Changing axis without changing data (Python) - python

How could I plot some data, remove the axis created by that data, and replace them with axis of a different scale?
Say I have something like:
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
plt.xlim([0,5])
plt.ylim([0,5])
plt.plot([0,1,2,3,4,5])
plt.show()
This plots a line in a 5x5 plot with ranges from 0 to 5 on both axis. I would like to remove the 0 to 5 axis and say replace it with a -25 to 25 axis. This would just change the axis, but I don't want to move any of the data, i.e., it looks identical to the original plot just with different axis. I realize this can be simply done by shifting the data, but I do not wish to alter the data.

You could use plt.xticks to find the location of the labels, and then set the labels to 5 times the location values. The underlying data does not change; only the labels.
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
plt.xlim([0,5])
plt.ylim([0,5])
plt.plot([0,1,2,3,4,5])
locs, labels = plt.xticks()
labels = [float(item)*5 for item in locs]
plt.xticks(locs, labels)
plt.show()
yields
Alternatively, you could change the ticker formatter:
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
N = 128
fig = plt.figure()
ax = fig.add_subplot(111)
plt.plot(range(N+1))
plt.xlim([0,N])
plt.ylim([0,N])
ax.xaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: ('%g') % (x * 5.0)))
plt.show()

Related

How to make axes ticks in between grid lines in matplotlib?

In my simple example below, how to make x-axis tick values to appear between grids?
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(1)
x = range(10)
y = np.random.random(10)
plt.plot(x,y)
plt.xticks(x)
plt.grid(True)
plt.show()
The following make ticks to be where I want but the grid lines also moves.
np.random.seed(1)
x = range(10)
y = np.random.random(10)
plt.plot(x,y)
plt.xticks(x)
plt.grid(True)
plt.xticks(np.arange(10)+0.5, x)
plt.show()
I would like the result to be:
You can set the minor ticks so that only 1 minor tick appears inbetween your major ticks. This is done using matplotlib.ticker.AutoMinorLocator. Then, set the gridlines to only appear at the minor ticks. You also need to shift your xtick positions by 0.5:
from matplotlib.ticker import AutoMinorLocator
np.random.seed(10)
x = range(10)
y = np.random.random(10)
plt.plot(x,y)
plt.xticks(np.arange(0.5,10.5,1), x)
plt.xlim(0,9.5)
plt.ylim(0,1)
minor_locator = AutoMinorLocator(2)
plt.gca().xaxis.set_minor_locator(minor_locator)
plt.grid(which='minor')
plt.show()
Edit: I'm having trouble getting two AutoMinorLocators to work on the same axis. When trying to add in another one for the y axis, the minor ticks get messed up. A work around I have found is to manually set the locations of the minor ticks using a matplotlib.ticker.FixedLocator and passing in the locations of the minor ticks.
from matplotlib.ticker import AutoMinorLocator
from matplotlib.ticker import FixedLocator
np.random.seed(10)
x = range(10)
y = np.random.random(10)
plt.plot(x,y)
plt.xticks(np.arange(0.5,10.5,1), x)
plt.yticks([0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95,1.05], [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])
plt.xlim(0,9.5)
plt.ylim(0,1.05)
minor_locator1 = AutoMinorLocator(2)
minor_locator2 = FixedLocator([0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1])
plt.gca().xaxis.set_minor_locator(minor_locator1)
plt.gca().yaxis.set_minor_locator(minor_locator2)
plt.grid(which='minor')
plt.show()
If you use plt.subplots for figure creation, you get an axes object, too:
f, ax = plt.subplots(1)
This one has a better Interface for adjusting grid/ticks. Then you can give explicitly x-values for your data shifted 0.5 to the left. The same do with the minor ticks and let the grid be shown at the minor ticks:
f, ax = plt.subplots(1)
ax.set_xticks(range(10))
x_values = np.arange(10) - .5
ax.plot(x_values, np.random.random(10))
ax.set_xticks(x_values, minor=True)
ax.grid(which='minor')

Matplotlib Colorbar change ticks labels and locators

I would like to change the ticks locators and labels in the colorbar of the following plot.
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import dates as mdates
import numpy as np
# fontdict to control style of text and labels
font = {'family': 'serif',
'color': (0.33, 0.33, 0.33),
'weight': 'normal',
'size': 18,
}
num = 1000
x = np.linspace(-4,4,num) + (0.5 - np.random.rand(num))
y = np.linspace(-2,2,num) + (0.5 - np.random.rand(num))
t = pd.date_range('1/1/2014', periods=num)
# make plot with vertical (default) colorbar
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(6, 6))
ax.set_title('Scatter plot', fontdict=font)
# plot data
s = ax.scatter(x = x, y = y,
s=50, c=t, marker='o',
cmap=plt.cm.rainbow)
# plot settings
ax.grid(True)
ax.set_aspect('equal')
ax.set_ylabel('Northing [cm]', fontdict=font)
ax.set_xlabel('Easting [cm]', fontdict=font)
# add colorbar
cbar = fig.colorbar(mappable=s, ax=ax)
cbar.set_label('Date')
# change colobar ticks labels and locators
????
The colorbar illustrates the time dependency. Thus, I would like to change the ticks from their numerical values (nanoseconds?) to more sensible date format like months and year (e.g., %b%Y or %Y-%m) where the interval could be for example 3 or 6 months. Is that possible?
I tried to play unsuccessfully with cbar.formatter, cbar.locator and mdates.
You can keep the same locators as proposed by the colorbar function but change the ticklabels in order to print the formatted date as follows:
# change colobar ticks labels and locators
cbar.set_ticks([s.colorbar.vmin + t*(s.colorbar.vmax-s.colorbar.vmin) for t in cbar.ax.get_yticks()])
cbar.set_ticklabels([mdates.datetime.datetime.fromtimestamp((s.colorbar.vmin + t*(s.colorbar.vmax-s.colorbar.vmin))/1000000000).strftime('%c') for t in cbar.ax.get_yticks()])
plt.show()
which gives the result below:
If you really want to control tick locations, you can compute the desired values (here for approximately 3 months intervals ~91.25 days):
i,ticks = 0,[s.colorbar.vmin]
while ticks[-1] < s.colorbar.vmax:
ticks.append(s.colorbar.vmin+i*24*3600*91.25*1e9)
i = i+1
ticks[-1] = s.colorbar.vmax
cbar.set_ticks(ticks)
cbar.set_ticklabels([mdates.datetime.datetime.fromtimestamp(t/1e9).strftime('%c') for t in ticks])
The colormapping machinery of matplotlib has no concepts of "units" like an x or y axis does, so you can do the conversion from date to floats manually before mapping and then set the locator and formatter manually. You can also look into how pandas maps their date object to floats, it may be a bit different than the native matplotlib mapping:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
dates = np.datetime64('2019-11-01') + np.arange(10)*np.timedelta64(1, 'D')
X= np.random.randn(10, 2)
plt.scatter(X[:, 0], X[:, 1], c=mdates.date2num(dates))
cb = plt.colorbar()
loc = mdates.AutoDateLocator()
cb.ax.yaxis.set_major_locator(loc)
cb.ax.yaxis.set_major_formatter(mdates.ConciseDateFormatter(loc))
plt.show()

python matplotlib gridspec, unwanted arbitrary axis labels

I have some code to plot a grid, with the data in each cell being distinct and having a very specific position. The easiest way I found to do this was to create the grid with gridspec and use it to precisely position my subplots, however I'm having a problem where the overall grid is labelled from 0 to 1 along each axis. This happens every time, even when the dimensions of the grid are changed. Obviously these numbers have no relevance to my data, and as what I am aiming to display is qualitative rather than quantitative I would like to remove all labels from this plot entirely.
Here is a link to an image with an example of my problem
And here is the MWE that I used to create that image:
import numpy as np
import matplotlib.gridspec as gridspec
import matplotlib.pyplot as plt
# mock-up of data being used
x = 6
y = 7
table = np.zeros((x, y))
# plotting
fig = plt.figure(1)
gs = gridspec.GridSpec(x, y, wspace=0, hspace=0)
plt.title('Example Plot')
for (j, k), img in np.ndenumerate(table):
ax = fig.add_subplot(gs[x - j - 1, k])
ax.set_xticklabels('')
ax.set_yticklabels('')
plt.show()
I have not been able to find note of anything like this problem, so any help would be greatly appreciated.
If you just want to draw a grid over the plot, use this code:
import numpy as np
import matplotlib.pyplot as plt
# mock-up of data being used
x = 6
y = 7
table = np.zeros((x, y))
# plotting
fig = plt.figure(1)
plt.title('Example Plot')
plt.gca().xaxis.grid(True, color='darkgrey', linestyle='-')
plt.gca().yaxis.grid(True, color='darkgrey', linestyle='-')
plt.show()
Another variant is used gridspec:
...
# hide ticks of main axes
ax0 = plt.gca()
ax0.get_xaxis().set_ticks([])
ax0.get_yaxis().set_ticks([])
gs = gridspec.GridSpec(x, y, wspace=0, hspace=0)
plt.title('Example Plot')
for (j, k), img in np.ndenumerate(table):
ax = fig.add_subplot(gs[x - j - 1, k])
# hide ticks of gribspec axes
ax.get_xaxis().set_ticks([])
ax.get_yaxis().set_ticks([])

How do I align gridlines for two y-axis scales using Matplotlib?

I'm plotting two datasets with different units on the y-axis. Is there a way to make the ticks and gridlines aligned on both y-axes?
The first image shows what I get, and the second image shows what I would like to get.
This is the code I'm using to plot:
import seaborn as sns
import numpy as np
import pandas as pd
np.random.seed(0)
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.plot(pd.Series(np.random.uniform(0, 1, size=10)))
ax2 = ax1.twinx()
ax2.plot(pd.Series(np.random.uniform(10, 20, size=10)), color='r')
I am not sure if this is the prettiest way to do it, but it does fix it with one line:
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
np.random.seed(0)
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.plot(pd.Series(np.random.uniform(0, 1, size=10)))
ax2 = ax1.twinx()
ax2.plot(pd.Series(np.random.uniform(10, 20, size=10)), color='r')
# ADD THIS LINE
ax2.set_yticks(np.linspace(ax2.get_yticks()[0], ax2.get_yticks()[-1], len(ax1.get_yticks())))
plt.show()
I could solve it by deactivating ax.grid(None) in one of the grid`s axes:
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.plot(pd.Series(np.random.uniform(0, 1, size=10)))
ax2 = ax1.twinx()
ax2.plot(pd.Series(np.random.uniform(10, 20, size=10)), color='r')
ax2.grid(None)
plt.show()
I wrote this function that takes Matplotlib axes objects ax1, ax2, and floats minresax1 minresax2:
def align_y_axis(ax1, ax2, minresax1, minresax2):
""" Sets tick marks of twinx axes to line up with 7 total tick marks
ax1 and ax2 are matplotlib axes
Spacing between tick marks will be a factor of minresax1 and minresax2"""
ax1ylims = ax1.get_ybound()
ax2ylims = ax2.get_ybound()
ax1factor = minresax1 * 6
ax2factor = minresax2 * 6
ax1.set_yticks(np.linspace(ax1ylims[0],
ax1ylims[1]+(ax1factor -
(ax1ylims[1]-ax1ylims[0]) % ax1factor) %
ax1factor,
7))
ax2.set_yticks(np.linspace(ax2ylims[0],
ax2ylims[1]+(ax2factor -
(ax2ylims[1]-ax2ylims[0]) % ax2factor) %
ax2factor,
7))
It calculates and sets the ticks such that there are seven ticks. The lowest tick corresponds to the current lowest tick and increases the highest tick such that the separation between each tick is integer multiples of minrexax1 or minrexax2.
To make it general, you can set the total number of ticks you want by changing ever 7 you see to the total number of ticks, and change 6 to the total number of ticks minus 1.
I put a pull request in to incorporate some this into matplotlib.ticker.LinearLocator:
https://github.com/matplotlib/matplotlib/issues/6142
In the future (Matplotlib 2.0 perhaps?), try:
import matplotlib.ticker
nticks = 11
ax1.yaxis.set_major_locator(matplotlib.ticker.LinearLocator(nticks))
ax2.yaxis.set_major_locator(matplotlib.ticker.LinearLocator(nticks))
That should just work and choose convenient ticks for both y-axes.
I created a method to align the ticks of multiple y- axes (could be more than 2), with possibly different scales in different axes.
Below is an example figure:
There are 3 y- axes, one blue on the left, and a green and a red on the right. The 3 curves are plotted onto the y-axis with the corresponding color. Note that they all have very different order of magnitudes.
Left plot: No alignment.
Mid plot: Aligned at (approximately) the lower bound of each y axis.
Right plot: Aligned at specified values: 0 for blue, 2.2*1e8 for red, and 44 for green. Those are chosen arbitrarily.
What I'm doing is to scale each y array to be within the range of 1-100, then merge all scaled y-values into a single array, from which a new set of ticks is created using MaxNLocator. Then this new set of ticks is scaled back using the corresponding scaling factor to get the new ticks for each axis. If some specific alignment is required, y arrays are shifted before scaling, and shifted back afterwards.
Complete code here (the key function is alignYaxes()):
import matplotlib.pyplot as plt
import numpy as np
def make_patch_spines_invisible(ax):
'''Used for creating a 2nd twin-x axis on the right/left
E.g.
fig, ax=plt.subplots()
ax.plot(x, y)
tax1=ax.twinx()
tax1.plot(x, y1)
tax2=ax.twinx()
tax2.spines['right'].set_position(('axes',1.09))
make_patch_spines_invisible(tax2)
tax2.spines['right'].set_visible(True)
tax2.plot(x, y2)
'''
ax.set_frame_on(True)
ax.patch.set_visible(False)
for sp in ax.spines.values():
sp.set_visible(False)
def alignYaxes(axes, align_values=None):
'''Align the ticks of multiple y axes
Args:
axes (list): list of axes objects whose yaxis ticks are to be aligned.
Keyword Args:
align_values (None or list/tuple): if not None, should be a list/tuple
of floats with same length as <axes>. Values in <align_values>
define where the corresponding axes should be aligned up. E.g.
[0, 100, -22.5] means the 0 in axes[0], 100 in axes[1] and -22.5
in axes[2] would be aligned up. If None, align (approximately)
the lowest ticks in all axes.
Returns:
new_ticks (list): a list of new ticks for each axis in <axes>.
A new sets of ticks are computed for each axis in <axes> but with equal
length.
'''
from matplotlib.pyplot import MaxNLocator
nax=len(axes)
ticks=[aii.get_yticks() for aii in axes]
if align_values is None:
aligns=[ticks[ii][0] for ii in range(nax)]
else:
if len(align_values) != nax:
raise Exception("Length of <axes> doesn't equal that of <align_values>.")
aligns=align_values
bounds=[aii.get_ylim() for aii in axes]
# align at some points
ticks_align=[ticks[ii]-aligns[ii] for ii in range(nax)]
# scale the range to 1-100
ranges=[tii[-1]-tii[0] for tii in ticks]
lgs=[-np.log10(rii)+2. for rii in ranges]
igs=[np.floor(ii) for ii in lgs]
log_ticks=[ticks_align[ii]*(10.**igs[ii]) for ii in range(nax)]
# put all axes ticks into a single array, then compute new ticks for all
comb_ticks=np.concatenate(log_ticks)
comb_ticks.sort()
locator=MaxNLocator(nbins='auto', steps=[1, 2, 2.5, 3, 4, 5, 8, 10])
new_ticks=locator.tick_values(comb_ticks[0], comb_ticks[-1])
new_ticks=[new_ticks/10.**igs[ii] for ii in range(nax)]
new_ticks=[new_ticks[ii]+aligns[ii] for ii in range(nax)]
# find the lower bound
idx_l=0
for i in range(len(new_ticks[0])):
if any([new_ticks[jj][i] > bounds[jj][0] for jj in range(nax)]):
idx_l=i-1
break
# find the upper bound
idx_r=0
for i in range(len(new_ticks[0])):
if all([new_ticks[jj][i] > bounds[jj][1] for jj in range(nax)]):
idx_r=i
break
# trim tick lists by bounds
new_ticks=[tii[idx_l:idx_r+1] for tii in new_ticks]
# set ticks for each axis
for axii, tii in zip(axes, new_ticks):
axii.set_yticks(tii)
return new_ticks
def plotLines(x, y1, y2, y3, ax):
ax.plot(x, y1, 'b-')
ax.tick_params('y',colors='b')
tax1=ax.twinx()
tax1.plot(x, y2, 'r-')
tax1.tick_params('y',colors='r')
tax2=ax.twinx()
tax2.spines['right'].set_position(('axes',1.2))
make_patch_spines_invisible(tax2)
tax2.spines['right'].set_visible(True)
tax2.plot(x, y3, 'g-')
tax2.tick_params('y',colors='g')
ax.grid(True, axis='both')
return ax, tax1, tax2
#-------------Main---------------------------------
if __name__=='__main__':
# craft some data to plot
x=np.arange(20)
y1=np.sin(x)
y2=x/1000+np.exp(x)
y3=x+x**2/3.14
figure=plt.figure(figsize=(12,4),dpi=100)
ax1=figure.add_subplot(1, 3, 1)
axes1=plotLines(x, y1, y2, y3, ax1)
ax1.set_title('No alignment')
ax2=figure.add_subplot(1, 3, 2)
axes2=plotLines(x, y1, y2, y3, ax2)
alignYaxes(axes2)
ax2.set_title('Default alignment')
ax3=figure.add_subplot(1, 3, 3)
axes3=plotLines(x, y1, y2, y3, ax3)
alignYaxes(axes3, [0, 2.2*1e8, 44])
ax3.set_title('Specified alignment')
figure.tight_layout()
figure.show()
This code will ensure that grids from both axes align to each other, without having to hide gridlines from either set. In this example, it allows you to match whichever has the finer grid lines. This builds off of the idea from #Leo. Hope it helps!
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax1.plot(pd.Series(np.random.uniform(0,1,size=10)))
ax2 = ax1.twinx()
ax2.plot(pd.Series(np.random.uniform(10,20,size=10)),color='r')
ax2.grid(None)
# Determine which plot has finer grid. Set pointers accordingly
l1 = len(ax1.get_yticks())
l2 = len(ax2.get_yticks())
if l1 > l2:
a = ax1
b = ax2
l = l1
else:
a = ax2
b = ax1
l = l2
# Respace grid of 'b' axis to match 'a' axis
b_ticks = np.linspace(b.get_yticks()[0],b.get_yticks()[-1],l)
b.set_yticks(b_ticks)
plt.show()
If you're using axis labels, Leo's solution can push them off the side, due to the precision of the numbers in the ticks.
So in addition to something like Leo's solution (repeated here),
ax2.set_yticks(np.linspace(ax2.get_yticks()[0],ax2.get_yticks()[-1],len(ax1.get_yticks())))
you can use the autolayout setting, as mentioned in this answer; e.g., earlier in your script you can update rcParams:
from matplotlib import rcParams
rcParams.update({'figure.autolayout': True})
In a few test cases, this appears to produce the expected result, with both lined-up ticks and labels fully contained in the output.
I had the same issue except this was for a secondary x axis. I solved by setting my secondary x axis equal to the limit of my primary axis.The example below is without setting the limit of the second axis equal to the first:ax2 = ax.twiny()
Once I set the limit of the second axis equal to the first ax2.set_xlim(ax.get_xlim()) here is my result:
fix the limits for both axis (from any number to any number)
divide both axis into same n parts
ax1.set_ylim(a,b)
ax1.set_yticks(np.linspace(a,b, n))
ax2.set_ylim(c,d)
ax2.set_yticks(np.linspace(c,d, n))

How to add a second x-axis in matplotlib

I have a very simple question. I need to have a second x-axis on my plot and I want that this axis has a certain number of tics that correspond to certain position of the first axis.
Let's try with an example. Here I am plotting the dark matter mass as a function of the expansion factor, defined as 1/(1+z), that ranges from 0 to 1.
semilogy(1/(1+z),mass_acc_massive,'-',label='DM')
xlim(0,1)
ylim(1e8,5e12)
I would like to have another x-axis, on the top of my plot, showing the corresponding z for some values of the expansion factor. Is that possible? If yes, how can I have xtics ax
I'm taking a cue from the comments in #Dhara's answer, it sounds like you want to set a list of new_tick_locations by a function from the old x-axis to the new x-axis. The tick_function below takes in a numpy array of points, maps them to a new value and formats them:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax2 = ax1.twiny()
X = np.linspace(0,1,1000)
Y = np.cos(X*20)
ax1.plot(X,Y)
ax1.set_xlabel(r"Original x-axis: $X$")
new_tick_locations = np.array([.2, .5, .9])
def tick_function(X):
V = 1/(1+X)
return ["%.3f" % z for z in V]
ax2.set_xlim(ax1.get_xlim())
ax2.set_xticks(new_tick_locations)
ax2.set_xticklabels(tick_function(new_tick_locations))
ax2.set_xlabel(r"Modified x-axis: $1/(1+X)$")
plt.show()
You can use twiny to create 2 x-axis scales. For Example:
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax2 = ax1.twiny()
a = np.cos(2*np.pi*np.linspace(0, 1, 60.))
ax1.plot(range(60), a)
ax2.plot(range(100), np.ones(100)) # Create a dummy plot
ax2.cla()
plt.show()
Ref: http://matplotlib.sourceforge.net/faq/howto_faq.html#multiple-y-axis-scales
Output:
From matplotlib 3.1 onwards you may use ax.secondary_xaxis
import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(1,13, num=301)
y = (np.sin(x)+1.01)*3000
# Define function and its inverse
f = lambda x: 1/(1+x)
g = lambda x: 1/x-1
fig, ax = plt.subplots()
ax.semilogy(x, y, label='DM')
ax2 = ax.secondary_xaxis("top", functions=(f,g))
ax2.set_xlabel("1/(x+1)")
ax.set_xlabel("x")
plt.show()
If You want your upper axis to be a function of the lower axis tick-values you can do as below. Please note: sometimes get_xticks() will have a ticks outside of the visible range, which you have to allow for when converting.
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots()
ax1 = fig.add_subplot(111)
ax1.plot(range(5), range(5))
ax1.grid(True)
ax2 = ax1.twiny()
ax2.set_xticks( ax1.get_xticks() )
ax2.set_xbound(ax1.get_xbound())
ax2.set_xticklabels([x * 2 for x in ax1.get_xticks()])
title = ax1.set_title("Upper x-axis ticks are lower x-axis ticks doubled!")
title.set_y(1.1)
fig.subplots_adjust(top=0.85)
fig.savefig("1.png")
Gives:
Answering your question in Dhara's answer comments: "I would like on the second x-axis these tics: (7,8,99) corresponding to the x-axis position 10, 30, 40. Is that possible in some way?"
Yes, it is.
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(111)
a = np.cos(2*np.pi*np.linspace(0, 1, 60.))
ax1.plot(range(60), a)
ax1.set_xlim(0, 60)
ax1.set_xlabel("x")
ax1.set_ylabel("y")
ax2 = ax1.twiny()
ax2.set_xlabel("x-transformed")
ax2.set_xlim(0, 60)
ax2.set_xticks([10, 30, 40])
ax2.set_xticklabels(['7','8','99'])
plt.show()
You'll get:
I'm forced to post this as an answer instead of a comment due to low reputation.
I had a similar problem to Matteo. The difference being that I had no map from my first x-axis to my second x-axis, only the x-values themselves. So I wanted to set the data on my second x-axis directly, not the ticks, however, there is no axes.set_xdata. I was able to use Dhara's answer to do this with a modification:
ax2.lines = []
instead of using:
ax2.cla()
When in use also cleared my plot from ax1.

Categories