When I try to fit my data, results are a bit strange and I don't understand why ? Obtained fitting is flat, and the first input e=0. seems to raised a division error somewhere.
The only working case is when I modify e[0]=1.0e-9
The result is the following:
From example here it seems that my example is not so far from what I read, but I stay stuck, so could you help me please on what's going wrong in my case ?
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
src_s = np.array((45.59,50.66664,59.74871,65.71018,72.76012,79.06256,84.13755,90.39944,
96.33653,101.65667,106.27968,110.76301,114.41808,117.21922,120.51836))
src_e = np.array((0.0,0.00126,0.00503,0.00804,0.01228,0.01685,0.02127,0.02846,0.03666,
0.04581,0.05620,0.06882,0.08005,0.09031,0.10327))
# plot source data
plt.plot(src_e, src_s, 'o')
# fitting function
def sigma(e, k ,n): return k*(e**n)
# find parameters curve fitting
param, var = curve_fit(sigma, src_e, src_s)
new_e = np.linspace(src_e.min(), src_e.max(), 50)
plt.plot(new_e, sigma(new_e, *param))
# modify first input
src_e[0]=1.0e-9
# relaunch parameters curve fitting
param, var = curve_fit(sigma, src_e, src_s)
new_e = np.linspace(src_e.min(), src_e.max(), 50)
plt.plot(new_e, sigma(new_e, *param))
plt.show()
Thanks in advance for your help.
The root of problem is an bad initial guess of parameters (actually no starting parameter is provided for curve_fit).
The target function can easily be linearized. Let's do that, then do a linear regression to get a good set of initial guess parameters for curve_fit (pass to it by p0=). The resulting fit is better (having less residue) and does not need to replace the first value of to be 1e-9:
In [38]:
src_e[0]=1.0e-9
# relaunch parameters curve fitting
param, var = curve_fit(sigma, src_e, src_s)
new_e = np.linspace(src_e.min(), src_e.max(), 50)
src_e[0]=0
plt.plot(new_e, sigma(new_e, *param))
plt.plot(src_e, src_s, 'ro')
plt.savefig('1.png')
print 'Residue is:', ((sigma(src_e, *param)-src_s)**2).sum()
Residue is: 2168.65307587
In [39]:
import scipy.stats as ss
src_e[0]=0
V=ss.linregress(np.log(src_e)[1:], np.log(src_s)[1:]) #avoid log(0)
param, var = curve_fit(sigma, src_e, src_s, p0=(np.exp(V[1]), V[0]))
new_e = np.linspace(src_e.min(), src_e.max(), 50)
plt.plot(new_e, sigma(new_e, *param))
plt.plot(src_e, src_s, 'ro')
plt.savefig('1.png')
print 'Residue is:', ((sigma(src_e, *param)-src_s)**2).sum()
Residue is: 2128.85364181
The first point can't be on the curve, so you need to change the curve formula:
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
src_s = np.array((45.59,50.66664,59.74871,65.71018,72.76012,79.06256,84.13755,90.39944,
96.33653,101.65667,106.27968,110.76301,114.41808,117.21922,120.51836))
src_e = np.array((0.0,0.00126,0.00503,0.00804,0.01228,0.01685,0.02127,0.02846,0.03666,
0.04581,0.05620,0.06882,0.08005,0.09031,0.10327))
# plot source data
plt.plot(src_e, src_s, 'o')
def sigma(e, k ,n, offset): return k*((e+offset)**n)
# find parameters curve fitting
param, var = curve_fit(sigma, src_e, src_s)
new_e = np.linspace(src_e.min(), src_e.max(), 50)
plt.plot(new_e, sigma(new_e, *param))
here is the output:
Related
all. I encountered a case where minimisation results of Matlab are very close to mathematical solution(i.e., when we solve equations by hand) when compared to the results obtained from Python's scipy minimize builtin function. I'm not sure where i'm doing wrong or how to improve the results in python. Any suggestion would be of great help.
Aim of this problem is to find the time period of set nonlinear differential equations without time evolving. For of test case I took the problem from "This place".
Non-Linear Differential equations looks like this
Here i'm implementing pseudo spectral method for periodic systems. Implementation method is similar to what described here , only change is i'm taking uniform points and "D" matrix is formed using Pseudospectral.
import numpy as np
from numpy import linalg as LA
import ast
from ast import literal_eval as make_tuple
import scipy
from scipy.optimize import minimize
from scipy.linalg import toeplitz
import matplotlib.pyplot as plt
%matplotlib tk
# This "Dmatrix" is used to get derivative.
def Dmatrix(N):
h = 2.0*np.pi/N;
col = np.zeros(N);
col[1:] = 0.5*(-1.0)**np.arange(1,N)/np.sin(np.arange(1,N)*h/2.0);
row = np.zeros(N); row[0] = col[0]; row[1:] = col[N-1:0:-1]
D = toeplitz(col,row);
return D
# Actual differential equations.
def dxD(x,y,t):
u=(1-(x**2)/4 - (y**2));
dx=-4*y+x*u;
dy=x+y*u;
return np.array([dx,dy])
# Implementing Pseudo spectral method
def dxFdxD(initial_guess,final_time):
N=len(initial_guess)//2;
x_guess=initial_guess[:N];
xl=np.array(x_guess[:]);
y_guess=initial_guess[N:2*N];
yl=np.array(y_guess[:]);
tf=final_time;
tl=np.arange(1,N+1)*tf/N;
D=Dmatrix(N);
XYTzipped=zip(xl,yl,tl);
dX_D=np.array([dxDynamics(xs,ys,ts) for xs,ys,ts in XYTzipped ]);
xlyl=np.array([xl,yl]).transpose();
dX_F=(np.array(D#xlyl))*(2*np.pi/tf);
err=np.array(dX_D - dX_F).flatten();
normError= LA.norm(err, 2);
return normError
# Initial guess points
N=201;
final_time=1.052*np.pi;
tf=final_time;
tgrid=np.arange(1,N+1)*tf/N;
xguess=np.cos(tgrid)*2.0;
yguess=-np.cos(tgrid)*0.5;
tfl=np.pi*0.85;
tfu=1.5*np.pi;
tfbounds=(tfl,tfu);
xstates= np.array([xguess,yguess]).flatten();
xstatesParameter=np.array([xstates,final_time], dtype=object);
xins=np.hstack(xstatesParameter).tolist();
# Objective function for optimising
def obj(x):
N=(len(x)-1)//2;
tf=x[-1];
xylist=x[:2*N];
return dxFdxD(xylist,tf)
# Optimization using method='trust-constr'
l1=[tfbounds];
str1=str([bounds123 for bounds123 in l1]);
str2=str1.replace("[", "").replace("]", "")
bounds1=make_tuple("("+ "(-5,5),(-5,5),"*N + str2+ ")")
bnds=bounds1;
# constraint
def xyradius(x):
nps=(len(x)-1)//2;
xs=x[:nps];
ys=x[nps:2*nps];
xsysZip=zip(xs,ys)
truelist=[bool((xi**2)+(yi**2)>0.25) for xi,yi in xsysZip]
result=int(all(truelist))
return result
xyradiusConstraintType={'type':'ineq','fun':xyradius};
cons=[xyradiusConstraintType]
# Minimising "obj"
sol=minimize(obj,
xins,
method='trust-constr',
bounds=bnds,
tol=1e-10)
# Results
x_y_tf=sol.x;
x_F=x_y_tf[:N];
y_F=x_y_tf[N:2*N];
tf_system=x_y_tf[-1];
print("time period tf=",tf_system,end="\n \n")
tgrid=np.arange(1,N+1)*tf/N;
# Plots
fig = plt.figure(1)
ax = fig.add_subplot(111)
#specify label for the corresponding curve
# ax.set_xticks(tgrid, minor=False)
ax.set_xticks(tgrid, minor=True)
ax.xaxis.grid(True, which='major')
ax.xaxis.grid(True, which='minor')
ax.set_title('Collocation points')
plt.plot(tgrid,x_F,label='x result')
plt.plot(tgrid,y_F,label='y result')
ax.set_title('Optimized result x,y')
plt.legend()
plt.show()
# Parametric plot
ax = plt.figure(4).add_subplot()
ax.plot(x_F,y_F,label='State Space')
ax.legend()
plt.show()
Optimizing(Minimizing) using method='SLSQP'
# Scipy for minimization using method='SLSQP'
l1=[tfbounds];
str1=str([bounds123 for bounds123 in l1]);
str2=str1.replace("[", "").replace("]", "")
bounds1=make_tuple("("+ "(-5,5),(-5,5),"*N + str2+ ")")
bnds=bounds1;
def xyradius(x):
nps=(len(x)-1)//2;
xs=x[:nps];
ys=x[nps:2*nps];
xsysZip=zip(xs,ys)
truelist=[bool((xi**2)+(yi**2)>0.25) for xi,yi in xsysZip]
result=int(all(truelist))
return result
xyradiusConstraintType={'type':'ineq','fun':xyradius};
cons=[xyradiusConstraintType]
sol=minimize(obj,
xins,
method='SLSQP',
bounds=bnds,
constraints=cons,
tol=1e-10)
When I implemented the same work in MatLab . I got "pi= 3.14" as the solution(time period of system), where as when in python i'm getting "4.70" as time period. Any suggestions are greatly appreciated. Thank you
I am having issues fitting a Gaussian to my data. Currently the output for my code looks like
this. Where orange is the data, blue is the gaussian fit and green is an in-built gaussian fitter however I do not wish to use it as it never quite begins at zero and I do not have access to the code. I would like my output to look something like this where the drawn in red is the gaussian fit.
I have tried reading about the curve_fit documentation however at best I get a fit that looks like this which fits over all the data, however, this is undesirable as I am only interested in the central peak which is my main issue - I do not know how to get curve_fit to fit a gaussian on the central peak like in the second image.
I have considered using a weights function like np.random.choice() or looking at the data file's maximum value and then looking at the second derivative at either side of the central peak to see where there are changes in inflection but am unsure how best to implement this.
How would I best go about this? I have done a lot of googling but cant quite get my head around changing curve_fit to suit my needs.
Cheers for any pointers!
This is a data file.
https://drive.google.com/file/d/1qrAkD74U6L46GoGnvMiUHdPuLEToS6Pv/view?usp=sharing
This is my code:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from matplotlib.pyplot import figure
plt.close('all')
fpathB4 = 'E:\.1. Work - Current Projects + Old Projects\Current Projects\PF 4MHz Laser System\.8. 1050 SYSTEM\AC traces'
fpath = fpathB4.replace('\\','/') + ('/')
filename = '300'
with open(fpath+filename) as f:
dataraw = f.readlines()
FWHM = dataraw[8].split(':')[1].split()[0]
FWHM = np.float(FWHM)
print("##### For AC file -", filename, "#####")
print("Auto-co guess -", FWHM, "ps")
pulseduration = FWHM/np.sqrt(2)
pulseduration = str(pulseduration)
dataraw = dataraw[15:]
print("Pulse duration -", pulseduration, "ps" + "\n")
time = np.array([])
acf1 = np.array([]) #### DATA
fit = np.array([]) #### Gaussian fit
for k in dataraw:
data = k.split()
time = np.append(time, np.float(data[0]))
acf1= np.append(acf1, np.float(data[1]))
fit = np.append(fit, np.float(data[2]))
n = len(time)
y = acf1.copy()
x = time.copy()
mean = sum(x*y)/n
sigma = sum(y*(x-mean)**2)/n
def gaus(x,a,x0,sigma):
return a*np.exp(-(x-x0)**2/(2*sigma**2))
popt,pcov = curve_fit(gaus,x,y,p0=[1,mean,sigma])
plt.plot(x,gaus(x,*popt)/np.max(gaus(x,*popt)))
figure(num=1, figsize=(8, 3), dpi=96, facecolor='w', edgecolor='k') # figsize = (length, height)
plt.plot(time, acf1/np.max(acf1), label = 'Data - ' + filename, linewidth = 1)
plt.plot(time, fit/np.max(fit), label = '$FWHM_{{\Delta t}}$ (ps) = ' + pulseduration)
plt.autoscale(enable = True, axis = 'x', tight = True)
plt.title("Auto-Correlation Data")
plt.xlabel("Time (ps)")
plt.ylabel("Intensity (a.u.)")
plt.legend()
I think the problem might be that the data are not completely Gaussian-like. It seems you have some kind of Airy/sinc function due to the time resolution of your acquisition instrument. Still, if you are only interested in the center you can still fit it using a single gaussian:
import fitwrap as fw
import pandas as pd
df = pd.read_csv('300', skip_blank_lines=True, skiprows=13, sep='\s+')
def gaussian_no_offset(x, x0=2, sigma=1, amp=300):
return amp*np.exp(-(x-x0)**2/sigma**2)
fw.fit(gaussian_no_offset, df.time, df.acf1)
x0: 2.59158 +/- 0.00828 (0.3%) initial:2
sigma: 0.373 +/- 0.0117 (3.1%) initial:1
amp: 355.02 +/- 9.65 (2.7%) initial:300
If you want to be slightly more precise I can think of a sinc squared function for the peak and a broad gaussian offset. The fit seems nicer, but it really depends on what the data actually represents...
def sinc(x, x0=2.5, amp=300, width=1, amp_g=20, sigma=3):
return amp*(np.sinc((x-x0)/width))**2 + amp_g*np.exp(-(x-x0)**2/sigma**2)
fw.fit(sinc, df.time, df.acf1)
x0: 2.58884 +/- 0.0021 (0.1%) initial:2.5
amp: 303.84 +/- 3.7 (1.2%) initial:300
width: 0.49211 +/- 0.00565 (1.1%) initial:1
amp_g: 81.32 +/- 2.11 (2.6%) initial:20
sigma: 1.512 +/- 0.0351 (2.3%) initial:3
I'd add a constant to the Gaussian equation, and limit the range of that in the bounds parameter of curve fit, so that the graph isn't raised higher.
So your equation would be:
def gaus(y0,x,a,x0,sigma):
return y0 + a*np.exp(-(x-x0)**2/(2*sigma**2))
and the curve_fit bounds would be something like this:
curve_fit(..... ,bounds = [[0,a_min, x0_min, sigma_min],[0.1, a_max, x0_max, sigma_max]])
I am trying to fit a distribution to some values. This is my code
from __future__ import print_function
import pandas as pd
import numpy as np
import scipy as sp
import scipy.optimize as opt
import scipy.stats
import matplotlib.pyplot as plt
values = np.random.pareto(1.5, 10000)
loc = values.min()
scale = 1
def cost_function(alpha):
cost = -sp.stats.pareto(alpha, loc=loc, scale=scale).pdf(values)
return cost.sum()
opt_res = opt.fmin(cost_function, 1.5)
alpha_fit_v = sp.stats.pareto.fit(values, floc=loc, fscale=scale)
print('opt_res = ', opt_res,
' alpha_fit_v = ', alpha_fit_v)
I was expecting alpha_fit_v to be equivalent to opt_res but it is not. What's wrong?.
What's wrong?.
The cost function is wrong.
np.random.pareto has a different distribution than sp.stats.pareto
1. The cost function is wrong
It does not make sense to sum inverse probabilities. You need to use the logarithm:
def cost_function(alpha):
cost = -sp.stats.pareto(alpha, loc=loc, scale=scale).logpdf(values)
return cost.sum()
2. np.random.pareto has a different distribution than sp.stats.pareto
This one is tricky, but you may have noticed that not even sp.stats.pareto.fit returns the correct result. This is because scipy's Pareto distribution cannot fit the data generated by numpy.
import matplpotlib.pyplot as plt
import scipys as sp
import numpy as np
plt.subplot(2, 1, 1)
plt.hist(np.random.pareto(1.5, 10000), 1000) # This is a Lomax or Pareto II distribution
plt.xlim(0, 10)
plt.subplot(2, 1, 2)
plt.hist(sp.stats.pareto.rvs(1.5, size=1000), 1000) # This is a Pareto distribution
plt.xlim(0, 10)
That said, this will work as expected:
values = sp.stats.pareto.rvs(1.5, size=1000)
loc = 0
scale = 1
def cost_function(alpha):
cost = -sp.stats.pareto(alpha, loc=loc, scale=scale).logpdf(values)
return cost.sum()
opt_res = opt.fmin(cost_function, 1.5)
alpha_fit_v = sp.stats.pareto.fit(values, floc=loc, fscale=scale)
print('opt_res = ', opt_res,
' alpha_fit_v = ', alpha_fit_v)
# opt_res = [ 1.49611816] alpha_fit_v = (1.4960937500000013, 0, 1)
According to the documentation numpy.random.pareto does not quite draw from the Pareto distribution:
Draw samples from a Pareto II or Lomax distribution with specified shape.
The Lomax or Pareto II distribution is a shifted Pareto distribution. The classical Pareto distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the scale parameter m (see Notes).
So you have two alternatives if using numpy to generate the data:
You can set loc=-1 for the scipy distribution.
You can do values = np.random.pareto(1.5, 10000) + 1 and set loc=0.
I came up with a problem in fitting a power-law curve on my data. I have two data sets: bins1 and bins2
bins1 acting fine in curve-fitting by using numpy.linalg.lstsq (I then use np.exp(coefs[0])*x**coefs[1] to get power-law equation)
On the other hand, bins2 is acting weird and shows a bad R-squared
Both data have different equations than what excel shows me (and worse R-squared).
here is the code (and data):
import numpy as np
import matplotlib.pyplot as plt
bins1 = np.array([[6.769318871738219667e-03,
1.306418618130891773e-02,
1.912138120913448383e-02,
2.545189874466026111e-02,
3.214689891729670401e-02,
4.101898933375244805e-02,
5.129862592803200588e-02,
6.636505322669797313e-02,
8.409809827572585494e-02,
1.058164348650862258e-01,
1.375849753230810046e-01,
1.830664031837437311e-01,
2.682454535427478137e-01,
3.912508246490400410e-01,
5.893271848997768680e-01,
8.480213305038615257e-01,
2.408136266017391058e+00,
3.629192766488219313e+00,
4.639246557509275171e+00,
9.901792214343277720e+00],
[8.501658465758301112e-04,
1.562697718429977012e-03,
1.902062808421856087e-04,
4.411817741488644959e-03,
3.409236963162485048e-03,
1.686099657013027898e-03,
3.643231240239608402e-03,
2.544120616413291154e-04,
2.549036204611017029e-02,
3.527340723977697573e-02,
5.038482027310990652e-02,
5.617932487522721979e-02,
1.620407270423956103e-01,
1.906538999080910068e-01,
3.180688368126549093e-01,
2.364903188268162038e-01,
3.267322385964683273e-01,
9.384571074801122403e-01,
4.419747716107813029e-01,
9.254710022316929852e+00]]).T
bins2 = np.array([[6.522512685133712192e-03,
1.300415548684437199e-02,
1.888928895701269539e-02,
2.509905819337970856e-02,
3.239654633369139919e-02,
4.130706234846069635e-02,
5.123820846515786398e-02,
6.444380072984744190e-02,
8.235238352205621892e-02,
1.070907072127811749e-01,
1.403438221033725120e-01,
1.863115065963684147e-01,
2.670209758710758163e-01,
4.003337413814173074e-01,
6.549054078382223754e-01,
1.116611087124244062e+00,
2.438604844718367914e+00,
3.480674117919704269e+00,
4.410201659398489404e+00,
6.401903059926267403e+00],
[1.793454543936148608e-03,
2.441092334386309615e-03,
2.754373929745804715e-03,
1.182752729942167062e-03,
1.357797177773524414e-03,
6.711673916715021199e-03,
1.392761674092503343e-02,
1.127957613093066511e-02,
7.928803089359596004e-03,
2.524609593305639915e-02,
5.698702885370290905e-02,
8.607729156137132465e-02,
2.453761830112021203e-01,
9.734443815196883176e-02,
1.487480479168299119e-01,
9.918002699934079791e-01,
1.121298151253063535e+00,
1.389239135742518227e+00,
4.254082922056571237e-01,
2.643453492951096440e+00]]).T
bins = bins1 #change to bins2 to see results for bins2
def fit(x,a,m): # power-law fit (based on previous studies)
return a*(x**m)
coefs= np.linalg.lstsq(np.vstack([np.ones(len(bins[:,0])), np.log(bins[:,0]), bins[:,0]]).T, np.log(bins[:,1]))[0] # calculating fitting coefficients (a,m)
y_predict = fit(bins[:,0],np.exp(coefs[0]),coefs[1]) # prediction based of fitted model
model_plot = plt.loglog(bins[:,0],bins[:,1],'o',label="error")
fit_line = plt.plot(bins[:,0],y_predict,'r', label="fit")
plt.ylabel('Y (bins[:,1])')
plt.xlabel('X (bins[:,0])')
plt.title('model')
plt.legend(loc='best')
plt.show(model_plot,fit_line)
def R_sqr (y,y_predict): # calculating R squared value to measure fitting accuracy
rsdl = y - y_predict
ss_res = np.sum(rsdl**2)
ss_tot = np.sum((y-np.mean(y))**2)
R2 = 1-(ss_res/ss_tot)
R2 = np.around(R2,decimals=4)
return R2
R2= R_sqr(bins[:,1],y_predict)
print ('(R^2 = %s)' % (R2))
The fit formula for bins1[[x],[y]]: python: y = 0.337*(x)^1.223 (R^2 = 0.7773), excel: y = 0.289*(x)^1.174 (R^2 = 0.8548)
The fit formula for bins2[[x],[y]]: python: y = 0.509*(x)^1.332 (R^2 = -1.753), excel: y = 0.311*(x)^1.174 (R^2 = 0.9116)
And these are two sample data sets out of 30, I randomly see this fitting problem in my data and some have R-squared around "-150"!!
Itried scipy "curve_fit" but I didn't get better results, in fact worse!
Anyone knows how to get excel-like fit in python?
You are trying to calculate an R-squared using Y's that have not been converted to log-space. The following change gives reasonable R-squared values:
R2 = R_sqr(np.log(bins[:,1]), np.log(y_predict))
I am trying to fit a morse potential using a python and scipy.
The morse potential is defined as:
V = D*(exp(-2*m*(x-u)) - 2*exp(-m*(x-u)))
where D, m and u are the parameters I need to extract.
Unfortunately the fit is not satisfactory as you can see below (sorry I do not have 10 reputation so the image has to be clicked). Could anyone help me please? I must say I am not the best programmer with python.
Here is my code:
from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt
xdata2=np.array([1.0 ,1.1 ,1.2 ,1.3 ,1.4 ,1.5 ,1.6 ,1.7 ,1.8 ,1.9 ,2.0 ,2.1 ,2.2 ,2.3 ,2.4 ,2.5 ,2.6 ,2.7 ,2.8 ,2.9 ,3.0 ,3.1 ,3.2 ,3.3 ,3.4 ,3.5 ,3.6 ,3.7 ,3.8 ,3.9 ,4.0 ,4.1 ,4.2 ,4.3 ,4.4 ,4.5 ,4.6 ,4.7 ,4.8 ,4.9 ,5.0 ,5.1 ,5.2 ,5.3 ,5.4 ,5.5 ,5.6 ,5.7 ,5.8 ,5.9])
ydata2=[-1360.121815,-1368.532641,-1374.215047,-1378.090480,-1380.648178,-1382.223113,-1383.091562,-1383.479384,-1383.558087,-1383.445803,-1383.220380,-1382.931531,-1382.609269,-1382.273574,-1381.940879,-1381.621299,-1381.319042,-1381.036231,-1380.772039,-1380.527051,-1380.301961,-1380.096257,-1379.907700,-1379.734621,-1379.575837,-1379.430693,-1379.299282,-1379.181303,-1379.077272,-1378.985220,-1378.903626,-1378.831588,-1378.768880,-1378.715015,-1378.668910,-1378.629996,-1378.597943,-1378.572742,-1378.554547,-1378.543296,-1378.539843,-1378.543593,-1378.554519,-1378.572747,-1378.597945,-1378.630024,-1378.668911,-1378.715015,-1378.768915,-1378.831593]
t=np.linspace(0.1,7)
def morse(q, m, u, x ):
return (q * (np.exp(-2*m*(x-u))-2*np.exp(-m*(x-u))))
popt, pcov = curve_fit(morse, xdata2, ydata2, maxfev=40000000)
yfit = morse(t,popt[0], popt[1], popt[2])
print popt
plt.plot(xdata2, ydata2,"ro")
plt.plot(t, yfit)
plt.show()
Old fit before gboffi's comment
I am guessing the exact depth of the morse potential does not interest you overly much. So I added an additional parameter to shift the morse potential up and down (v), includes #gboffis comment. Furthermore, the first argument of your function must be the arguments, not the parameters you want to fit (see http://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.optimize.curve_fit.html)
In addition, such fits are dependent on your starting position. The following should give you what you want.
from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt
xdata2=np.array([1.0 ,1.1 ,1.2 ,1.3 ,1.4 ,1.5 ,1.6 ,1.7 ,1.8 ,1.9 ,2.0 ,2.1 ,2.2 ,2.3 ,2.4 ,2.5 ,2.6 ,2.7 ,2.8 ,2.9 ,3.0 ,3.1 ,3.2 ,3.3 ,3.4 ,3.5 ,3.6 ,3.7 ,3.8 ,3.9 ,4.0 ,4.1 ,4.2 ,4.3 ,4.4 ,4.5 ,4.6 ,4.7 ,4.8 ,4.9 ,5.0 ,5.1 ,5.2 ,5.3 ,5.4 ,5.5 ,5.6 ,5.7 ,5.8 ,5.9])
ydata2=[-1360.121815,-1368.532641,-1374.215047,-1378.090480,-1380.648178,-1382.223113,-1383.091562,-1383.479384,-1383.558087,-1383.445803,-1383.220380,-1382.931531,-1382.609269,-1382.273574,-1381.940879,-1381.621299,-1381.319042,-1381.036231,-1380.772039,-1380.527051,-1380.301961,-1380.096257,-1379.907700,-1379.734621,-1379.575837,-1379.430693,-1379.299282,-1379.181303,-1379.077272,-1378.985220,-1378.903626,-1378.831588,-1378.768880,-1378.715015,-1378.668910,-1378.629996,-1378.597943,-1378.572742,-1378.554547,-1378.543296,-1378.539843,-1378.543593,-1378.554519,-1378.572747,-1378.597945,-1378.630024,-1378.668911,-1378.715015,-1378.768915,-1378.831593]
t=np.linspace(0.1,7)
tstart = [1.e+3, 1, 3, 0]
def morse(x, q, m, u , v):
return (q * (np.exp(-2*m*(x-u))-2*np.exp(-m*(x-u))) + v)
popt, pcov = curve_fit(morse, xdata2, ydata2, p0 = tstart, maxfev=40000000)
print popt # [ 5.10155662 1.43329962 1.7991549 -1378.53461345]
yfit = morse(t,popt[0], popt[1], popt[2], popt[3])
#print popt
#
#
#
plt.plot(xdata2, ydata2,"ro")
plt.plot(t, yfit)
plt.show()