Transmit consecutively using I2C on Raspberry Pi, python smbus - python

I want to transmit AVR or Arduino etc by I2C from Raspberry pi.
I am writing in Python.
I already successeded communication using write_data() function in smbus module.
But I want to transmit multiple bytes data consecutively.
Please tell me how to transmit multiple bytes data in i2c communication.
I find write_block_data() function, but I don't understand the second parameter CMD.
What is the CMD?? Should I specify the value of CMD?
thank you.

Communicating between an RPi and an Arduino on I2C is a big mess if you are using Wire.h library. The short answer is that RPi is using a repetitive start signal while Arduino is not using it.
Repetitive start signal on I2C interface tells the slave to start answering for the call. In case of the Arduino asking and answering is in two separated calls. Therefore you cannot send block
I made two blog posts to interface the two architecture through I2C. First one is for using a remote controller PWM: http://distantorion.com/2014/10/24/rc-signals-pwm-to-i2c-with-arduino/
The second one is for driving a 128x64 LCD display on I2C: http://distantorion.com/2014/11/01/i2c-display-with-arduino/
In the second one I'm using block data in python:
bus.write_i2c_block_data(0x05,0x10,buff)
0x05 is the device address, 0x10 is the "command", buff containd the characters to display.
Regarding the commands. In I2C a slave works in a way of commands or registers. Both method looks like the same. If you are using a repetitive start signal the communication seems to be reading and writing registers. When you have no repetitive start signal, the communication looks like a command - answer system. In my example I'm sending 0x10 what is "put the characters from to the display". And 0x01 is a clear screen command, while 0x02 turns on the backlight.

Related

Using Python and pyserial to run python scripts on a pico (RP2040)

My ultimate goal is to control a number of peripheral chips on a PCB from a GUI interface on a PC. To do so, my plan was to incorporate a RP2040 (and memory) on the PCB in order to hold all the python scripts and to program/monitor all the peripheral chips. Then, using a PC to interface with the RP2040, send commands over the serial port to execute specific python files on the pico.
I realize that is a bit confusing, so the attached block diagram should help.
Block diagram
Starting on the left of the block diagram, I have a PC running a tkinter GUI. I am currently running the tkinter gui in Thonny. (eventually i would like it to be an executable, but that is beyond the scope of this post) The gui has a number of buttons to choose which python scripts to run. The PC is connected to the PCB through the USB cable. The USB data lines are routed to the RP2040's USB inputs (pins 47,48). The memory on the PCB holds a number of python scrips that correspond to the buttons in the GUI. Ideally, pressing a button on the PC would execute the corresponding py file on the pcb.
What I've got working so far:
My real expertise lies in peripheral chips and PCB design, in this case the front end for a 2-18GHz transceiver, so bare with me if some of my python questions seem basic or misinformed. I've written and tested all the .py files on the pico's memory. To test those scripts I used Thonny to connect to my pico and simply ran (f5) the scripts with the peripherals connected to the right GPIOs. I was also able to get tkinter working and create functioning buttons that can execute commands. Using the pyserial module, I am also able to connected to the pico through the USB and write... strings. Not very useful, but a start.
import serial
ser = serial.Serial('COM3', 38400, timeout=1, parity=serial.PARITY_EVEN, rtscts=1)
s = ser.read(100) # read up to one hundred bytes or as much is in the buffer
print(ser.name) # check which port was really used
ser.write(b'ToggleLED.py') # write a string
ser.close() # close port
Remaining task: The final task I have been failing miserably at the past 2 days has been actually trying to execute the .py files located on the pico's memory through the serial port. My unexperienced/naïve notion was to simply send a string with the files name, obviously not correct. Any thoughts on how to execute those py files using that pyserial module?
BTW, if there is a better solution, please feel free to share! Perhaps the files should be located on the PC and i send 1 command at time?
I can't say anything about your serial problems until you clarify just what is running on the pi (see my comment: I'll update this answer when you do), but re 'is there a better way': possibly.
Since the Pi is running a full operating system, there are a few options. You are basically creating a network connection to the Pi. Whilst this can be done over serial (with the Pi, presumably, acting as a fake USB serial device), it can also be done more conventionally over wifi or ethernet. Lastly, you could host your interface on the Pi and interact with it in a webbrowser, cutting the second computer out of the picture. Exactly which option you decide to take is up to you, and is really off topic here (though it might be on topic elsewhere on SE).
Sending commands to the pi and having it run scripts is Remote Procedure Call. You might want to lookup some of the protocols (like JSON-RPC) generally used to do that, but the basic approach will have code running on the pi:
def do_something():
pass
def do_something_else():
pass
functions = {"something": do_something, "something_else": do_something_else}
while True:
cmd = get_input() # blocks until input comes
if cmd in functions:
reply(f"Running {cmd}")
output = functions[cmd]()
reply(f"{cmd} returned with output {output}")
else:
reply(f"Invalid command {cmd}")
This is schematic: exactly what get_input() on the pi is will depend on how you end up connecting, and what protocol (if any) you end up using. Notice that I have built in confirmation: you want to know if things work or fail.
Whilst you could store these commands in separate scripts and invoke them, if they are just python scripts there is no reason not to call the functions directly from the code running on the pi.
I've seen two different solutions to the question:
With the Pi pico running the REPL (python shell), text strings can simply be sent from a python program running on the host (Windows or Raspberry Pi, etc., connected to the USB com port, with Thonny window closed), and sent to the pico as python commands. This approach is detailed in:
https://blog.rareschool.com/2021/01/controlling-raspberry-pi-pico-using.html
On the pico side, one just need to define a number of functions that will execute from the REPL. E.g.,:
from machine import Pin
# use onboard LED which is controlled by Pin 25
led = Pin(25, Pin.OUT)
# Turn the LED on
def on():
led.value(1)
# Turn the LED off
def off():
led.value(0)
Any string sent to the pico, such as
on()
will be executed accordingly.
In the 2nd approach, the pico will read each line from the USB serial port and parse the line into command and additional parameters, to be compared against a list of predefined commands and executed accordingly. I did that using the Arduino Due, and I'm in the process of porting it to the pico (= no code to show yet :-().

How can I push a file out to multiple Raspberry Pi Pico's at once?

I am looking for a DIY replacement for the $1500 Go-Box for mass provisioning Chromebooks. I have managed to replicate this by using a Raspberry Pi Pico as the "HID Emulation". However, I need this on a mass scale. I want to be able to do 20 Chromebooks at one time. I can do this with just 20 Raspberry Pi Picos but I need to change the script every 100-150 Chromebooks I provision (changing credentials etc.). Changing each script manually is time-consuming, so I need to be able to change all 20 scripts at once, or one "master" script that the "slave" Picos go and get on boot.
At first, I thought about an SD card they can all read from and when needed, I can take it out and change the script on there, and then when the Pico boots it can copy the new script to the root of the Pico. However, this may be an issue since I do not know if the Picos will clash with each other when trying to read the script from the same place at the same time. This is my first issue.
Then I thought about a Master and Slaves setup. One Pico acts as a Master and holds the script. The other 20 are slaves that get the script from the Master when a pin is high (to signify the Picos need reprogramming). I would only use the Master when reprogramming the script. When I turn the Master on, I would have it set a pin to high and all the other slaves would check on the boot to see if the pin is high. If the Slaves find that the pin is high, it won't run the script, but it will update it from the Master. This is where I run into the problem with this method. I need to transfer the script from Master to Slaves. I haven't got any experience in communication protocols like UART, SPI, or I2C but I understand that if I want to do multiple Slaves, then I am better off using I2C.
This is my last resort since I have been googling for days and can't find a suitable solution. Is anyone able to provide any insight on any of the following:
How to get the script from one place to twenty?
Will the SD card idea clash when all 20 Picos try to access it?
How to transfer files over I2C or similar protocol?
I appreciate any help anyone can provide. I am using MicroPython v1.16 on 2021-06-18; Raspberry Pi Pico with RP2040
The pico has a uart (2 actually) which is easy to program; there are lots of examples of serial communication with the pico, typically to a full Raspberry Pi.
You could join all the rx receiver pins on the picos to the master tx transmit pin and talk to them all in parallel, with no replies.
I don't know if it is possible to tri-state the tx pins so that they could all be connected too, but only one enabled at a time, by sending suitable commands from the master tx. The problem is that the electrical load of 20 receivers, and the excessive length of the parallel cabling might not give error free transfers.
Or you could daisy chain the serial ports so the rx of pico1 is read by the software there and repeated out on its tx, which is connected to the rx of pico2, and so on. You can start each data packet with a "node number", which each pico decrements before sending it on. If this number is 1, then the packet appplies to this node. This is a sort of auto-numbering of the picos. A number like 255 can be used for a broadcast.
If the last pico's tx is wired back to the master you can even allow any pico to send a reply, provided the software waits for a break in incoming data.
It also allow for rudimentary flow control and error checking. If the master sends only 1 byte at a time, and waits for each byte to be "echoed" back from the last pico, it can ensure everyone has seen the data. Also, each serial segment can be short so there are no electrical load problems, or signal corruption.
Look at the gpib bus which daisy chains something like this, or at the simple individually-addressible RGB leds like the WS2812B which are also daisy chained.

RS232 with raspberry pi

My issue is to make a serial communication between raspberry pi and another hardware. The recommended connection for this hardware is as shown on the manual, I have to connect, RX, TX, GND, RS, and CS.
But on raspberry pi we have only RX, TX so I connected RX and TX and The GNG of Pi to this hardware.
I modified Pi's parameters as shown on the link : here
Then I maked a simple python program that initialize the communication, and send data.
Here is the code :
import serial,os
port=serial.Serial("/dev/ttyAMA0",baudrate=9600)
print ('port is ok')
port.write('Command')
rcv=port.read(10)
print rcv
after running this code on pi, I got ('port is ok'), But the problem is that this hardware don't respond correctly to the command, and as respoce it gave me normally OK, but I got some extra caracter( non readable).
Is that a problem of encoding? Can some one help about this?
You need to check the baud rate on the other hardware
or make sure that the length of the received message = to the printed message.
In a serial communication, there are two important things to be careful :
The two devices have to work with the same baudrate IF the link is bidirectional.
When writing data on serial, you have to flush data just after the write().
refer to here for it.
In a lot of case, flush isn't needed, but when two different devices have to communicate, it could unlock the comm'.
If it's not efficient, try to set up your other device with the same conf (no flow control, etc)

What is the difference between flush, flushinput and flushoutput in python?

I am doing a serial communication in python between a RPi and a camera. I send some data from the RPi using ser.write() and read data from the camera in the RPi using ser.read(). Then I would like to know what would ser.flush(), ser.flushinput() and ser.flushoutput() do if I add these after the read command.
I assume ser.flush() will make the program wait till all data from buffer memory is read. But I don't understand what the other two will do
Can someone tell me, what is the difference between these three when used in serial communication and what will happen when I use each of them separately after the ser.write() or ser.read().

Program execution stopping on atml atmega16 microcontroller upon terminal connection

I am attempting to receive data from the qu-bot at http://www.qu-bot.com. The robot has an ATML atmega16 microcontroller. I have written a program that runs on the robot which outputs data to its serial port. The program however stops whenever I connect to the controller. I tested this by adding a beep statement. The robot beeps as long as the program is running. The beeping stops when I connect to the robot. I tried qu-bo support and they suggested disabling the dtr flag on the serial port. I did that but no joy.
Is there anything else I can try?
[start of code running on the qu-bot]
Note:
This is written in some kind of proprietary variant of C which they call quick c.
// This code displays the uart functions.
int main(void)
{
INIT();
UART_INIT(57600);
UART_PRINT("HELLO!!\n");
DELAYS(1);
UART_PRINT("MY NAME IS QU-BOT.\n");
DELAYS(1);
UART_PRINT("HELLO!!\n");
UART_PRINT("YOU ARE USING UART SAMPLE CODES.\n");
while(1)
{
UART_PRINT("test\n");
BEEP();
DELAYS(60);
}
}
now for my python serial port reading program. I have tried this program both on raspbian and on windows 7 64bit. I am pasting the windows version. The raspbian version has a different name for the linux.
import serial
import time
ser=serial.Serial()
ser.port=8
ser.baudrate=57600
ser.setDsrDtr(False)
print 'initialized'
flag = ser.isOpen()
if flag:
print 'port already open.'
pass
else:
ser.open() # opening the port 'ser' that was just created to receive data
time.sleep(0.5)
print 'ready to read'
print ser
ser.write('a')
s=ser.read(4)
print s
ser.close()
Pranav
P.S. I have consulted the following links amongst others.
<https://learn.sparkfun.com/tutorials/terminal-basics/all>
<http://www.plainlystated.com/2013/06/raspberry-pi-serial-console/>
<http://elinux.org/RPi_Serial_Connection>
<https://learn.sparkfun.com/tutorials/terminal-basics/all>
Based on my experience in serial communications with microcontrollers the most likely cause of this problem is that when you connect the serial cable to the robot it causes a phantom byte (due to electrical noise that happens when you make the connection) to look like it's coming from the controller - either this or the controller is sending a legitimate byte to the robot. In either case it is likely that the arrival of a byte at the robot's serial port (even if it was only electrical noise mistaken to be a data byte - this is a very common occurrence) caused the robot's microcontroller to invoke the UART receive interrupt. If you don't have an appropriate UART receive handler (ISR - Interrupt Service Routine) written and linked into the correct interrupt vector then your robot's microcontroller can go off into "deep space" upon the detection of the first incoming serial data byte - and make your robot appear to "hang". If you intend to do "polled" serial communications (your code manually checks for received bytes in its main loop) instead of interrupt-driven (hardware detection of an incoming byte causes your UART Rx ISR to be invoked) then all you have to do is to disable UART interrupts and your problem should go away.

Categories