python how to check if a module exists without importing it [duplicate] - python

How can I know if a Python module exists, without importing it?
Importing something that might not exist (not what I want) results in:
try:
import eggs
except ImportError:
pass

TL;DR) Use importlib.util.find_spec(module_name) (Python 3.4+).
Python2: imp.find_module
To check if import can find something in Python 2, using imp:
import imp
try:
imp.find_module('eggs')
found = True
except ImportError:
found = False
To find dotted imports, you need to do more:
import imp
try:
spam_info = imp.find_module('spam')
spam = imp.load_module('spam', *spam_info)
imp.find_module('eggs', spam.__path__) # __path__ is already a list
found = True
except ImportError:
found = False
You can also use pkgutil.find_loader (more or less the same as the Python 3 part:
import pkgutil
eggs_loader = pkgutil.find_loader('eggs')
found = eggs_loader is not None
Python 3
Python 3 ≤ 3.3: importlib.find_loader
You should use importlib. I went about doing this like:
import importlib
spam_loader = importlib.find_loader('spam')
found = spam_loader is not None
My expectation being, if you can find a loader for it, then it exists. You can also be a bit more smart about it, like filtering out what loaders you will accept. For example:
import importlib
spam_loader = importlib.find_loader('spam')
# only accept it as valid if there is a source file for the module - no bytecode only.
found = issubclass(type(spam_loader), importlib.machinery.SourceFileLoader)
Python 3 ≥ 3.4: importlib.util.find_spec
In Python 3.4 importlib.find_loader Python documentation was deprecated in favour of importlib.util.find_spec. The recommended method is the importlib.util.find_spec. There are others like importlib.machinery.FileFinder, which is useful if you're after a specific file to load. Figuring out how to use them is beyond the scope of this.
import importlib
spam_spec = importlib.util.find_spec("spam")
found = spam_spec is not None
This also works with relative imports, but you must supply the starting package, so you could also do:
import importlib
spam_spec = importlib.util.find_spec("..spam", package="eggs.bar")
found = spam_spec is not None
spam_spec.name == "eggs.spam"
While I'm sure there exists a reason for doing this - I'm not sure what it would be.
Warning
When trying to find a submodule, it will import the parent module (for ALL of the above methods)!
food/
|- __init__.py
|- eggs.py
## __init__.py
print("module food loaded")
## eggs.py
print("module eggs")
were you then to run
>>> import importlib
>>> spam_spec = importlib.util.find_spec("food.eggs")
module food loaded
ModuleSpec(name='food.eggs', loader=<_frozen_importlib.SourceFileLoader object at 0x10221df28>, origin='/home/user/food/eggs.py')
Comments are welcome on getting around this
Acknowledgements
#rvighne for importlib
#lucas-guido for Python 3.3+ deprecating find_loader
#enpenax for pkgutils.find_loader behaviour in Python 2.7

Python 3 >= 3.6: ModuleNotFoundError
The ModuleNotFoundError has been introduced in Python 3.6 and can be used for this purpose:
try:
import eggs
except ModuleNotFoundError:
# Error handling
pass
The error is raised when a module or one of its parents cannot be found. So
try:
import eggs.sub
except ModuleNotFoundError as err:
# Error handling
print(err)
would print a message that looks like No module named 'eggs' if the eggs module cannot be found; but it would print something like No module named 'eggs.sub' if only the sub module couldn't be found, but the eggs package could be found.
See the documentation of the import system for more information on the ModuleNotFoundError.

After using yarbelk's response, I've made this so I don't have to import ìmp.
try:
__import__('imp').find_module('eggs')
# Make things with a supposed existing module
except ImportError:
pass
It is useful in Django's settings.py file, for example.

Python 2, without relying on ImportError
Until the current answer is updated, here is the way for Python 2
import pkgutil
import importlib
if pkgutil.find_loader(mod) is not None:
return importlib.import_module(mod)
return None
Why another answer?
A lot of answers make use of catching an ImportError. The problem with that is, that we cannot know what throws the ImportError.
If you import your existent module and there happens to be an ImportError in your module (e.g., typo on line 1), the result will be that your module does not exist.
It will take you quite the amount of backtracking to figure out that your module exists and the ImportError is caught and makes things fail silently.

go_as's answer as a one-liner:
python -c "help('modules');" | grep module

Use one of the functions from pkgutil, for example:
from pkgutil import iter_modules
def module_exists(module_name):
return module_name in (name for loader, name, ispkg in iter_modules())

I wrote this helper function:
def is_module_available(module_name):
if sys.version_info < (3, 0):
# python 2
import importlib
torch_loader = importlib.find_loader(module_name)
elif sys.version_info <= (3, 3):
# python 3.0 to 3.3
import pkgutil
torch_loader = pkgutil.find_loader(module_name)
elif sys.version_info >= (3, 4):
# python 3.4 and above
import importlib
torch_loader = importlib.util.find_spec(module_name)
return torch_loader is not None

Here is a way to check if a module is loaded from the command line:
Linux/UNIX script file method: make a file module_help.py:
#!/usr/bin/env python
help('modules')
Then make sure it's executable: chmod u+x module_help.py
And call it with a pipe to grep:
./module_help.py | grep module_name
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed on the console. If the argument is any other kind of object, a help page on the object is generated.
Interactive method: in the console, load python
>>> help('module_name')
If found, quit reading by typing q.
To exit the Python interpreter interactive session, press Ctrl + D
Windows script file method, also Linux/UNIX compatible, and better overall:
#!/usr/bin/env python
import sys
help(sys.argv[1])
Calling it from the command like:
python module_help.py site
Would output:
Help on module site:
NAME
site - Append module search paths for third-party packages to sys.path.
FILE
/usr/lib/python2.7/site.py
MODULE DOCS
http://docs.python.org/library/site
DESCRIPTION
...
:
And you'd have to press q to exit interactive mode.
Using it for an unknown module, e.g.,
python module_help.py lkajshdflkahsodf
Would output:
no Python documentation found for 'lkajshdflkahsodf'
and exit.

You could just write a little script that would try to import all the modules and tell you which ones are failing and which ones are working:
import pip
if __name__ == '__main__':
for package in pip.get_installed_distributions():
pack_string = str(package).split(" ")[0]
try:
if __import__(pack_string.lower()):
print(pack_string + " loaded successfully")
except Exception as e:
print(pack_string + " failed with error code: {}".format(e))
Output:
zope.interface loaded successfully
zope.deprecation loaded successfully
yarg loaded successfully
xlrd loaded successfully
WMI loaded successfully
Werkzeug loaded successfully
WebOb loaded successfully
virtualenv loaded successfully
...
A word of warning: this will try to import everything, so you'll see things like PyYAML failed with error code: No module named pyyaml, because the actual import name is just yaml. So as long as you know your imports, this should do the trick for you.

There isn't any way to reliably check if "dotted module" is importable without importing its parent package. Saying this, there are many solutions to problem "how to check if a Python module exists".
The below solution addresses the problem that an imported module can raise an ImportError even if it exists. We want to distinguish that situation from such in which the module does not exist.
Python 2:
import importlib
import pkgutil
import sys
def find_module(full_module_name):
"""
Returns module object if module `full_module_name` can be imported.
Returns None if module does not exist.
Exception is raised if (existing) module raises exception during its import.
"""
module = sys.modules.get(full_module_name)
if module is None:
module_path_tail = full_module_name.split('.')
module_path_head = []
loader = True
while module_path_tail and loader:
module_path_head.append(module_path_tail.pop(0))
module_name = ".".join(module_path_head)
loader = bool(pkgutil.find_loader(module_name))
if not loader:
# Double check if module realy does not exist
# (case: full_module_name == 'paste.deploy')
try:
importlib.import_module(module_name)
except ImportError:
pass
else:
loader = True
if loader:
module = importlib.import_module(full_module_name)
return module
Python 3:
import importlib
def find_module(full_module_name):
"""
Returns module object if module `full_module_name` can be imported.
Returns None if module does not exist.
Exception is raised if (existing) module raises exception during its import.
"""
try:
return importlib.import_module(full_module_name)
except ImportError as exc:
if not (full_module_name + '.').startswith(exc.name + '.'):
raise

In django.utils.module_loading.module_has_submodule:
import sys
import os
import imp
def module_has_submodule(package, module_name):
"""
check module in package
django.utils.module_loading.module_has_submodule
"""
name = ".".join([package.__name__, module_name])
try:
# None indicates a cached miss; see mark_miss() in Python/import.c.
return sys.modules[name] is not None
except KeyError:
pass
try:
package_path = package.__path__ # No __path__, then not a package.
except AttributeError:
# Since the remainder of this function assumes that we're dealing with
# a package (module with a __path__), so if it's not, then bail here.
return False
for finder in sys.meta_path:
if finder.find_module(name, package_path):
return True
for entry in package_path:
try:
# Try the cached finder.
finder = sys.path_importer_cache[entry]
if finder is None:
# Implicit import machinery should be used.
try:
file_, _, _ = imp.find_module(module_name, [entry])
if file_:
file_.close()
return True
except ImportError:
continue
# Else see if the finder knows of a loader.
elif finder.find_module(name):
return True
else:
continue
except KeyError:
# No cached finder, so try and make one.
for hook in sys.path_hooks:
try:
finder = hook(entry)
# XXX Could cache in sys.path_importer_cache
if finder.find_module(name):
return True
else:
# Once a finder is found, stop the search.
break
except ImportError:
# Continue the search for a finder.
continue
else:
# No finder found.
# Try the implicit import machinery if searching a directory.
if os.path.isdir(entry):
try:
file_, _, _ = imp.find_module(module_name, [entry])
if file_:
file_.close()
return True
except ImportError:
pass
# XXX Could insert None or NullImporter
else:
# Exhausted the search, so the module cannot be found.
return False

In case you know the location of file and want to check that the respective Python code file has that module or not, you can simply check via the astor package in Python. Here is a quick example:
"""
Check if a module function exists or not without importing a Python package file
"""
import ast
import astor
tree = astor.parse_file('handler.py')
method_to_check = 'handle'
for item in tree.body:
if isinstance(item, ast.FunctionDef):
if item.name == method_to_check:
print('method exists')
break

A simpler if statement from Ask Ubuntu, How do I check whether a module is installed in Python?:
import sys
print('eggs' in sys.modules)

You can also use importlib.util directly
import importlib.util
def module_exists_without_import(module_name):
spec = importlib.util.find_spec(module_name)
return spec is not None

Related

Loop through list of lists to generate modules to import [duplicate]

I'm working on a documentation (personal) for nested matplotlib (MPL) library, which differs from MPL own provided, by interested submodule packages. I'm writing Python script which I hope will automate document generation from future MPL releases.
I selected interested submodules/packages and want to list their main classes from which I'll generate list and process it with pydoc
Problem is that I can't find a way to instruct Python to load submodule from string. Here is example of what I tried:
import matplotlib.text as text
x = dir(text)
.
i = __import__('matplotlib.text')
y = dir(i)
.
j = __import__('matplotlib')
z = dir(j)
And here is 3 way comparison of above lists through pprint:
I don't understand what's loaded in y object - it's base matplotlib plus something else, but it lack information that I wanted and that is main classes from matplotlib.text package. It's top blue coloured part on screenshot (x list)
Please don't suggest Sphinx as different approach.
The __import__ function can be a bit hard to understand.
If you change
i = __import__('matplotlib.text')
to
i = __import__('matplotlib.text', fromlist=[''])
then i will refer to matplotlib.text.
In Python 3.1 or later, you can use importlib:
import importlib
i = importlib.import_module("matplotlib.text")
Some notes
If you're trying to import something from a sub-folder e.g. ./feature/email.py, the code will look like importlib.import_module("feature.email")
Before Python 3.3 you could not import anything if there was no __init__.py in the folder with file you were trying to import (see caveats before deciding if you want to keep the file for backward compatibility e.g. with pytest).
importlib.import_module is what you are looking for. It returns the imported module.
import importlib
# equiv. of your `import matplotlib.text as text`
text = importlib.import_module('matplotlib.text')
You can thereafter access anything in the module as text.myclass, text.myfunction, etc.
spent some time trying to import modules from a list, and this is the thread that got me most of the way there - but I didnt grasp the use of ___import____ -
so here's how to import a module from a string, and get the same behavior as just import. And try/except the error case, too. :)
pipmodules = ['pycurl', 'ansible', 'bad_module_no_beer']
for module in pipmodules:
try:
# because we want to import using a variable, do it this way
module_obj = __import__(module)
# create a global object containging our module
globals()[module] = module_obj
except ImportError:
sys.stderr.write("ERROR: missing python module: " + module + "\n")
sys.exit(1)
and yes, for python 2.7> you have other options - but for 2.6<, this works.
Apart from using the importlib one can also use exec method to import a module from a string variable.
Here I am showing an example of importing the combinations method from itertools package using the exec method:
MODULES = [
['itertools','combinations'],
]
for ITEM in MODULES:
import_str = "from {0} import {1}".format(ITEM[0],', '.join(str(i) for i in ITEM[1:]))
exec(import_str)
ar = list(combinations([1, 2, 3, 4], 2))
for elements in ar:
print(elements)
Output:
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
Module auto-install & import from list
Below script works fine with both submodules and pseudo submodules.
# PyPI imports
import pkg_resources, subprocess, sys
modules = {'lxml.etree', 'pandas', 'screeninfo'}
required = {m.split('.')[0] for m in modules}
installed = {pkg.key for pkg in pkg_resources.working_set}
missing = required - installed
if missing:
subprocess.check_call([sys.executable, '-m', 'pip', 'install', '--upgrade', 'pip'])
subprocess.check_call([sys.executable, '-m', 'pip', 'install', *missing])
for module in set.union(required, modules):
globals()[module] = __import__(module)
Tests:
print(pandas.__version__)
print(lxml.etree.LXML_VERSION)
I developed these 3 useful functions:
def loadModule(moduleName):
module = None
try:
import sys
del sys.modules[moduleName]
except BaseException as err:
pass
try:
import importlib
module = importlib.import_module(moduleName)
except BaseException as err:
serr = str(err)
print("Error to load the module '" + moduleName + "': " + serr)
return module
def reloadModule(moduleName):
module = loadModule(moduleName)
moduleName, modulePath = str(module).replace("' from '", "||").replace("<module '", '').replace("'>", '').split("||")
if (modulePath.endswith(".pyc")):
import os
os.remove(modulePath)
module = loadModule(moduleName)
return module
def getInstance(moduleName, param1, param2, param3):
module = reloadModule(moduleName)
instance = eval("module." + moduleName + "(param1, param2, param3)")
return instance
And everytime I want to reload a new instance I just have to call getInstance() like this:
myInstance = getInstance("MyModule", myParam1, myParam2, myParam3)
Finally I can call all the functions inside the new Instance:
myInstance.aFunction()
The only specificity here is to customize the params list (param1, param2, param3) of your instance.
You can also use exec built-in function that execute any string as a Python code.
In [1]: module = 'pandas'
...: function = 'DataFrame'
...: alias = 'DF'
In [2]: exec(f"from {module} import {function} as {alias}")
In [3]: DF
Out[3]: pandas.core.frame.DataFrame
For me this was the most readable way to solve my problem.

Package import failure in Python 3.5

I have the following folder structure:
/main
main.py
/io
__init__.py
foo.py
In Python 2.7 I would write the following in main.py:
import io.foo
or
from io.foo import *
wheareas in Python 3.5 I get an import error:
Traceback (most recent call last):
File "./main.py", line 6, in <module>
import io.foo
ImportError: No module named 'io.foo'; 'io' is not a package
I couldn't find any help so far.
io is a built-in module. Don't name your local packages the same as a built-in module.
While #ErikCederstrand's answer is correct and probably sufficient for you, I was curious as to why it failed so I went digging through cpython's source. So for any future visitors, here's what I found.
The function where it's failing is here: https://github.com/python/cpython/blob/3.4/Lib/importlib/_bootstrap.py#L2207
On line 2209, it checks to see if the parent module has been loaded:
parent = name.rpartition('.')[0] # Value of 'io'
Since it has loaded the builtin io module, it continues on like normal. After the if returns false, it goes on to assign parent module which again is set to "io":
if name in sys.modules:
return sys.modules[name]
parent_module = sys.modules[parent]
The next lines are what cause the failure, and it's because builtin modules (io anyway) don't have a __path__ instance variable. The exception you see raised here are ultimately what you're seeing when you run it:
try:
path = parent_module.__path__
except AttributeError:
msg = (_ERR_MSG + '; {!r} is not a package').format(name, parent)
raise ImportError(msg, name=name)
If you change your module name like Erik says, then step through this whole process, you can see the call to get parent_module.__path__ works like it's supposed to and everything's happy.
So, tldr: you've tricked the import system into thinking it's already loaded your custom module, but when it goes to try and use it like a custom module it fails because it's actually the builtin io.
EDIT: It looks like __path__ is set here after it goes through a normal import process in init_module_attrs:
if _override or getattr(module, '__path__', None) is None:
if spec.submodule_search_locations is not None:
try:
module.__path__ = spec.submodule_search_locations
except AttributeError:
pass

From *folder_name* import *variable* Python 3.4.2

File setup:
...\Project_Folder
...\Project_Folder\Project.py
...\Project_folder\Script\TestScript.py
I'm attempting to have Project.py import modules from the folder Script based on user input.
Python Version: 3.4.2
Ideally, the script would look something like
q = str(input("Input: "))
from Script import q
However, python does not recognize q as a variable when using import.
I've tried using importlib, however I cannot figure out how to import from the Script folder mentioned above.
import importlib
q = str(input("Input: "))
module = importlib.import_module(q, package=None)
I'm not certain where I would implement the file path.
Repeat of my answer originally posted at How to import a module given the full path?
as this is a Python 3.4 specific question:
This area of Python 3.4 seems to be extremely tortuous to understand, mainly because the documentation doesn't give good examples! This was my attempt using non-deprecated modules. It will import a module given the path to the .py file. I'm using it to load "plugins" at runtime.
def import_module_from_file(full_path_to_module):
"""
Import a module given the full path/filename of the .py file
Python 3.4
"""
module = None
try:
# Get module name and path from full path
module_dir, module_file = os.path.split(full_path_to_module)
module_name, module_ext = os.path.splitext(module_file)
# Get module "spec" from filename
spec = importlib.util.spec_from_file_location(module_name,full_path_to_module)
module = spec.loader.load_module()
except Exception as ec:
# Simple error printing
# Insert "sophisticated" stuff here
print(ec)
finally:
return module
# load module dynamically
path = "<enter your path here>"
module = import_module_from_file(path)
# Now use the module
# e.g. module.myFunction()
I did this by defining the entire import line as a string, formatting the string with q and then using the exec command:
imp = 'from Script import %s' %q
exec imp

Importing modules globally

I would like to provide users with a python script which would import some modules for them and then drop to the python interpreter with the imported modules available at that level. I have some code which I thought might work, but it does not seem to:
module_list = ['module_a','module_b']
# Import our common modules
for module in module_list:
try:
print "Importing: {0}".format(module)
exec("import {0}".format(module))
except:
print "FYI we failed importing {0}. It will not be available for you to use".format(module)
So when the script is done it will drop to the python module where the user can do:
>>> module_a.run()
You can use code.InteractiveConsole() and pass a locals dictionary containing the local context in which the console will run. By storing the modules in there you can easily make them available to the interactive shell.
I wouldn't do this, if I were you.. but
import imp
module_list = ['module_a','module_b']
for name in module_list:
try:
module_info = imp.find_module(name)
globals()[name] = imp.load_module(name, *module_info)
except:
"Import error: %s" %name
save above code file, for example imptest.py and load it with -i switch, as
python -i imptest.py
Against the advise of many comments I have read on touching __main__, I did it.
So here is the code that ended up working for me:
module_list = ['module_a','module_b']
# Import our modules
for name in module_list:
try:
__import__(name)
if name in sys.modules:
setattr(__main__, name, sys.modules[name])
except:
print "FYI we failed importing {0}. It will not be available for you to use".format(name)

Checking for module availability programmatically in Python?

given a list of module names (e.g. mymods = ['numpy', 'scipy', ...]) how can I check if the modules are available?
I tried the following but it's incorrect:
for module_name in mymods:
try:
import module_name
except ImportError:
print "Module %s not found." %(module_name)
thanks.
You could use both the __import__ function, as in #Vinay's answer, and a try/except, as in your code:
for module_name in mymods:
try:
__import__(module_name)
except ImportError:
print "Module %s not found." %(module_name)
Alternatively, to just check availability but without actually loading the module, you can use standard library module imp:
import imp
for module_name in mymods:
try:
imp.find_module(module_name)
except ImportError:
print "Module %s not found." %(module_name)
this can be substantially faster if you do only want to check for availability, not (yet) load the modules, especially for modules that take a while to load. Note, however, that this second approach only specifically checks that the modules are there -- it doesn't check for the availability of any further modules that might be required (because the modules being checked try to import other modules when they load). Depending on your exact specs, this might be a plus or a minus!-)
Use the __import__ function:
>>> for mname in ('sys', 'os', 're'): __import__(mname)
...
<module 'sys' (built-in)>
<module 'os' from 'C:\Python\lib\os.pyc'>
<module 're' from 'C:\Python\lib\re.pyc'>
>>>
Nowadays, more than 10 years after the question, in Python >= 3.4, the way to go is using importlib.util.find_spec:
import importlib
spec = importlib.util.find_spec('path.to.module')
if spam:
print('module can be imported')
This mechanism is them preferred over imp.find_module:
import importlib.util
import sys
# this is optional set that if you what load from specific directory
moduledir="d:\\dirtest"
```python
try:
spec = importlib.util.find_spec('path.to.module', moduledir)
if spec is None:
print("Import error 0: " + " module not found")
sys.exit(0)
toolbox = spec.loader.load_module()
except (ValueError, ImportError) as msg:
print("Import error 3: "+str(msg))
sys.exit(0)
print("load module")
For old Python versions also look how to check if a python module exists without importing it

Categories