I'm studying dynamical systems, particularly the logistic family g(x) = cx(1-x), and I need to iterate this function an arbitrary amount of times to understand its behavior. I have no problem iterating the function given a specific point x_0, but again, I'd like to graph the entire function and its iterations, not just a single point. For plotting a single function, I have this code:
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
def logplot(c, n = 10):
dt = .001
x = np.arange(0,1.001,dt)
y = c*x*(1-x)
plt.plot(x,y)
plt.axis([0, 1, 0, c*.25 + (1/10)*c*.25])
plt.show()
I suppose I could tackle this by the lengthy/daunting method of explicitly creating a list of the range of each iteration using something like the following:
def log(c,x0):
return c*x0*(1-x)
def logiter(c,x0,n):
i = 0
y = []
while i <= n:
val = log(c,x0)
y.append(val)
x0 = val
i += 1
return y
But this seems really cumbersome and I was wondering if there were a better way. Thanks
Some different options
This is really a matter of style. Your solution works and is not very difficult to understand. If you want to go on on those lines, then I would just tweak it a bit:
def logiter(c, x0, n):
y = []
x = x0
for i in range(n):
x = c*x*(1-x)
y.append(x)
return np.array(y)
The changes:
for loop is easier to read than a while loop
x0 is not used in the iteration (this adds one more variable, but it is mathematically easier to understand; x0 is a constant)
the function is written out, as it is a very simple one-liner (if it weren't, its name should be changed to be something else than log, which is very easy to confuse with logarithm)
the result is converted into a numpy array. (Just what I usually do, if I need to plot something)
In my opinion the function is now legible enough.
You might also take an object-oriented approach and create a logistic function object:
class Logistics():
def __init__(self, c, x0):
self.x = x0
self.c = c
def next_iter(self):
self.x = self.c * self.x * (1 - self.x)
return self.x
Then you may use this:
def logiter(c, x0, n):
l = Logistics(c, x0)
return np.array([ l.next_iter() for i in range(n) ])
Or if you may make it a generator:
def log_generator(c, x0):
x = x0
while True:
x = c * x * (1-x)
yield x
def logiter(c, x0, n):
l = log_generator(c, x0)
return np.array([ l.next() for i in range(n) ])
If you need performance and have large tables, then I suggest:
def logiter(c, x0, n):
res = np.empty((n, len(x0)))
res[0] = c * x0 * (1 - x0)
for i in range(1,n):
res[i] = c * res[i-1] * (1 - res[i-1])
return res
This avoids the slowish conversion into np.array and some copying of stuff around. The memory is allocated only once, and the expensive conversion from a list into an array is avoided.
(BTW, if you returned an array with the initial x0 as the first row, the last version would look cleaner. Now the first one has to be calculated separately if copying the vector around is desired to be avoided.)
Which one is best? I do not know. IMO, all are readable and justified, it is a matter of style. However, I speak only very broken and poor Pythonic, so there may be good reasons why still something else is better or why something of the above is not good!
Performance
About performance: With my machine I tried the following:
logiter(3.2, linspace(0,1,1000), 10000)
For the first three approaches the time is essentially the same, approximately 1.5 s. For the last approach (preallocated array) the run time is 0.2 s. However, if the conversion from a list into an array is removed, the first one runs in 0.16 s, so the time is really spent in the conversion procedure.
Visualization
I can think of two useful but quite different ways to visualize the function. You mention that you will have, say, 100 or 1000 different x0's to start with. You do not mention how many iterations you want to have, but maybe we will start with just 100. So, let us create an array with 100 different x0's and 100 iterations at c = 3.2.
data = logiter(3.6, np.linspace(0,1,100), 100)
In a way a standard method to visualize the function is draw 100 lines, each of which represents one starting value. That is easy:
import matplotlib.pyplot as plt
plt.plot(data)
plt.show()
This gives:
Well, it seems that all values end up oscillating somewhere, but other than that we have only a mess of color. This approach may be more useful, if you use a narrower range of values for x0:
data = logiter(3.6, np.linspace(0.8,0.81,100), 100)
you may color-code the starting values by e.g.:
color1 = np.array([1,0,0])
color2 = np.array([0,0,1])
for i,k in enumerate(np.linspace(0, 1, data.shape[1])):
plt.plot(data[:,i], '.', color=(1-k)*color1 + k*color2)
This plots the first columns (corresponding to x0 = 0.80) in red and the last columns in blue and uses a gradual color change in between. (Please note that the more blue a dot is, the later it is drawn, and thus blues overlap reds.)
However, it is possible to take a quite different approach.
data = logiter(3.6, np.linspace(0,1,1000), 50)
plt.imshow(data.T, cmap=plt.cm.bwr, interpolation='nearest', origin='lower',extent=[1,21,0,1], vmin=0, vmax=1)
plt.axis('tight')
plt.colorbar()
gives:
This is my personal favourite. I won't spoil anyone's joy by explaining it too much, but IMO this shows many peculiarities of the behaviour very easily.
Here's what I was aiming for; an indirect approach to understanding (by visualization) the behavior of initial conditions of the function g(c, x) = cx(1-x):
def jam(c, n):
x = np.linspace(0,1,100)
y = c*x*(1-x)
for i in range(n):
plt.plot(x, y)
y = c*y*(1-y)
plt.show()
Related
hello I am newbie at python and coding for the most part and I have 5 ordinary differential equations.(non-linear) that I want to model and have them plot. I have the parameters that are given, my main issue has been setting the independent variables to be a function of z. As well as setting the 'S' parameters to be a function of time since they vary depending on the time of year.
edited CODE
I've been able to have the code run with set parameters. I now wonder how I could take these parameters and make them behave at different times. The parameters that are set on this code are for a specific amount of "days" during the year. They are not meant to be consistent throughout. How could I implement time to have them be dependent on it?
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import math
from math import e
def func(z,t):
xh, xf, y, m, n = z
v1,v2,v3 = 0.05,0.06,0.07
B1,B2,B3 = 0.1984,0.1593,0.04959
d1,d2,d3 = 0.02272,0.02272,0.2
o1,o2 = 0.25,0.75
S1=S2=S3=0.005
S4=S5=0.3
p = 0
u = 500
k = 0.000075
a = 0.4784
r = 0.0165
K = 8000
i = 2
H = e**(-m*k)
g = ((xh+xf)**i)/((K**i)+((xh+xf)**i))
R = o1-(o2*(xf/(xh+xf+.002)))
P1 =(xh+xf)/(xh+y+xf+.002)
P2 = 1-((m+n)/(a*(xh+y+xf+.002)))
P3 = y/(xh+y+xf+.002)
dxhdt = (u*g*H)-(B1*(m*(xh/(xh+y+xf+.002))))-((d1+S1)*xh)-((v1*(m+n))*xh)-(xh*R)
dxfdt = (xh*R)-(B1*(m*(xf/(xh+y+xf+.002))))-((p+d2+S2)*xf)-(v2*(m+n)*xf)
dydt = (B1*(m*P1))-((d3+S3)*y)-((v3*(m+n))*y)
dmdt =(r*(m*P2))+(B2*(n*P3))-(B3*(m*P1))-(S4*m)
dndt = (r*(n*P2))-(B2*(n*P3))+(B3*(m*P1))-(S5*n)
return [dxhdt,dxfdt,dydt,dmdt,dndt]
z0=[13000,11000,0,0,0]
t = np.linspace(0,100,1000)
xx=odeint(func,z0,t)
plt.figure(1)
plt.plot(t,xx[:,0],'b-',label = 'xh')
plt.plot(t,xx[:,1],'y-',label = 'xf')
plt.plot(t,xx[:,2],'g-',label = 'y')
plt.plot(t,xx[:,3],'r-',label = 'm')
plt.plot(t,xx[:,4],'m-',label = 'n')
plt.legend()
plt.ylabel('POPULATION')
plt.xlabel('TIME')
plt.show()
I though about creating two different functions and looping the plot. How do you makes "days" of function of t? just declaring it is? I get error code "TypeError: 'float' object cannot be interpreted as an integer"
z0=[13000,11000,0,0,0]
t = np.linspace(0,91.25,1000)
xx=odeint(func,z0,t)
xy=odeint(func2,z0,t)
plt.figure(1)
for t in range(1,91.25):
plt.plot(t,xx[:,0],'b-',label = '$x_h$')
plt.plot(t,xx[:,1],'y-',label = '$x_f$')
plt.plot(t,xx[:,2],'g-',label = 'y')
plt.plot(t,xx[:,3],'r-',label = 'm')
plt.plot(t,xx[:,4],'m-',label = 'n')
for t in range(91.25,182.50):
plt.plot(t,xy[:,0],'b-',label = '$x_h$')
plt.plot(t,xy[:,1],'y-',label = '$x_f$')
plt.plot(t,xy[:,2],'g-',label = 'y')
plt.plot(t,xy[:,3],'r-',label = 'm')
plt.plot(t,xy[:,4],'m-',label = 'n')
plt.legend()
plt.ylabel('POPULATION')
plt.xlabel('TIME')
plt.show()
I get what you mean by an ODE, but please expand it so others that are not cognizant of mathematics can understand.
If you want these to be a function of z, then you must declare a function something() and assign the variables this function. This way, your values will change with respect to changes in z.
Also by convention, I don't recommend using this much of variable declarations. Abstract these as much as possible. As an alternative, you can declare similar variables in the same line, like
v1, v2, v3 = 0.5, 0.6, 0.7
etc. This will make it much more readable.
If you don't have any syntax error due to multiple assignments in the first line, I recommend change each of this to be a function of z. Divide your bigger function to smaller chunks, make each of this a different function. This way you can manipulate results directly and code will be much more readable.
You prefer the state vector to be composed as
xh, xf, y, m, n
This interpretation of the state vector then needs to be applied everywhere, which means that you have to change the first line of the ODE function to
xh, xf, y, m, n = z
Also check that your fractions are implemented as they were in paper, esp. P1 appears suspicious. But without the genesis of the equation I can not say that it is wrong as it is.
I have an assignment for my Applied Computer Science class in which we are to test the strength and qualities of an algorithm that tries to find the k:th highest value in a list. This is to be tested both for varying k:s (0, 1, 2, ..., k=N), and varying N:s where I have chosen k=0 and N (1, 2, ..., N). We're supposed to determine whether the algorithm ever makes more than pi*N comparisons as well as log2(N/2 - k)*N comparisons.
To find some clarity in this I made two plots, both having number of comparisons as the y-axis, and k and N respectively for the x-axis. Alongside the plots I want the functions y = pi*N and y = log2(N/2 - k)*N. The problem is I get a ValueError for the second function, most definitely when N/2 = k. I would still like to plot it in python and my question is how to get around this.
The rest of the code isn't really relevant.
My question is: how can I plot this function while circumventing it's undefined parts? I still want to illustrate the undefined part so I don't want to make exceptions in which a simplification is made.
def plotHelper(x, yA, yS, title, trials):
yPi = list()
yLogN = list()
for point in x:
yPi.append(point*math.pi)
yLogN.append((trials*math.log(trials/2 - point, 2)
plt.figure()
plt.title(title)
plt.plot(x, yA)
plt.plot(x, yS)
plt.plot(x, yPi)
plt.plot(x, yLogN)
plt.grid(True)
plt.legend(["Mean", "Standard Deviation", "y = pi * N"])
plt.ylabel("Comparisons")
plt.xlabel("k")
plt.show()
def plot():
choice = initiate()
yA, yS, trials = trialFunc(choice)
x = range(0, trials)
f_of_k = "Comparisons as a function of desired k (N elements)"
f_of_n = "Comparisons as a function of elements (k = 0)"
if choice:
title = f_of_k
else:
title = f_of_n
plotHelper(x, yA, yS, title, trials)
If you cannot represent a value of a function as a number, you can represent it as a Not-a-Number aka NaN. There's no ready-made constant for it, but you can easily produce that value:
NaN = float('NaN')
Now your function can go like this:
def function_to_plot(n): # A contrived example.
if abs(n) <= 1:
return NaN
return sqrt(n * n - sin(n) ** 2)
After that, matplotlib just works, it knows how to skip points that are NaNs.
If you just want to tabulate your function by hand, you can safely print NaNs using format for floats.
For a bit more detail, you can use float('+inf') and float('-inf') to represent infinities.
Also, just in case, Python works fine with complex numbers; import cmath and do things like assert cmath.sqrt(-2j) == (1-1j).
I'm trying to solve a differential equation numerically, and am writing an equation that will give me an array of the solution to each time point.
import numpy as np
import matplotlib.pylab as plt
pi=np.pi
sin=np.sin
cos=np.cos
sqrt=np.sqrt
alpha=pi/4
g=9.80665
y0=0.0
theta0=0.0
sina = sin(alpha)**2
second_term = g*sin(alpha)*cos(alpha)
x0 = float(raw_input('What is the initial x in meters?'))
x_vel0 = float(raw_input('What is the initial velocity in the x direction in m/s?'))
y_vel0 = float(raw_input('what is the initial velocity in the y direction in m/s?'))
t_f = int(raw_input('What is the maximum time in seconds?'))
r0 = x0
vtan = sqrt(x_vel0**2+y_vel0**2)
dt = 1000
n = range(0,t_f)
r_n = r0*(n*dt)
r_nm1 = r0((n-1)*dt)
F_r = ((vtan**2)/r_n)*sina-second_term
r_np1 = 2*r_n - r_nm1 + dt**2 * F_r
data = [r0]
for time in n:
data.append(float(r_np1))
print data
I'm not sure how to make the equation solve for r_np1 at each time in the range n. I'm still new to Python and would like some help understanding how to do something like this.
First issue is:
n = range(0,t_f)
r_n = r0*(n*dt)
Here you define n as a list and try to multiply the list n with the integer dt. This will not work. Pure Python is NOT a vectorized language like NumPy or Matlab where you can do vector multiplication like this. You could make this line work with
n = np.arange(0,t_f)
r_n = r0*(n*dt),
but you don't have to. Instead, you should move everything inside the for loop to do the calculation at each timestep. At the present point, you do the calculation once, then add the same only result t_f times to the data list.
Of course, you have to leave your initial conditions (which is a key part of ODE solving) OUTSIDE of the loop, because they only affect the first step of the solution, not all of them.
So:
# Initial conditions
r0 = x0
data = [r0]
# Loop along timesteps
for n in range(t_f):
# calculations performed at each timestep
vtan = sqrt(x_vel0**2+y_vel0**2)
dt = 1000
r_n = r0*(n*dt)
r_nm1 = r0*((n-1)*dt)
F_r = ((vtan**2)/r_n)*sina-second_term
r_np1 = 2*r_n - r_nm1 + dt**2 * F_r
# append result to output list
data.append(float(r_np1))
# do something with output list
print data
plt.plot(data)
plt.show()
I did not add any piece of code, only rearranged your lines. Notice that the part:
n = range(0,t_f)
for time in n:
Can be simplified to:
for time in range(0,t_f):
However, you use n as a time variable in the calculation (previously - and wrongly - defined as a list instead of a single number). Thus you can write:
for n in range(0,t_f):
Note 1: I do not know if this code is right mathematically, as I don't even know the equation you're solving. The code runs now and provides a result - you have to check if the result is good.
Note 2: Pure Python is not the best tool for this purpose. You should try some highly optimized built-ins of SciPy for ODE solving, as you have already got hints in the comments.
I want to plot an approximation of the number "pi" which is generated by a function of two uniformly distributed random variables. The goal is to show that with a higher sample draw the function value approximates "pi".
Here is my function for pi:
def pi(n):
x = rnd.uniform(low = -1, high = 1, size = n) #n = size of draw
y = rnd.uniform(low = -1, high = 1, size = n)
a = x**2 + y**2 <= 1 #1 if rand. draw is inside the unit cirlce, else 0
ac = np.count_nonzero(a) #count 1's
af = np.float(ac) #create float for precision
pi = (af/n)*4 #compute p dependent on size of draw
return pi
My problem:
I want to create a lineplot that plots the values from pi() dependent on n.
My fist attempt was:
def pipl(n):
for i in np.arange(1,n):
plt.plot(np.arange(1,n), pi(i))
print plt.show()
pipl(100)
which returns:
ValueError: x and y must have same first dimension
My seocond guess was to start an iterator:
def y(n):
n = np.arange(1,n)
for i in n:
y = pi(i)
print y
y(1000)
which results in:
3.13165829146
3.16064257028
3.06519558676
3.19839679359
3.13913913914
so the algorithm isn't far off, however i need the output as a data type which matplotlib can read.
I read:
http://docs.scipy.org/doc/numpy/reference/routines.array-creation.html#routines-array-creation
and tried tom implement the function like:
...
y = np.array(pi(i))
...
or
...
y = pi(i)
y = np.array(y)
...
and all the other functions that are available from the website. However, I can't seem to get my iterated y values into one that matplotlib can read.
I am fairly new to python so please be considerate with my simple request. I am really stuck here and can't seem to solve this issue by myself.
Your help is really appreciated.
You can try with this
def pipl(n):
plt.plot(np.arange(1,n), [pi(i) for i in np.arange(1,n)])
print plt.show()
pipl(100)
that give me this plot
If you want to stay with your iterable approach you can use Numpy's fromiter() to collect the results to an array. Like:
def pipl(n):
for i in np.arange(1,n):
yield pi(i)
n = 100
plt.plot(np.arange(1,n), np.fromiter(pipl(n), dtype='f32'))
But i think Numpy's vectorize would be even better in this case, it makes the resulting code much more readable (to me). With this approach you dont need the pipl function anymore.
# vectorize the function pi
pi_vec = np.vectorize(pi)
# define all n's
n = np.arange(1,101)
# and plot
plt.plot(n, pi_vec(n))
A little side note, naming a function pi which does not return a true pi seems kinda tricky to me.
What I'm trying to do is make a gaussian function graph. then pick random numbers anywhere in a space say y=[0,1] (because its normalized) & x=[0,200]. Then, I want it to ignore all values above the curve and only keep the values underneath it.
import numpy
import random
import math
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
from math import sqrt
from numpy import zeros
from numpy import numarray
variance = input("Input variance of the star:")
mean = input("Input mean of the star:")
x=numpy.linspace(0,200,1000)
sigma = sqrt(variance)
z = max(mlab.normpdf(x,mean,sigma))
foo = (mlab.normpdf(x,mean,sigma))/z
plt.plot(x,foo)
zing = random.random()
random = random.uniform(0,200)
import random
def method2(size):
ret = set()
while len(ret) < size:
ret.add((random.random(), random.uniform(0,200)))
return ret
size = input("Input number of simulations:")
foos = set(foo)
xx = set(x)
method = method2(size)
def undercurve(xx,foos,method):
Upper = numpy.where(foos<(method))
Lower = numpy.where(foos[Upper]>(method[Upper]))
return (xx[Upper])[Lower],(foos[Upper])[Lower]
When I try to print undercurve, I get an error:
TypeError: 'set' object has no attribute '__getitem__'
and I have no idea how to fix it.
As you can all see, I'm quite new at python and programming in general, but any help is appreciated and if there are any questions I'll do my best to answer them.
The immediate cause of the error you're seeing is presumably this line (which should be identified by the full traceback -- it's generally quite helpful to post that):
Lower = numpy.where(foos[Upper]>(method[Upper]))
because the confusingly-named variable method is actually a set, as returned by your function method2. Actually, on second thought, foos is also a set, so it's probably failing on that first. Sets don't support indexing with something like the_set[index]; that's what the complaint about __getitem__ means.
I'm not entirely sure what all the parts of your code are intended to do; variable names like "foos" don't really help like that. So here's how I might do what you're trying to do:
# generate sample points
num_pts = 500
sample_xs = np.random.uniform(0, 200, size=num_pts)
sample_ys = np.random.uniform(0, 1, size=num_pts)
# define distribution
mean = 50
sigma = 10
# figure out "normalized" pdf vals at sample points
max_pdf = mlab.normpdf(mean, mean, sigma)
sample_pdf_vals = mlab.normpdf(sample_xs, mean, sigma) / max_pdf
# which ones are under the curve?
under_curve = sample_ys < sample_pdf_vals
# get pdf vals to plot
x = np.linspace(0, 200, 1000)
pdf_vals = mlab.normpdf(x, mean, sigma) / max_pdf
# plot the samples and the curve
colors = np.array(['cyan' if b else 'red' for b in under_curve])
scatter(sample_xs, sample_ys, c=colors)
plot(x, pdf_vals)
Of course, you should also realize that if you only want the points under the curve, this is equivalent to (but much less efficient than) just sampling from the normal distribution and then randomly selecting a y for each sample uniformly from 0 to the pdf value there:
sample_xs = np.random.normal(mean, sigma, size=num_pts)
max_pdf = mlab.normpdf(mean, mean, sigma)
sample_pdf_vals = mlab.normpdf(sample_xs, mean, sigma) / max_pdf
sample_ys = np.array([np.random.uniform(0, pdf_val) for pdf_val in sample_pdf_vals])
It's hard to read your code.. Anyway, you can't access a set using [], that is, foos[Upper], method[Upper], etc are all illegal. I don't see why you convert foo, x into set. In addition, for a point produced by method2, say (x0, y0), it is very likely that x0 is not present in x.
I'm not familiar with numpy, but this is what I'll do for the purpose you specified:
def undercurve(size):
result = []
for i in xrange(size):
x = random()
y = random()
if y < scipy.stats.norm(0, 200).pdf(x): # here's the 'undercurve'
result.append((x, y))
return results