code (which is often important when "distributing [one's] software to other people").
Here is a complete example (with added plotting to show it working)
import shapely.geometry as geom
from shapely import affinity
import matplotlib.pyplot as plt
import numpy as np
n = 360
theta = np.linspace(0, np.pi*2, n)
a = 2
b = 1
angle = 45.0
r = a * b / np.sqrt((b * np.cos(theta))**2 + (a * np.sin(theta))**2)
xy = np.stack([r * np.cos(theta), r * np.sin(theta)], 1)
ellipse = affinity.rotate(geom.Polygon(xy), angle, 'center')
x, y = ellipse.exterior.xy
# Create a Nx2 array of points at grid coordinates throughout
# the ellipse extent
rnd = np.array([[i,j] for i in np.linspace(min(x),max(x),50)
for j in np.linspace(min(y),max(y),50)])
# Filter for points which are contained in the ellipse
res = np.array([p for p in rnd if ellipse.contains(geom.Point(p))])
plt.plot(x, y, lw = 1, color='k')
plt.scatter(rnd[:,0], rnd[:,1], s = 50, color=(0.68, 0.78, 0.91)
plt.scatter(res[:,0], res[:,1], s = 15, color=(0.12, 0.67, 0.71))
plt.show()
I'm attempting to achieve the same behavior as this function in Matlab, whereby the color of each arrow corresponds to both its magnitude and direction, essentially drawing its color from a wheel. I saw this question, but it only seems to work for barbs. I also saw this answer, but quiver complains that the color array must be two-dimensional.
What is the best way to compute C for matplotlib.pyplot.quiver, taking into account both magnitude and direction?
Even though this is quite old now, I've come across the same problem. Based on matplotlibs quiver demo and my own answer to this post, I created the following example. The idea is to convert the angle of a vector to the color using HSV colors Hue value. The absolute value of the vector is used as the saturation and the value.
import numpy as np
import matplotlib.colors
import matplotlib.pyplot as plt
def vector_to_rgb(angle, absolute):
"""Get the rgb value for the given `angle` and the `absolute` value
Parameters
----------
angle : float
The angle in radians
absolute : float
The absolute value of the gradient
Returns
-------
array_like
The rgb value as a tuple with values [0..1]
"""
global max_abs
# normalize angle
angle = angle % (2 * np.pi)
if angle < 0:
angle += 2 * np.pi
return matplotlib.colors.hsv_to_rgb((angle / 2 / np.pi,
absolute / max_abs,
absolute / max_abs))
X = np.arange(-10, 10, 1)
Y = np.arange(-10, 10, 1)
U, V = np.meshgrid(X, Y)
angles = np.arctan2(V, U)
lengths = np.sqrt(np.square(U) + np.square(V))
max_abs = np.max(lengths)
c = np.array(list(map(vector_to_rgb, angles.flatten(), lengths.flatten())))
fig, ax = plt.subplots()
q = ax.quiver(X, Y, U, V, color=c)
plt.show()
The color wheel is the following. The code for generating it is mentioned in the Edit.
Edit
I just noticed, that the linked matlab function "renders a vector field as a grid of unit-length arrows. The arrow direction indicates vector field direction, and the color indicates the magnitude". So my above example is not really what is in the question. Here are some modifications.
The left graph is the same as above. The right one does, what the cited matlab function does: A unit-length arrow plot with the color indicating the magnitude. The center one does not use the magnitude but only the direction in the color which might be useful too. I hope other combinations are clear from this example.
import numpy as np
import matplotlib.colors
import matplotlib.pyplot as plt
def vector_to_rgb(angle, absolute):
"""Get the rgb value for the given `angle` and the `absolute` value
Parameters
----------
angle : float
The angle in radians
absolute : float
The absolute value of the gradient
Returns
-------
array_like
The rgb value as a tuple with values [0..1]
"""
global max_abs
# normalize angle
angle = angle % (2 * np.pi)
if angle < 0:
angle += 2 * np.pi
return matplotlib.colors.hsv_to_rgb((angle / 2 / np.pi,
absolute / max_abs,
absolute / max_abs))
X = np.arange(-10, 10, 1)
Y = np.arange(-10, 10, 1)
U, V = np.meshgrid(X, Y)
angles = np.arctan2(V, U)
lengths = np.sqrt(np.square(U) + np.square(V))
max_abs = np.max(lengths)
# color is direction, hue and value are magnitude
c1 = np.array(list(map(vector_to_rgb, angles.flatten(), lengths.flatten())))
ax = plt.subplot(131)
ax.set_title("Color is lenth,\nhue and value are magnitude")
q = ax.quiver(X, Y, U, V, color=c1)
# color is length only
c2 = np.array(list(map(vector_to_rgb, angles.flatten(),
np.ones_like(lengths.flatten()) * max_abs)))
ax = plt.subplot(132)
ax.set_title("Color is direction only")
q = ax.quiver(X, Y, U, V, color=c2)
# color is direction only
c3 = np.array(list(map(vector_to_rgb, 2 * np.pi * lengths.flatten() / max_abs,
max_abs * np.ones_like(lengths.flatten()))))
# create one-length vectors
U_ddash = np.ones_like(U)
V_ddash = np.zeros_like(V)
# now rotate them
U_dash = U_ddash * np.cos(angles) - V_ddash * np.sin(angles)
V_dash = U_ddash * np.sin(angles) + V_ddash * np.cos(angles)
ax = plt.subplot(133)
ax.set_title("Uniform length,\nColor is magnitude only")
q = ax.quiver(X, Y, U_dash, V_dash, color=c3)
plt.show()
To plot the color wheel use the following code. Note that this uses the max_abs value from above which is the maximum value that the color hue and value can reach. The vector_to_rgb() function is also re-used here.
ax = plt.subplot(236, projection='polar')
n = 200
t = np.linspace(0, 2 * np.pi, n)
r = np.linspace(0, max_abs, n)
rg, tg = np.meshgrid(r, t)
c = np.array(list(map(vector_to_rgb, tg.T.flatten(), rg.T.flatten())))
cv = c.reshape((n, n, 3))
m = ax.pcolormesh(t, r, cv[:,:,1], color=c, shading='auto')
m.set_array(None)
ax.set_yticklabels([])
I don't know if you've since found that quiver with matplotlib 1.4.x has 3d capability. This capability is limited when attempting to colour the arrows however.
A friend and I write the following script (in half an hour or so) to plot my experiment data using hex values from a spreadsheet, for my thesis. We're going to make this more automated once we're done with the semester but the issue with passing a colour map to quiver is that it can't accept a vector form for some reason.
This link is to my git repository where the code I used, slightly neatened up by another friend, is hosted.
I hope I can save someone the time it took me.