Calculate the Cumulative Distribution Function (CDF) in Python - python

How can I calculate in python the Cumulative Distribution Function (CDF)?
I want to calculate it from an array of points I have (discrete distribution), not with the continuous distributions that, for example, scipy has.

(It is possible that my interpretation of the question is wrong. If the question is how to get from a discrete PDF into a discrete CDF, then np.cumsum divided by a suitable constant will do if the samples are equispaced. If the array is not equispaced, then np.cumsum of the array multiplied by the distances between the points will do.)
If you have a discrete array of samples, and you would like to know the CDF of the sample, then you can just sort the array. If you look at the sorted result, you'll realize that the smallest value represents 0% , and largest value represents 100 %. If you want to know the value at 50 % of the distribution, just look at the array element which is in the middle of the sorted array.
Let us have a closer look at this with a simple example:
import matplotlib.pyplot as plt
import numpy as np
# create some randomly ddistributed data:
data = np.random.randn(10000)
# sort the data:
data_sorted = np.sort(data)
# calculate the proportional values of samples
p = 1. * np.arange(len(data)) / (len(data) - 1)
# plot the sorted data:
fig = plt.figure()
ax1 = fig.add_subplot(121)
ax1.plot(p, data_sorted)
ax1.set_xlabel('$p$')
ax1.set_ylabel('$x$')
ax2 = fig.add_subplot(122)
ax2.plot(data_sorted, p)
ax2.set_xlabel('$x$')
ax2.set_ylabel('$p$')
This gives the following plot where the right-hand-side plot is the traditional cumulative distribution function. It should reflect the CDF of the process behind the points, but naturally, it is not as long as the number of points is finite.
This function is easy to invert, and it depends on your application which form you need.

Assuming you know how your data is distributed (i.e. you know the pdf of your data), then scipy does support discrete data when calculating cdf's
import numpy as np
import scipy
import matplotlib.pyplot as plt
import seaborn as sns
x = np.random.randn(10000) # generate samples from normal distribution (discrete data)
norm_cdf = scipy.stats.norm.cdf(x) # calculate the cdf - also discrete
# plot the cdf
sns.lineplot(x=x, y=norm_cdf)
plt.show()
We can even print the first few values of the cdf to show they are discrete
print(norm_cdf[:10])
>>> array([0.39216484, 0.09554546, 0.71268696, 0.5007396 , 0.76484329,
0.37920836, 0.86010018, 0.9191937 , 0.46374527, 0.4576634 ])
The same method to calculate the cdf also works for multiple dimensions: we use 2d data below to illustrate
mu = np.zeros(2) # mean vector
cov = np.array([[1,0.6],[0.6,1]]) # covariance matrix
# generate 2d normally distributed samples using 0 mean and the covariance matrix above
x = np.random.multivariate_normal(mean=mu, cov=cov, size=1000) # 1000 samples
norm_cdf = scipy.stats.norm.cdf(x)
print(norm_cdf.shape)
>>> (1000, 2)
In the above examples, I had prior knowledge that my data was normally distributed, which is why I used scipy.stats.norm() - there are multiple distributions scipy supports. But again, you need to know how your data is distributed beforehand to use such functions. If you don't know how your data is distributed and you just use any distribution to calculate the cdf, you most likely will get incorrect results.

The empirical cumulative distribution function is a CDF that jumps exactly at the values in your data set. It is the CDF for a discrete distribution that places a mass at each of your values, where the mass is proportional to the frequency of the value. Since the sum of the masses must be 1, these constraints determine the location and height of each jump in the empirical CDF.
Given an array a of values, you compute the empirical CDF by first obtaining the frequencies of the values. The numpy function unique() is helpful here because it returns not only the frequencies, but also the values in sorted order. To calculate the cumulative distribution, use the cumsum() function, and divide by the total sum. The following function returns the values in sorted order and the corresponding cumulative distribution:
import numpy as np
def ecdf(a):
x, counts = np.unique(a, return_counts=True)
cusum = np.cumsum(counts)
return x, cusum / cusum[-1]
To plot the empirical CDF you can use matplotlib's plot() function. The option drawstyle='steps-post' ensures that jumps occur at the right place. However, you need to force a jump at the smallest data value, so it's necessary to insert an additional element in front of x and y.
import matplotlib.pyplot as plt
def plot_ecdf(a):
x, y = ecdf(a)
x = np.insert(x, 0, x[0])
y = np.insert(y, 0, 0.)
plt.plot(x, y, drawstyle='steps-post')
plt.grid(True)
plt.savefig('ecdf.png')
Example usages:
xvec = np.array([7,1,2,2,7,4,4,4,5.5,7])
plot_ecdf(xvec)
df = pd.DataFrame({'x':[7,1,2,2,7,4,4,4,5.5,7]})
plot_ecdf(df['x'])
with output:

For calculating CDF for array of discerete numbers:
import numpy as np
pdf, bin_edges = np.histogram(
data, # array of data
bins=500, # specify the number of bins for distribution function
density=True # True to return probability density function (pdf) instead of count
)
cdf = np.cumsum(pdf*np.diff(bins_edges))
Note that the return array pdf has the length of bins (500 here) and bin_edges has the length of bins+1 (501 here).
So, to calculate the CDF which is nothing but the area below the PDF distribution curve, we can simply calculate the cumulative sum of bin widths (np.diff(bins_edges)) times pdf using Numpy cumsum function

Here's an alternative pandas solution to calculating the empirical CDF, using pd.cut to sort the data into evenly spaced bins first, and then cumsum to compute the distribution.
def empirical_cdf(s: pd.Series, n_bins: int = 100):
# Sort the data into `n_bins` evenly spaced bins:
discretized = pd.cut(s, n_bins)
# Count the number of datapoints in each bin:
bin_counts = discretized.value_counts().sort_index().reset_index()
# Calculate the locations of each bin as just the mean of the bin start and end:
bin_counts["loc"] = (pd.IntervalIndex(bin_counts["index"]).left + pd.IntervalIndex(bin_counts["index"]).right) / 2
# Compute the CDF with cumsum:
return bin_counts.set_index("loc").iloc[:, -1].cumsum()
Below is an example use of the function to discretize the distribution of 10000 datapoints into 100 evenly spaced bins:
s = pd.Series(np.random.randn(10000))
cdf = empirical_cdf(s, n_bins=100)
fig, ax = plt.subplots()
ax.scatter(cdf.index, cdf.values)

import random
import numpy as np
import matplotlib.pyplot as plt
def get_discrete_cdf(values):
values = (values - np.min(values)) / (np.max(values) - np.min(values))
values_sort = np.sort(values)
values_sum = np.sum(values)
values_sums = []
cur_sum = 0
for it in values_sort:
cur_sum += it
values_sums.append(cur_sum)
cdf = [values_sums[np.searchsorted(values_sort, it)]/values_sum for it in values]
return cdf
rand_values = [np.random.normal(loc=0.0) for _ in range(1000)]
_ = plt.hist(rand_values, bins=20)
_ = plt.xlabel("rand_values")
_ = plt.ylabel("nums")
cdf = get_discrete_cdf(rand_values)
x_p = list(zip(rand_values, cdf))
x_p.sort(key=lambda it: it[0])
x = [it[0] for it in x_p]
y = [it[1] for it in x_p]
_ = plt.plot(x, y)
_ = plt.xlabel("rand_values")
_ = plt.ylabel("prob")

Related

How to calculate the probability between two numbers from a probability distribution in python

I've always thought it would be useful to calculate the probability between two values on a probability distribution. While there isn't a built-in way to do this using seaborn or matplotlib, I reckon it just takes some basic calculus, right? Here is some code I found from an article on this topic:
from sklearn.neighbors import KernelDensity
import numpy as np
x = np.random.normal(loc=0.0, scale=1.0, size=1000000)
kd = KernelDensity(kernel='gaussian', bandwidth=0.5).fit(np.array(x).reshape(-1, 1))
def get_probability(start_value, end_value, eval_points, kd):
# Number of evaluation points
N = eval_points
step = (end_value - start_value) / (N - 1) # Step size
x = np.linspace(start_value, end_value, N)[:, np.newaxis] # Generate values in the range
kd_vals = np.exp(kd.score_samples(x)) # Get PDF values for each x
probability = np.sum(kd_vals * step) # Approximate the integral of the PDF
return probability.round(4)
get_probability(x.mean() - x.std(), x.mean() + x.std(), 100, kd)
0.6338
This returns a probability that converges at 0.6338. This confused me, as the 68-95-99.7 rule states that the probability of a value being within one standard deviation of the mean in either direction should be 68%.
I decided to run another test by calculating the probability between the median and max of a randomly generated sample, figuring it should converge close to 50%:
x = np.random.randint(100, size=(1000000))
# sns.kdeplot(x) # this is how i'd generate a kdeplot of this data
kd = KernelDensity(kernel='gaussian', bandwidth=0.5).fit(np.array(x).reshape(-1, 1))
def get_probability(start_value, end_value, eval_points, kd):
# Number of evaluation points
N = eval_points
step = (end_value - start_value) / (N - 1) # Step size
x = np.linspace(start_value, end_value, N)[:, np.newaxis] # Generate values in the range
kd_vals = np.exp(kd.score_samples(x)) # Get PDF values for each x
probability = np.sum(kd_vals * step) # Approximate the integral of the PDF
return probability.round(4)
get_probability(np.median(x), x.max(), 100, kd)
0.4946
And it's pretty close. Am I missing something here? Why am I nearly 5 percentage points off from the 68-95-99.7 rule? Is this method of generating probabilities from a probability distribution wrong? Is there a better way to find the probability between two values from a probability distribution?
EDIT: Could you potentially calculate something by using the data generated from a kdeplot?
fig, ax = plt.subplots()
sns.kdeplot(x)
kdeline = ax.lines[0]
xs = kdeline.get_xdata()
ys = kdeline.get_ydata()
And implement np.interp() somehow?
More edits:
Using CDFs per #7shoe, I was able to get a way better (and correct) result for my normal distribution example:
from scipy.stats import norm
import numpy as np
np.random.seed(42)
x = np.random.normal(loc=0.0, scale=1.0, size=10000000)
norm.cdf(x.mean() + x.std()) - norm.cdf(x.mean() - x.std())
However, my curiosity is still piqued. Let's say we have a distribution that may or may not be normal. For example, let's look at Tom Brady's epa per pass from last season
import pandas as pd
import seaborn as sns
import random
import numpy as np
YEAR = 2021
data = pd.read_csv(
'https://github.com/nflverse/nflfastR-data/blob/master/data/play_by_play_' \
+ str(YEAR) + '.csv.gz?raw=True',compression='gzip', low_memory=False
)
df = data.loc[data.passer == 'T.Brady','epa'].copy()
# tom brady's distribution
sns.kdeplot(df)
sample_mean = []
for i in range(50):
y = np.random.choice(df, 500)
avg = np.mean(y)
sample_mean.append(avg)
# distribution of sampling means - can we assume this is normal and proceed with cdfs?
sns.kdeplot(sample_mean)
Could we use sampling means or even just bootstrap resampling methods to
Make a more "normal" distribution with sampling means in order to incorporate cdfs if the initial distribution doesn't quite appear normal (this, though, would be a distribution of means rather than individual samples. Is this not encouraged?)
or
If the distribution already resembles a normal distribution, simply use such resampling methods to create better parametric estimates?
Computing the probability p for some interval is not overly complicated. However, it might be tricky to combine the right tools to do so. In particular, since there are several statistical approaches to do so.
1. Probability theory
Given two numbers, let's call them lower and upper, what probability is enclosed in between them? If the cumulative distribution function (CDF) F is known, it is merely p = F(upper) - F(lower). Similarly, p coincides with the area enclosed by the probability density function(PDF) f's graph on the interval [lower, upper].
However, when the CDF/PDF is unknown, it constitutes a statistical question. In a nutshell, estimating the PDF f and computing the area its graph enclosed with the interval will do. But there are several paradigms and estimation procedures to obtain it.
1. Parametric estimation
One could assume that the data x is set of IID realizations of some normal distribution, either because of prior knowledge or convenience. Then, one just needs to estimate its parameters mu (aka scale) and sigma (aka standard deviation or scale). scipy.stats provides all we need in this setting. Moreover, it offers estimation procedures as well as pdf/cdf functions for various parametric distributions.
from scipy import stats
from matplotlib import pyplot as plt
lower, upper = 0.0, 2.0
x = [-0.804, -2.267, 1.55, -1.004, 3.173, -0.522, -0.231, 3.95, -0.574, -0.213, 1.333, 2.42, 1.879, 3.814]
# fit parameter
loc_hat, scale_hat = stats.norm.fit(x)
# probability
p = stats.norm.cdf(upper, loc=loc_hat, scale=scale_hat) - stats.norm.cdf(lower, loc=loc_hat, scale=scale_hat)
# plot
x_axis = np.linspace(-5, 7, 1000)
plt.title('1. Parametric Estimation', fontsize=18)
plt.plot(x_axis, stats.norm.pdf(x_axis, loc_hat, scale_hat))
plt.fill_between(x = np.arange(lower, upper, 0.01),
y1 = stats.norm.pdf(np.arange(lower, upper, 0.01), loc=loc_hat, scale=scale_hat) ,
facecolor='red',
alpha=0.35)
plt.text(x=0.1, y=0.1, s= 'p=' + str(round(p, 3)))
plt.show()
which yields
2. Non-parametric estimation
In the absence of a parametric assumption, various techniques exist to estimate the density directly (rather than identifying it by estimated parameters as seen above). Kernel density estimation is the most popular variant to do so. In this case, as alluded in the question, scikit-learn is an ideal tool. However, in the absence of an analytical CDF, we need to compute the area enclosed by the density's graph over the interval [lower, upper] directly.
In contrast to previous answers, I'd leave this to SciPy's numerical integration routines, e.g. scipy.inegrate.quad(). The advantage is that it is lightning-fast and can be applied to any function (beyond kernel density estimates). The resulting code is as follows
from sklearn.neighbors import KernelDensity
from scipy.integrate import quad
x = [-0.804, -2.267, 1.55, -1.004, 3.173, -0.522, -0.231, 3.95, -0.574, -0.213, 1.333, 2.42, 1.879, 3.814]
# fit density function
f_hat = KernelDensity(bandwidth=.9, kernel='gaussian').fit(np.array(x).reshape(-1, 1))
def f_pred(x):
'''wrapper function to compute probability'''
return np.exp(f_hat.score_samples(np.array(x).reshape(-1, 1)))[0]
p = quad(func=f_pred, a=lower, b=upper)
# plot
plt.title('2. Non-Parametric Estimation', fontsize=18)
xaxis = np.linspace(-5, 7, 1000)
plt.plot(x_axis, np.exp(f_hat.score_samples(xaxis.reshape(-1, 1))))
plt.fill_between(x = np.arange(lower, upper, 0.01),
y1 = np.exp(f_hat.score_samples(np.arange(lower, upper, 0.01).reshape(-1, 1))),
facecolor='red',
alpha=0.35)
plt.text(x=0.15, y=0.1, s= 'p=' + str(round(p[0], 3)))
plt.show()
and yields
I do see a bug in the get_probability function, but that bug causes it to compute a too high result - in np.sum(kd_vals * step), it's multiplying N sample values by a step with N-1 in the denominator, effectively resulting in an output a factor of N/(N-1) too high. (If they wanted to use a trapezoid rule computation for the integral, they should have divided the left and right endpoint values by 2 first.)
Other than that, the computation looks correct. The problem is that the model doesn't reflect the input distribution.
You're not modeling the distribution as a normal distribution. You're modeling it with a kernel density estimator with a Gaussian kernel, and the kernel bandwidth is very high relative to the scale of the distribution and the number of available samples. This results in the model being "flatter" than the actual distribution, with less of the probability concentrated in the center.

Remapping Points for a Growing Exponential Distribution

I am trying to take the data points from an array that currently range from 0 to 1 and remap them according to a few different distributions. For example, I am remapping the data to a decaying exponential (lambda * e^(-lambda * x)) with a standard deviation of .06 below.
# Import the packages I need
from pyDOE import lhs
from scipy.stats.distributions import norm
from scipy.stats.distributions import expon
import matplotlib.pyplot as plt
# CREATING THE LHC
n = 3 # The number of parameters to generate. Columns
samples = 40 # The number of sample points for each parameter. Rows
criterion = 'maximin' # The spacing between pararameters. maximin for our purposes
lhd = lhs(n, samples=samples, criterion=criterion) # Making the Latin-Hyper-Square
# print(lhd) # Show the array
# plt.hist(lhd, bins=20) # Plot the array
# Trying the transformation with exponentials
lhd1 = lhd # Create an identical array so I can compare and contrast
mean = [0]
stdv = [.06]
for i in range(n):
lhd1[:, i] = expon(loc=mean, scale=stdv).ppf(lhd1[:, i])
print(lhd1) # Show the Transformed array
plt.hist(lhd1,bins=20) # Plot the array
I would like to do the same thing but for growing exponentials(lambda * e^(lambda * x)). Everything I can find online and in the documentation speaks about the decaying exponential probability distribution, but there is almost nothing about a positive exponential.
Can I just alter the "expon" distribution? Is there another distribution that I should be using instead? Any advice is welcome.

How to plot the pdf and cdf for an arbitrary function in python? [duplicate]

The random module (http://docs.python.org/2/library/random.html) has several fixed functions to randomly sample from. For example random.gauss will sample random point from a normal distribution with a given mean and sigma values.
I'm looking for a way to extract a number N of random samples between a given interval using my own distribution as fast as possible in python. This is what I mean:
def my_dist(x):
# Some distribution, assume c1,c2,c3 and c4 are known.
f = c1*exp(-((x-c2)**c3)/c4)
return f
# Draw N random samples from my distribution between given limits a,b.
N = 1000
N_rand_samples = ran_func_sample(my_dist, a, b, N)
where ran_func_sample is what I'm after and a, b are the limits from which to draw the samples. Is there anything of that sort in python?
You need to use Inverse transform sampling method to get random values distributed according to a law you want. Using this method you can just apply inverted function
to random numbers having standard uniform distribution in the interval [0,1].
After you find the inverted function, you get 1000 numbers distributed according to the needed distribution this obvious way:
[inverted_function(random.random()) for x in range(1000)]
More on Inverse Transform Sampling:
http://en.wikipedia.org/wiki/Inverse_transform_sampling
Also, there is a good question on StackOverflow related to the topic:
Pythonic way to select list elements with different probability
This code implements the sampling of n-d discrete probability distributions. By setting a flag on the object, it can also be made to be used as a piecewise constant probability distribution, which can then be used to approximate arbitrary pdf's. Well, arbitrary pdfs with compact support; if you efficiently want to sample extremely long tails, a non-uniform description of the pdf would be required. But this is still efficient even for things like airy-point-spread functions (which I created it for, initially). The internal sorting of values is absolutely critical there to get accuracy; the many small values in the tails should contribute substantially, but they will get drowned out in fp accuracy without sorting.
class Distribution(object):
"""
draws samples from a one dimensional probability distribution,
by means of inversion of a discrete inverstion of a cumulative density function
the pdf can be sorted first to prevent numerical error in the cumulative sum
this is set as default; for big density functions with high contrast,
it is absolutely necessary, and for small density functions,
the overhead is minimal
a call to this distibution object returns indices into density array
"""
def __init__(self, pdf, sort = True, interpolation = True, transform = lambda x: x):
self.shape = pdf.shape
self.pdf = pdf.ravel()
self.sort = sort
self.interpolation = interpolation
self.transform = transform
#a pdf can not be negative
assert(np.all(pdf>=0))
#sort the pdf by magnitude
if self.sort:
self.sortindex = np.argsort(self.pdf, axis=None)
self.pdf = self.pdf[self.sortindex]
#construct the cumulative distribution function
self.cdf = np.cumsum(self.pdf)
#property
def ndim(self):
return len(self.shape)
#property
def sum(self):
"""cached sum of all pdf values; the pdf need not sum to one, and is imlpicitly normalized"""
return self.cdf[-1]
def __call__(self, N):
"""draw """
#pick numbers which are uniformly random over the cumulative distribution function
choice = np.random.uniform(high = self.sum, size = N)
#find the indices corresponding to this point on the CDF
index = np.searchsorted(self.cdf, choice)
#if necessary, map the indices back to their original ordering
if self.sort:
index = self.sortindex[index]
#map back to multi-dimensional indexing
index = np.unravel_index(index, self.shape)
index = np.vstack(index)
#is this a discrete or piecewise continuous distribution?
if self.interpolation:
index = index + np.random.uniform(size=index.shape)
return self.transform(index)
if __name__=='__main__':
shape = 3,3
pdf = np.ones(shape)
pdf[1]=0
dist = Distribution(pdf, transform=lambda i:i-1.5)
print dist(10)
import matplotlib.pyplot as pp
pp.scatter(*dist(1000))
pp.show()
And as a more real-world relevant example:
x = np.linspace(-100, 100, 512)
p = np.exp(-x**2)
pdf = p[:,None]*p[None,:] #2d gaussian
dist = Distribution(pdf, transform=lambda i:i-256)
print dist(1000000).mean(axis=1) #should be in the 1/sqrt(1e6) range
import matplotlib.pyplot as pp
pp.scatter(*dist(1000))
pp.show()
Here is a rather nice way of performing inverse transform sampling with a decorator.
import numpy as np
from scipy.interpolate import interp1d
def inverse_sample_decorator(dist):
def wrapper(pnts, x_min=-100, x_max=100, n=1e5, **kwargs):
x = np.linspace(x_min, x_max, int(n))
cumulative = np.cumsum(dist(x, **kwargs))
cumulative -= cumulative.min()
f = interp1d(cumulative/cumulative.max(), x)
return f(np.random.random(pnts))
return wrapper
Using this decorator on a Gaussian distribution, for example:
#inverse_sample_decorator
def gauss(x, amp=1.0, mean=0.0, std=0.2):
return amp*np.exp(-(x-mean)**2/std**2/2.0)
You can then generate sample points from the distribution by calling the function. The keyword arguments x_min and x_max are the limits of the original distribution and can be passed as arguments to gauss along with the other key word arguments that parameterise the distribution.
samples = gauss(5000, mean=20, std=0.8, x_min=19, x_max=21)
Alternatively, this can be done as a function that takes the distribution as an argument (as in your original question),
def inverse_sample_function(dist, pnts, x_min=-100, x_max=100, n=1e5,
**kwargs):
x = np.linspace(x_min, x_max, int(n))
cumulative = np.cumsum(dist(x, **kwargs))
cumulative -= cumulative.min()
f = interp1d(cumulative/cumulative.max(), x)
return f(np.random.random(pnts))
I was in a similar situation but I wanted to sample from a multivariate distribution, so, I implemented a rudimentary version of Metropolis-Hastings (which is an MCMC method).
def metropolis_hastings(target_density, size=500000):
burnin_size = 10000
size += burnin_size
x0 = np.array([[0, 0]])
xt = x0
samples = []
for i in range(size):
xt_candidate = np.array([np.random.multivariate_normal(xt[0], np.eye(2))])
accept_prob = (target_density(xt_candidate))/(target_density(xt))
if np.random.uniform(0, 1) < accept_prob:
xt = xt_candidate
samples.append(xt)
samples = np.array(samples[burnin_size:])
samples = np.reshape(samples, [samples.shape[0], 2])
return samples
This function requires a function target_density which takes in a data-point and computes its probability.
For details check-out this detailed answer of mine.
import numpy as np
import scipy.interpolate as interpolate
def inverse_transform_sampling(data, n_bins, n_samples):
hist, bin_edges = np.histogram(data, bins=n_bins, density=True)
cum_values = np.zeros(bin_edges.shape)
cum_values[1:] = np.cumsum(hist*np.diff(bin_edges))
inv_cdf = interpolate.interp1d(cum_values, bin_edges)
r = np.random.rand(n_samples)
return inv_cdf(r)
So if we give our data sample that has a specific distribution, the inverse_transform_sampling function will return a dataset with exactly the same distribution. Here the advantage is that we can get our own sample size by specifying it in the n_samples variable.

Chi-squared goodness of fit test in Python: way too low p-values, but the fitting function is correct

Despite having searched for two day in related questions, I have not really found an answer to this Problem yet...
In the following code, I generate n normally distributed random variables, which are then represented in a histogram:
import numpy as np
import matplotlib.pyplot as plt
n = 10000 # number of generated random variables
x = np.random.normal(0,1,n) # generate n random variables
# plot this in a non-normalized histogram:
plt.hist(x, bins='auto', normed=False)
# get the arrays containing the bin counts and the bin edges:
histo, bin_edges = np.histogram(x, bins='auto', normed=False)
number_of_bins = len(bin_edges)-1
After that, a curve fitting function and its parameters are found.
It is normally distributed with the parameters a1 and b1, and scaled with scaling_factor to meet the fact that the sample is unnormalized.
It indeed fits the histogram quite well:
import scipy as sp
a1, b1 = sp.stats.norm.fit(x)
scaling_factor = n*(x.max()-x.min())/number_of_bins
plt.plot(x_achse,scaling_factor*sp.stats.norm.pdf(x_achse,a1,b1),'b')
Here's the plot of the histogram with the fitting function in red.
After that, I want to test how well this function fits the histogram using the chi-squared test.
This test uses the observed values and the expected values in those points. To calculate the expected values, I first calculate the location of the middle of each bin, this information is contained in the array x_middle. I then calculate the value of the fitting function at the middle point of each bin, which gives the expected_value array:
observed_values = histo
bin_width = bin_edges[1] - bin_edges[0]
# array containing the middle point of each bin:
x_middle = np.linspace( bin_edges[0] + 0.5*bin_width,
bin_edges[0] + (0.5 + number_of_bins)*bin_width,
num = number_of_bins)
expected_values = scaling_factor*sp.stats.norm.pdf(x_middle,a1,b1)
Plugging this into the chisquare function of Scipy, I get p-values of approximately e-5 to e-15 order of magnitude, which tells me the fitting function does not describe the histogram:
print(sp.stats.chisquare(observed_values,expected_values,ddof=2))
But this is not true, the function fits the histogram very well!
Does anybody know where I made a mistake?
Thanks a lot!!
Charles
p.s.: I set the number of delta degrees of freedom to 2, because the 2 parameters a1 and b1 are estimated from the sample. I tried using other ddof, but the results were still as poor!
Your calculation of the end-point of the array x_middle is off by one; it should be:
x_middle = np.linspace(bin_edges[0] + 0.5*bin_width,
bin_edges[0] + (0.5 + number_of_bins - 1)*bin_width,
num=number_of_bins)
Note the extra - 1 in the second argument of linspace().
A more concise version is
x_middle = 0.5*(bin_edges[1:] + bin_edges[:-1])
A different (and possibly more accurate) approach to computing expected_values is to use the differences of the CDF, instead of approximating those differences using the PDF in the middle of each interval:
In [75]: from scipy import stats
In [76]: cdf = stats.norm.cdf(bin_edges, a1, b1)
In [77]: expected_values = n * np.diff(cdf)
With that calculation, I get the following result from the chi-squared test:
In [85]: stats.chisquare(observed_values, expected_values, ddof=2)
Out[85]: Power_divergenceResult(statistic=61.168393496775181, pvalue=0.36292223875686402)

probability density function from histogram in python to fit another histrogram

I have a question concerning fitting and getting random numbers.
Situation is as such:
Firstly I have a histogram from data points.
import numpy as np
"""create random data points """
mu = 10
sigma = 5
n = 1000
datapoints = np.random.normal(mu,sigma,n)
""" create normalized histrogram of the data """
bins = np.linspace(0,20,21)
H, bins = np.histogram(data,bins,density=True)
I would like to interpret this histogram as probability density function (with e.g. 2 free parameters) so that I can use it to produce random numbers AND also I would like to use that function to fit another histogram.
Thanks for your help
You can use a cumulative density function to generate random numbers from an arbitrary distribution, as described here.
Using a histogram to produce a smooth cumulative density function is not entirely trivial; you can use interpolation for example scipy.interpolate.interp1d() for values in between the centers of your bins and that will work fine for a histogram with a reasonably large number of bins and items. However you have to decide on the form of the tails of the probability function, ie for values less than the smallest bin or greater than the largest bin. You could give your distribution gaussian tails based on for example fitting a gaussian to your histogram), or any other form of tail appropriate to your problem, or simply truncate the distribution.
Example:
import numpy
import scipy.interpolate
import random
import matplotlib.pyplot as pyplot
# create some normally distributed values and make a histogram
a = numpy.random.normal(size=10000)
counts, bins = numpy.histogram(a, bins=100, density=True)
cum_counts = numpy.cumsum(counts)
bin_widths = (bins[1:] - bins[:-1])
# generate more values with same distribution
x = cum_counts*bin_widths
y = bins[1:]
inverse_density_function = scipy.interpolate.interp1d(x, y)
b = numpy.zeros(10000)
for i in range(len( b )):
u = random.uniform( x[0], x[-1] )
b[i] = inverse_density_function( u )
# plot both
pyplot.hist(a, 100)
pyplot.hist(b, 100)
pyplot.show()
This doesn't handle tails, and it could handle bin edges better, but it would get you started on using a histogram to generate more values with the same distribution.
P.S. You could also try to fit a specific known distribution described by a few values (which I think is what you had mentioned in the question) but the above non-parametric approach is more general-purpose.

Categories