Merge after groupby - python

I'm having trouble using pd.merge after groupby. Here's my hypothetical:
import pandas as pd
from pandas import DataFrame
import numpy as np
df1 = DataFrame({'key': [1,1,2,2,3,3],
'var11': np.random.randn(6),
'var12': np.random.randn(6)})
df2 = DataFrame({'key': [1,2,3],
'var21': np.random.randn(3),
'var22': np.random.randn(3)})
#group var11 in df1 by key
grouped = df1['var11'].groupby(df1['key'])
# calculate the mean of var11 by key
grouped = grouped.mean()
print grouped
key
1 1.399430
2 0.568216
3 -0.612843
dtype: float64
print grouped.index
Int64Index([1, 2, 3], dtype='int64')
print df2
key var21 var22
0 1 -0.381078 0.224325
1 2 0.836719 -0.565498
2 3 0.323412 -1.616901
df2 = pd.merge(df2, grouped, left_on = 'key', right_index = True)
At this point, I get IndexError: list index out of range.
When using groupby, the grouping variable ('key' in this example) becomes the index for the resultant series, which is why I specify 'right_index = True'. I've tried other syntax without success. Any advice?

I think you should just do this:
In [140]:
df2 = pd.merge(df2,
pd.DataFrame(grouped, columns=['mean']),
left_on='key',
right_index=True)
print df2
key var21 var22 mean
0 1 0.324476 0.701254 0.400313
1 2 -1.270500 0.055383 -0.293691
2 3 0.804864 0.566747 0.628787
[3 rows x 4 columns]
The reason it didn't work is that grouped is a Series not a DataFrame

Related

Sum all combinations of 2 columns from 2 dataframes

I have 2 dataframes df1 and df2 (same index and number of rows), and I would like to create a new dataframe which columns are the sum of all combinations of 2 columns from df1 and df2, example :
input :
import pandas as pd
df1 = pd.DataFrame([[10,20]])
df2 = pd.DataFrame([[1,2]])
output :
import pandas as pd
df3 = pd.DataFrame([[11,12,21,22]])
Use MultiIndex.from_product for all combinations and sum DataFrames with repeated values by DataFrame.reindex:
mux = pd.MultiIndex.from_product([df1.columns, df2.columns])
df = df1.reindex(mux, level=0, axis=1) + df2.reindex(mux, level=1, axis=1)
df.columns = range(len(df.columns))
IIUC you can do this with numpy.
>>> import numpy as np
>>> n = df1.shape[1]
>>> pd.DataFrame(df1.values.repeat(n) + np.tile(df2.values, n))
0 1 2 3
0 11 12 21 22

How can I join 2 pandas dataframe using left join?

I have 2 dataframes which I need to join using left join. In sql I have the query as
SELECT A.* INTO NewTable FROM A LEFT JOIN B ON A.id=B.id WHERE B.id IS NULL;
I have the 2 dataframes as:
df1:
id
name
1
one
2
two
3
three
4
four
df2:
id
2
3
What I am expecting is:
id
name
1
one
4
four
What I have tried?
common = df1.merge(df2, on=['id', 'id'])
result = df1[~df1.id.isin(common.id)]
I get more results in this then what the query returns. Any help is appreciated.
you have the right solution,only you do interpret the results wrong.
This will give you the result without index
import pandas as pd
d = {'id': [1, 2,3,4], 'col2': ['one','two','three','four']}
d1 = {'id': [2,3]}
df1 = pd.DataFrame(data=d)
df2 = pd.DataFrame(data=d1)
result = df1[~df1.id.isin(df2.id)]
print(result.to_string(index=False))
You can use left join with .merge() with indicator= parameter turned on. Then, filter the indicator values equal to "left_only" with .query(), as follows:
df1.merge(df2, on='id', how='left', indicator='ind').query('ind == "left_only"')
Result:
id name ind
0 1 one left_only
3 4 four left_only
Optionally, you can remove the indicator column, as follows:
df1.merge(df2, on='id', how='left', indicator='ind').query('ind == "left_only"').drop('ind', axis=1)
Result:
id name
0 1 one
3 4 four
Try:
print(df1[~df1["id"].isin(df2["id"])])
Prints:
id name
0 1 one
3 4 four
import pandas as pd
import numpy as np
df1 = pd.DataFrame(np.array([[1, "one"], [2, "two"], [3, "three"], [4, "four"]]),
columns=['id', 'name '])
df2 = pd.DataFrame(np.array([[1], [2]]),
columns=['id'])
df1.drop(df2['id'], axis=0,inplace=True)
df1

concat by taking the values from column

i have a list ['df1', 'df2'] where i have stores some dataframes which have been filtered on few conditions. Then i have converted this list to dataframe using
df = pd.DataFrame(list1)
now the df has only one column
0
df1
df2
sometimes it may also have
0
df1
df2
df3
i wanted to concate all these my static code is
df_new = pd.concat([df1,df2],axis=1) or
df_new = pd.concat([df1,df2,df3],axis=1)
how can i make it dynamic (without me specifying as df1,df2) so that it takes the values and concat it.
Using array to add the lists and data frames :
import pandas as pd
lists = [[1,2,3],[4,5,6]]
arr = []
for l in lists:
new_df = pd.DataFrame(l)
arr.append(new_df)
df = pd.concat(arr,axis=1)
df
Result :
0 0
0 1 4
1 2 5
2 3 6

Mapping to dataframes based on one column

I have a dataframe (df1) of 5 columns (a,b,c,d,e) with 6 rows and another dataframe (df2) with 2 columns (a,z) with 20000 rows.
How do I map and merge those dataframes using ('a') value.
So that df1 having 5 columns should map values in df2 having 2 columns with 'a' value and return a new df which has 6 columns (5 from df1 and 1 mapped row in df2) with 6 rows.
By using pd.concat:
import pandas as pd
import numpy as np
columns_df1 = ['a','b','c','d']
columns_df2 = ['a','z']
data_df1 = [['abc','def','ghi','xyz'],['abc2','def2','ghi2','xyz2'],['abc3','def3','ghi3','xyz3'],['abc4','def4','ghi4','xyz4']]
data_df2 = [['a','z'],['a2','z2']]
df_1 = pd.DataFrame(data_df1, columns=columns_df1)
df_2 = pd.DataFrame(data_df2, columns=columns_df2)
print(df_1)
print(df_2)
frames = [df_1, df_2]
print (pd.concat(frames))
OUTPUT:
Edit:
To replace NaN values you could use pandas.DataFrame.fillna:
print (pd.concat(frames).fillna("NULL"))
Replcae NULL with anything you want e.g. 0
OUTPUT:

Pandas merge on part of two columns

I have two dataframes with a common column called 'upc' as such:
df1:
upc
23456793749
78907809834
35894796324
67382808404
93743008374
df2:
upc
4567937
9078098
8947963
3828084
7430083
Notice that df2 'upc' values are the innermost 7 values of df1 'upc' values.
Note that both df1 and df2 have other columns not shown above.
What I want to do is do an inner merge on 'upc' but only on the innermost 7 values. How can I achieve this?
1) Create both dataframes and convert to string type.
2) pd.merge the two frames, but using the left_on keyword to access the inner 7 characters of your 'upc' series
df1 = pd.DataFrame(data=[
23456793749,
78907809834,
35894796324,
67382808404,
93743008374,], columns = ['upc1'])
df1 = df1.astype(str)
df2 = pd.DataFrame(data=[
4567937,
9078098,
8947963,
3828084,
7430083,], columns = ['upc2'])
df2 = df2.astype(str)
pd.merge(df1, df2, left_on=df1['upc1'].astype(str).str[2:-2], right_on='upc2', how='inner')
Out[5]:
upc1 upc2
0 23456793749 4567937
1 78907809834 9078098
2 35894796324 8947963
3 67382808404 3828084
4 93743008374 7430083
Using str.extact, match all items in df1 with df2, then we using the result as merge key merge with df2
df1['keyfordf2']=df1.astype(str).upc.str.extract(r'({})'.format('|'.join(df2.upc.astype(str).tolist())),expand=True).fillna(False)
df1.merge(df2.astype(str),left_on='keyfordf2',right_on='upc')
Out[273]:
upc_x keyfordf2 upc_y
0 23456793749 4567937 4567937
1 78907809834 9078098 9078098
2 35894796324 8947963 8947963
3 67382808404 3828084 3828084
4 93743008374 7430083 7430083
You could make a new column in df1 and merge on that.
import pandas as pd
df1= pd.DataFrame({'upc': [ 23456793749, 78907809834, 35894796324, 67382808404, 93743008374]})
df2= pd.DataFrame({'upc': [ 4567937, 9078098, 8947963, 3828084, 7430083]})
df1['upc_old'] = df1['upc'] #in case you still need the old (longer) upc column
df1['upc'] = df1['upc'].astype(str).str[2:-2].astype(int)
merged_df = pd.merge(df1, df2, on='upc')

Categories