Python Percentage Rounding [duplicate] - python

This question already has answers here:
How to make rounded percentages add up to 100%
(23 answers)
Closed 8 years ago.
I know how to round a number in Python, this is not a simple technical issue.
My issue is that rounding will make a set of percentages not adding up to 100%, when, technically, they should.
For example:
a = 1
b = 14
I want to compute the percentage of a in (a + b) and b in (a + b).
The answer should be
a/(a + b) = 1/15
b/(a + b) = 14/15
When I try to round those numbers, I got
1/15 = 6.66
14/15 = 93.33
(I was doing the flooring), which makes those two number doesn't add up to 100%.
In this case, we should do ceiling for 1/15, which is 6.67, and flooring for 14/15, which is 93.33. And now they add up to 100%. The rule in this case should be "rounding to the nearest number"
However, if we have a more complicate case, say 3 numbers:
a = 1
b = 7
c = 7
flooring:
1/15 = 6.66
7/15 = 46.66
7/15 = 46.66
Doesn't add up to 100%.
ceiling:
1/15 = 6.67
7/15 = 46.67
7/15 = 46.67
doesn't add up to 100%.
Rounding (to nearest number) is same as ceiling. Still doesn't add up to 100%.
So my question is what should I do to make sure they all add up to 100% in any cases.
Thanks in advance.
UPDATE:
Thanks for the tips from comments. I have took the "Largest Remainder" solution from the duplicate Post answer.
The code are:
def round_to_100_percent(number_set, digit_after_decimal=2):
"""
This function take a list of number and return a list of percentage, which represents the portion of each number in sum of all numbers
Moreover, those percentages are adding up to 100%!!!
Notice: the algorithm we are using here is 'Largest Remainder'
The down-side is that the results won't be accurate, but they are never accurate anyway:)
"""
unround_numbers = [x / float(sum(number_set)) * 100 * 10 ** digit_after_decimal for x in number_set]
decimal_part_with_index = sorted([(index, unround_numbers[index] % 1) for index in range(len(unround_numbers))], key=lambda y: y[1], reverse=True)
remainder = 100 * 10 ** digit_after_decimal - sum([int(x) for x in unround_numbers])
index = 0
while remainder > 0:
unround_numbers[decimal_part_with_index[index][0]] += 1
remainder -= 1
index = (index + 1) % len(number_set)
return [int(x) / float(10 ** digit_after_decimal) for x in unround_numbers]
Tested, seems work fine.

As others have commented, if your numbers are nice and round as in your example, you can use the fractions module to retain the accuracy of the rational numbers:
In [2]: from fractions import Fraction
In [5]: a = Fraction(1)
In [6]: b = Fraction(14)
In [7]: a/(a+b)
Out[7]: Fraction(1, 15)
In [8]: a/(a+b) + (b/(a+b))
Out[8]: Fraction(1, 1)
This obviously doesn't look good if you have really odd fractions.

Welcome to IEEE Floats.
The floating point numbers returned from math operations in python are approximates. On some values, the sum of percentages will be greater than 100.
You have two solutions: use the fraction or decimal modules OR, simply not want them to add up to 100%.

Related

Python: How to round numbers smaller than 1 adaptively with specified precision?

I usually use
x = round(x, 3)
to round a number to the precision of 3 digits. Now I have this array:
[-1.10882605e-04 -2.01874994e-05 3.24209095e-05 -1.56917988e-05
-4.61406358e-05 1.99080610e-05 7.04079594e-05 2.64600122e-05
-3.53022316e-05 1.50542793e-05]
And using the same code just flattens everything down to 0. What I would like to have though is a function that gives me the most significant 3 digits rounded like it usually works for numbers larger than 1. Like this:
special_round(0.00034567, 3)
=
0.000346
Any idea how this could be done? Thanks!
Here is a solution that figures out the order of magnitude and does an elment wise rounding.
Note that this will only work correctly for values < 1 and > -1, which I guess is a valid assumption regarding your example data.
import numpy as np
a = np.array([-1.10882605e-04, -2.01874994e-05, 3.24209095e-05, -1.56917988e-05,
-4.61406358e-05, 1.99080610e-05, 7.04079594e-05 , 2.64600122e-05,
-3.53022316e-05 , 1.50542793e-05])
def special_round(vec):
exponents = np.floor(np.log10(np.abs(vec))).astype(int)
return np.stack([np.round(v, decimals=-e+3) for v, e in zip(vec, exponents)])
b = special_round(a)
>>> array([-1.109e-04, -2.019e-05, 3.242e-05, -1.569e-05, -4.614e-05,
1.991e-05, 7.041e-05, 2.646e-05, -3.530e-05, 1.505e-05])
Problem is, numbers you provided are starting to be so small that you are approaching limit of floating point precision, thus some artifacts show up seemingly for no reason.
def special_round(number, precision):
negative = number < 0
number = abs(number)
i = 0
while number <= 1 or number >= 10:
if number <= 1:
i += 1
number *= 10
else:
i += -1
number /= 10
rounded = round(number, precision)
if negative:
rounded = -rounded
return rounded * (10 ** -i)
Output:
[-0.0001109, -2.019e-05, 3.2420000000000005e-05, -1.569e-05, -4.614e-05, 1.9910000000000004e-05, 7.041000000000001e-05, 2.646e-05, -3.5300000000000004e-05, 1.505e-05]
You can do so by creating a specific function using the math package:
from math import log10 , floor
import numpy as np
def round_it(x, sig):
return round(x, sig-int(floor(log10(abs(x))))-1)
a = np.array([-1.10882605e-04, -2.01874994e-05, 3.24209095e-05, -1.56917988e-05,
-4.61406358e-05, 1.99080610e-05, 7.04079594e-05, 2.64600122e-05,
-3.53022316e-05, 1.50542793e-05])
round_it_np = np.vectorize(round_it) # vectorize the function to apply on numpy array
round_it_np(a, 3) # 3 is rounding with 3 significant digits
This will result in
array([-1.11e-04, -2.02e-05, 3.24e-05, -1.57e-05, -4.61e-05, 1.99e-05,
7.04e-05, 2.65e-05, -3.53e-05, 1.51e-05])
Here is a solution:
from math import log10, ceil
def special_round(x, n) :
lx = log10(abs(x))
if lx >= 0 : return round(x, n)
return round(x, n-ceil(lx))
for x in [10.23456, 1.23456, 0.23456, 0.023456, 0.0023456] :
print (x, special_round(x, 3))
print (-x, special_round(-x, 3))
Output:
10.23456 10.235
-10.23456 -10.235
1.23456 1.235
-1.23456 -1.235
0.23456 0.235
-0.23456 -0.235
0.023456 0.0235
-0.023456 -0.0235
0.0023456 0.00235
-0.0023456 -0.00235
You can use the common logarithm (provided by the built-in math module) to calculate the position of the first significant digit in your number (with 2 representing the hundreds, 1 representing the tens, 0 representing the ones, -1 representing the 0.x, -2 representing the 0.0x and so on...). Knowing the position of the first significant digit, you can use it to properly round the number.
import math
def special_round(n, significant_digits=0):
first_significant_digit = math.ceil((math.log10(abs(n))))
round_digits = significant_digits - first_significant_digit
return round(n, round_digits)
>>> special_round(0.00034567, 3)
>>> 0.000346

Python -personal Identification number

Im trying to code a personal identificational number which should have 10 numbers. It looks like this 990830/4197.
First two numbers - year - 1999 he was born
Second two numbers - month - august
Third two numbers - day 3O.8
Last 4 numbers are generated that way so the whole number when you take it has to be devided by 11 and there cant remain any number. So for example;
99+8+30+4197= 4 334 /11 = 394.
Always the number should be % = 0.
I wanna ask for some key words that might help me when I wanna generate correct numbers.
Thanks
I am assuming here that the date part of the number you have already. Then you can use this code to calculate the "tail" efficiently:
from random import randint
date = 990830
s = sum(int(x) * 10**(i % 2) for i, x in enumerate(str(date), 1)) # note 1
tail = randint(90, 908) * 11 - (s % 11) # note 2
print('{}\{}'.format(date, tail))
which produces (several examples):
990830\5462
990830\5132
990830\8751
990830\6397
with all of them being perfectly divisible by 11.
This simply adds the numbers of the date as described (e.g., 99 + 08 + 30)
This calculates a random 4 digit number that when added to the above sum creates a number N for which N % 11 == 0.

Python OverflowError: int too large to convert to float

I have a number and I want to find the sum of all of its possible substrings. Since the sum may be very large, I am taking modulo 1e9+7. Here is the code I wrote for it:
n = input()
total = 0
for i in range(len(n)):
for j in range(i, len(n)):
total = (total + int(n[i:j+1]))%(1e9+7)
print(int(total))
But this gives me Overflow error:
OverflowError: int too large to convert to float
Taking modulo inside also doesn't help:
total = (total%(1e9+7) + int(n[i:j+1])%(1e9+7))%(1e9+7)
Neither does converting total to int every step:
total = int((total%(1e9+7) + int(n[i:j+1])%(1e9+7))%(1e9+7))
I searched online, and many people were using decimal, so I tried that too:
import decimal
n = input()
total = 0
for i in range(len(n)):
for j in range(i, len(n)):
total = decimal.Decimal((int(total)%(1e9+7) + int(n[i:j+1])%(1e9+7))%(1e9+7))
print(int(total))
This also gave me the same error. So how can I fix it?
EDIT:
This is the input value causing the error:
630078954945407486971302572117011329116721271139829179349572383637541443562605787816061110360853600744212572072073871985233228681677019488795915592613136558538697419369158961413804139004860949683711756764106408843746324318507090165961373116110504156510362261390086415758369311946617855091322330974469225379475157034653986221430086928768825350265642050874148148762850633380318092218497923938934331494944977897218250062378381926065651168047990017214673422724320097123140849040864223795967322521445859865961967502883479331506850337535224430391571038073324911164139663006137417510539192705821435391823658411385338369730232377028300695738866310468334377735439392551346134885024889217010755804062396901380184592416137322133531990680941959600864409332647120219490414701983979339375751465609840801484592889925172867105767663865003474673877306782492180067353856493873352082672833242368295700361941406607094298524971010582848155295175876416280789802070376313832361148791530700602039387918303750966965311391574707837728570176384970704855124594407172251268098706978376090542912929344492513384183231040016207412648019561891411057151352984928184115181483534959666911309714744265773932487092170761893895469807486999330039447615795396834925983574737750806569360090695009597077440117397176004125384806886783639660621550162794222825503301866755919064102371025428970202609474167093725973377029019369542489008907399816344268271107251422642444394295031677496626574918192538987307032199141725692286015261369012945174380684144484086524852886270717368426832490990772158458075266904766542991903970407465284703623099975166486775916952691073355877964592340230731529088307662462168730966089062336436389277513929792989509527961806655782453847736236387259057358913693838332016851781407524359352813229072505380650711693049176679191021591021389372641247384964875287336650708846120446276882272810745622693709331578317206645848042706067557480758511553310824640020649394355322305550804086562784060919544289531008318716584762468479626254129440271062831239695632816441075920969278753806765451632278698182308325313693381046301850639648800754286747096420253430423489479466804681482044272737999450499555465823164480037422222367329404142745283822947899313540404366082279717101515216147594766392292429511243594117952923319141560834706050302935730124475680758933436231491685270482951411606790235850929380027076481544634203449136248177171198738003486838372217932769689898884784243826855286091288358239337707121625402050851090825870703676300673135330647766969648618275025084598123309185991065848687389917566591933063673989563554382295252021136544002390268843474613430643976640252484632736275857290476774458675146529714463940660919706163233969511685041545624837717646981487338708223589261847530514133271116906741091917303278220653192405195999010112864383206483703165777476499412818478890639921457227974733696980927826881905040085772367856544559431242332068267736163848514181227641896012840513431718789320462329400102516689122316306450427759800832003864806238880726778463445628851437837462460535312158694258263309302240517780411649608046974426356882853543894970861987774349994574781336617336532821610244134603281437218963727001383319023603953398010028490193243704729281796345148350290421966348930850029874490245386530847693496493617805444480239004190850309960252932678216332242871877009997232445612436261407704091991812835292853218055207198699990193596327522065871513324383404436885617489886675946278629169614212976734843602198938090909080423822416990482891694415707626880182335127385564845496968722502531064508236794490149037021373756875425278069621745860863912399196641388414399463171257761192133719058891540419926061937259684055960761838199081600923840918336924120526335236516500115108241855287430263809480233364084000105646409638910878994420820422552248809062853062971314598633808334114010418924133364933998209352785219452456089337721022144079478199256501302345218342858278235244199769192326879823000937772497828914123378185067698603690831733524939588396025784744225418501083799649691393873269892335315415985069239360869306287430161725433942167215211261881754762154607113521244775811112287675881463204557903372983296624502192459971356246676084633217778109344434581417296897250881570580436981350693342923679859228288541131389540894299576663507525370715066110292813780358628483132303131742983176445700582642966318721896316623598268218673189722517718549132701529540520838922283977941956346618584749724827265852568855500361230814706488134611068845316354598799199730845206624628172917488457386459633185969341459672532379007964850480186110477536989316248137632870890622881765455399233258931339410494872048786445380805620853716965362789859403153144908183575383939310217279705139721560019568071214255994974408572648841828625948484183872232281767754936910627565103682925375742419024815987856586166378115801243175559269046804610268271061187624472308223805466602642940260042682812756256714586960165383407898099487002894444062178839391272002262993374941547876859908138330758067507911277955632733866611899695647351688393078353839611712871637384462404921878353336617815170011477929312619557000783485114417555469412886951873941491122663330089140640237525839190435611147175201365580352057169422983019756479705286311737745688878300295162035783336721495176173005235943366036579342403031858371914608154767616552994518813852963325330926988565056420401996182426971074864830358200261362270644352471067742908740066312532706251619727693803689605359722994531913085746256816708333207607372464782479204187957800323115042281681129259667352353517828344865153265302260116463924808962369896134974192415072584064052318417051648079212739917316031264326241507504548923934897411859282836187869534528811502263549599774513219264816628970416773822011462914052436110107140947441642811202817152783793620844688755256396789417685977459433814911438287855016776285922198699082347185992693560300125534315526770599208589855117129892234808497648798749646357191091546146105862763759843591202631705539149848234511495065117372464217143148171544816412125072538951795020039403886647971400954941112844849901590156966236341935249533139330401618307950786879596469984119359421473188358955907773883294422386655263220117627516995224969119904423765978663514224958566699689223512229385859291888846405683717180332460248187496572144703276206259527743572333980326718238070708650626983118629971542697495485252436024567421318695854715454101364076644687730899594195633275321940815295981062932643316855398782785214003121345721054960499469768201901436790482699005065113381322434770359397558788285726356480844311358408385253074776523383477020175018046561198787369898157059096899613482593561519419424142071652533171543891165116251895092189352681035517633166882961672980048326420273966474172389658068362117989909317156664012999905834065753973024952538940459359134550258647169854000824881036941617642608336413135147747841565829503975928572807411306180458140011310004983383026486015252188390643855363612216856777424655584758055581172316113883725410980557553123430983725023598059269514271705141359723255705532679522179269076133226643135890378252461618715340762528062563692617084267038794880235151507089462270896512581989114649911930878095396167316626567923044257435256806444296060636631937672317042925789128926010875180848009703217786800815516725253240060242786574356358801695111745961187387934689215227487920216703113061886444488110070984015605138767865701169972101412815405111287993463590619141283476936740880771219789950164205754467253452729863863950188739206664510955140236732140158021974750113109733958553067094099406873014624519007182600409029981781192576220342072442404407525694905182026252480724976436388060662190514332680872481044874701969108472815273272711817597987293115253454183720993206057768497928765003643915107639254922781596562385649150660525460064354624202531015121109364122338886448890343464196409635269404582149158284742251021906623863213747664602076214326636400706220794772134432273627481233425177349936452817255847706031575002057972719912748242114947097609007914285108694438842246267149271162583225184547641087826552789896176698128504268589381137327318145707839809327397245651593444250042725815049799745201372918555659842435159140214766015206264721726961406530774240071612440812084893955728905341340722978959370951469131953687044216423231488696742678073353379700564119257217803190999447776766945656573316206535726981650249163828677908520393197985243387213795555465230391800618144495416908755212757986378350464035578468435976351162791656892497974733578066603931101486067508297960437234016531761812630581332141184120753306673976159208563797007731706257116416221162110419311205495221132895418746168121064205944498701002545540456478596919625174145565742316551390140063146675199648332585331762709727331999408582325796339606878970603814755703167837480442251068230531926699205980639895012239254327439300220930923024855090117769633765709714826339834535876565538006788679271916019685164920493416004883901394115173882206447090610228518660081719399539376075038070034810020211340293423040766585888292494537662913458772049817318437606250938129574541767841602448300145138073940696983979059415445451195212528787305894819950526282403144596367019708209116488019479785136064985877899731579692549619154770180888669752809069235496303872000398374241532650796235196695916947874428693058258893424293987791471045924421366356810359849529988292704148275922733760964828717638828532352066259757744446229184986951298617242419115550392412022848989840586920941416655818223507527601871564570641408192234786458318407574121105566577710381048872914691225665311980882110415222436817149605338657757168302854397900614706332327212921851066498300381053609841762266343669520372320628210114413639485761915162414609422533174459519006397814257737889054381038101112761472099883783780140565576787975042564664143611845913471061951575941338844337411203552878275342039192198521263603180368307831236175304268307887495444496370405314855591523212253
Convert it into Decimal
from decimal import Decimal
Decimal(630078954945407486971302572117011329116721271139829179349572383637541443562605787816061110360853600744212572072073871985233228681677019488795915592613136558538697419369158961413804139004860949683711756764106408843746324318507090165961373116110504156510362261390086415758369311946617855091322330974469225379475157034653986221430086928768825350265642050874148148762850633380318092218497923938934331494944977897218250062378381926065651168047990017214673422724320097123140849040864223795967322521445859865961967502883479331506850337535224430391571038073324911164139663006137417510539192705821435391823658411385338369730232377028300695738866310468334377735439392551346134885024889217010755804062396901380184592416137322133531990680941959600864409332647120219490414701983979339375751465609840801484592889925172867105767663865003474673877306782492180067353856493873352082672833242368295700361941406607094298524971010582848155295175876416280789802070376313832361148791530700602039387918303750966965311391574707837728570176384970704855124594407172251268098706978376090542912929344492513384183231040016207412648019561891411057151352984928184115181483534959666911309714744265773932487092170761893895469807486999330039447615795396834925983574737750806569360090695009597077440117397176004125384806886783639660621550162794222825503301866755919064102371025428970202609474167093725973377029019369542489008907399816344268271107251422642444394295031677496626574918192538987307032199141725692286015261369012945174380684144484086524852886270717368426832490990772158458075266904766542991903970407465284703623099975166486775916952691073355877964592340230731529088307662462168730966089062336436389277513929792989509527961806655782453847736236387259057358913693838332016851781407524359352813229072505380650711693049176679191021591021389372641247384964875287336650708846120446276882272810745622693709331578317206645848042706067557480758511553310824640020649394355322305550804086562784060919544289531008318716584762468479626254129440271062831239695632816441075920969278753806765451632278698182308325313693381046301850639648800754286747096420253430423489479466804681482044272737999450499555465823164480037422222367329404142745283822947899313540404366082279717101515216147594766392292429511243594117952923319141560834706050302935730124475680758933436231491685270482951411606790235850929380027076481544634203449136248177171198738003486838372217932769689898884784243826855286091288358239337707121625402050851090825870703676300673135330647766969648618275025084598123309185991065848687389917566591933063673989563554382295252021136544002390268843474613430643976640252484632736275857290476774458675146529714463940660919706163233969511685041545624837717646981487338708223589261847530514133271116906741091917303278220653192405195999010112864383206483703165777476499412818478890639921457227974733696980927826881905040085772367856544559431242332068267736163848514181227641896012840513431718789320462329400102516689122316306450427759800832003864806238880726778463445628851437837462460535312158694258263309302240517780411649608046974426356882853543894970861987774349994574781336617336532821610244134603281437218963727001383319023603953398010028490193243704729281796345148350290421966348930850029874490245386530847693496493617805444480239004190850309960252932678216332242871877009997232445612436261407704091991812835292853218055207198699990193596327522065871513324383404436885617489886675946278629169614212976734843602198938090909080423822416990482891694415707626880182335127385564845496968722502531064508236794490149037021373756875425278069621745860863912399196641388414399463171257761192133719058891540419926061937259684055960761838199081600923840918336924120526335236516500115108241855287430263809480233364084000105646409638910878994420820422552248809062853062971314598633808334114010418924133364933998209352785219452456089337721022144079478199256501302345218342858278235244199769192326879823000937772497828914123378185067698603690831733524939588396025784744225418501083799649691393873269892335315415985069239360869306287430161725433942167215211261881754762154607113521244775811112287675881463204557903372983296624502192459971356246676084633217778109344434581417296897250881570580436981350693342923679859228288541131389540894299576663507525370715066110292813780358628483132303131742983176445700582642966318721896316623598268218673189722517718549132701529540520838922283977941956346618584749724827265852568855500361230814706488134611068845316354598799199730845206624628172917488457386459633185969341459672532379007964850480186110477536989316248137632870890622881765455399233258931339410494872048786445380805620853716965362789859403153144908183575383939310217279705139721560019568071214255994974408572648841828625948484183872232281767754936910627565103682925375742419024815987856586166378115801243175559269046804610268271061187624472308223805466602642940260042682812756256714586960165383407898099487002894444062178839391272002262993374941547876859908138330758067507911277955632733866611899695647351688393078353839611712871637384462404921878353336617815170011477929312619557000783485114417555469412886951873941491122663330089140640237525839190435611147175201365580352057169422983019756479705286311737745688878300295162035783336721495176173005235943366036579342403031858371914608154767616552994518813852963325330926988565056420401996182426971074864830358200261362270644352471067742908740066312532706251619727693803689605359722994531913085746256816708333207607372464782479204187957800323115042281681129259667352353517828344865153265302260116463924808962369896134974192415072584064052318417051648079212739917316031264326241507504548923934897411859282836187869534528811502263549599774513219264816628970416773822011462914052436110107140947441642811202817152783793620844688755256396789417685977459433814911438287855016776285922198699082347185992693560300125534315526770599208589855117129892234808497648798749646357191091546146105862763759843591202631705539149848234511495065117372464217143148171544816412125072538951795020039403886647971400954941112844849901590156966236341935249533139330401618307950786879596469984119359421473188358955907773883294422386655263220117627516995224969119904423765978663514224958566699689223512229385859291888846405683717180332460248187496572144703276206259527743572333980326718238070708650626983118629971542697495485252436024567421318695854715454101364076644687730899594195633275321940815295981062932643316855398782785214003121345721054960499469768201901436790482699005065113381322434770359397558788285726356480844311358408385253074776523383477020175018046561198787369898157059096899613482593561519419424142071652533171543891165116251895092189352681035517633166882961672980048326420273966474172389658068362117989909317156664012999905834065753973024952538940459359134550258647169854000824881036941617642608336413135147747841565829503975928572807411306180458140011310004983383026486015252188390643855363612216856777424655584758055581172316113883725410980557553123430983725023598059269514271705141359723255705532679522179269076133226643135890378252461618715340762528062563692617084267038794880235151507089462270896512581989114649911930878095396167316626567923044257435256806444296060636631937672317042925789128926010875180848009703217786800815516725253240060242786574356358801695111745961187387934689215227487920216703113061886444488110070984015605138767865701169972101412815405111287993463590619141283476936740880771219789950164205754467253452729863863950188739206664510955140236732140158021974750113109733958553067094099406873014624519007182600409029981781192576220342072442404407525694905182026252480724976436388060662190514332680872481044874701969108472815273272711817597987293115253454183720993206057768497928765003643915107639254922781596562385649150660525460064354624202531015121109364122338886448890343464196409635269404582149158284742251021906623863213747664602076214326636400706220794772134432273627481233425177349936452817255847706031575002057972719912748242114947097609007914285108694438842246267149271162583225184547641087826552789896176698128504268589381137327318145707839809327397245651593444250042725815049799745201372918555659842435159140214766015206264721726961406530774240071612440812084893955728905341340722978959370951469131953687044216423231488696742678073353379700564119257217803190999447776766945656573316206535726981650249163828677908520393197985243387213795555465230391800618144495416908755212757986378350464035578468435976351162791656892497974733578066603931101486067508297960437234016531761812630581332141184120753306673976159208563797007731706257116416221162110419311205495221132895418746168121064205944498701002545540456478596919625174145565742316551390140063146675199648332585331762709727331999408582325796339606878970603814755703167837480442251068230531926699205980639895012239254327439300220930923024855090117769633765709714826339834535876565538006788679271916019685164920493416004883901394115173882206447090610228518660081719399539376075038070034810020211340293423040766585888292494537662913458772049817318437606250938129574541767841602448300145138073940696983979059415445451195212528787305894819950526282403144596367019708209116488019479785136064985877899731579692549619154770180888669752809069235496303872000398374241532650796235196695916947874428693058258893424293987791471045924421366356810359849529988292704148275922733760964828717638828532352066259757744446229184986951298617242419115550392412022848989840586920941416655818223507527601871564570641408192234786458318407574121105566577710381048872914691225665311980882110415222436817149605338657757168302854397900614706332327212921851066498300381053609841762266343669520372320628210114413639485761915162414609422533174459519006397814257737889054381038101112761472099883783780140565576787975042564664143611845913471061951575941338844337411203552878275342039192198521263603180368307831236175304268307887495444496370405314855591523212253)
The best solution to this question runs in linear time. Here's the idea:
let's look at a shorter example: 1234
consider the total sum of the substrings which end on the ith digit (0..3)
substringsum[0]: 1 (we have only a single substring)
substringsum[1]: 2 + 12 (two substrings)
substringsum[2]: 3+23+123 (three substrings)
substringsum[3]: 4 + 34+234+1234
see a pattern?
let's look at substringsum[2]:
3 + 23 + 123 = 3 + 20+3 + 120+3 = 3*3 + 20+120 = 3*3 + 10*(2+12) = 3*3 +10*substringsum[1]
in general:
substringsum[k] = (k+1)*digit[k] + 10 * substringsum[k-1]
This you can compute in linear time.
This type of ideas is called "Dynamic Programming"
The overflow error suggest that there's an undesired conversion to float, which I assume you did not intend. The conversion happens because the type of 1e9 is float. To fix this, use % int(1e9+7) instead of % 1e9+7

Any better way to write this small code?

I'm processing a.CSV file in python which has a floating type field.
This field has to be modified such that it has at least 4 decimal points and max 8 decimal points of precision.
Example:
input: 5.15
output: 5.1500
input: -12.129999998
output: -12.12999999
What I'm currently doing:
#The field to be modifed is present at index 3 in list temp
dotIndex = temp[3].find('.') + 1
latLen = len(temp[3])-1
if (latLen) - (dotIndex) > 8:
temp[3] = temp[3][0:dotIndex+4]
elif (latLen) - (dotIndex) < 4:
temp[3] = temp[3][0:latLen] + (4 - (latLen - (dotIndex))) * '0'
Is there a better way to write this code to improve performance ?
this should work:
temp[3] = "{:.4f}".format(float(temp[3]))
Considering your comment and the fact you want it truncated, here you go:
n = len(temp[3].split('.')[1])
if n < 4:
temp[3] = "{:.4f}".format(float(temp[3]))
elif n > 8:
parts = temp[3].split('.')
temp[3] = parts[0]+"."+parts[1][:4]
If you're truncating, not rounding, you could use something like this:
def truncate_to_eight(val):
return '{:.8f}'.format((int(val * 10**8))/(10.0**8))
Multiplying by 10 to the power of 8, taking the integer part, and then dividing by 10 to the power 8 gets you the truncation required. Note however, this will always return a value with 8 decimal places - so 5.15 becomes 5.15000000.
You would use this by saying, for example:
rounded = truncate_to_eight(temp[3])

Python setting Decimal Place range without rounding?

How can I take a float variable, and control how far out the float goes without round()? For example.
w = float(1.678)
I want to take x and make the following variables out of it.
x = 1.67
y = 1.6
z = 1
If I use the respective round methods:
x = round(w, 2) # With round I get 1.68
y = round(y, 1) # With round I get 1.7
z = round(z, 0) # With round I get 2.0
It's going to round and alter the numbers to the point where there no use to me. I understand this is the point of round and its working properly. How would I go about getting the information that I need in the x,y,z variables and still be able to use them in other equations in a float format?
You can do:
def truncate(f, n):
return math.floor(f * 10 ** n) / 10 ** n
testing:
>>> f=1.923328437452
>>> [truncate(f, n) for n in range(7)]
[1.0, 1.9, 1.92, 1.923, 1.9233, 1.92332, 1.923328]
A super simple solution is to use strings
x = float (str (w)[:-1])
y = float (str (w)[:-2])
z = float (str (w)[:-3])
Any of the floating point library solutions would require you dodge some rounding, and using floor/powers of 10 to pick out the decimals can get a little hairy by comparison to the above.
Integers are faster to manipulate than floats/doubles which are faster than strings. In this case, I tried to get time with both approach :
timeit.timeit(stmt = "float(str(math.pi)[:12])", setup = "import math", number = 1000000)
~1.1929605630000424
for :
timeit.timeit(stmt = "math.floor(math.pi * 10 ** 10) / 10 ** 10", setup = "import math", number = 1000000)
~0.3455968870000561
So it's safe to use math.floor rather than string operation on it.
If you just need to control the precision in format
pi = 3.14159265
format(pi, '.3f') #print 3.142 # 3 precision after the decimal point
format(pi, '.1f') #print 3.1
format(pi, '.10f') #print 3.1415926500, more precision than the original
If you need to control the precision in floating point arithmetic
import decimal
decimal.getcontext().prec=4 #4 precision in total
pi = decimal.Decimal(3.14159265)
pi**2 #print Decimal('9.870') whereas '3.142 squared' would be off
--edit--
Without "rounding", thus truncating the number
import decimal
from decimal import ROUND_DOWN
decimal.getcontext().prec=4
pi*1 #print Decimal('3.142')
decimal.getcontext().rounding = ROUND_DOWN
pi*1 #print Decimal('3.141')
I think the easiest answer is :
from math import trunc
w = 1.678
x = trunc(w * 100) / 100
y = trunc(w * 10) / 10
z = trunc(w)
also this:
>>> f = 1.678
>>> n = 2
>>> int(f * 10 ** n) / 10 ** n
1.67
Easiest way to get integer:
series_col.round(2).apply(lambda x: float(str(x).split(".",1)[0]))

Categories