Related
For example:
m = {'a':1, 'b': 2, 'c': 3}
n = {'a': ('jack', 'true'),
'b': ('tom', 'true'),
'c': ('jack', 'false')}
new_dict = {}
for key, key_info in n.items():
if key in m:
name = key_info[0]
# If name is already in new_dict
if name in new_dict:
if new_dict[name][1] < m[key]:
new_dict[name] = (key, m[key])
else: # Name not in new_dict
new_dict[name] = (key, m[key])
new_dict = dict(new_dict.values())
The output of new_dict would be:
{'c': 3, 'b': 2}
I want to remove elements from 'm' where:
find elements with the same name, which is stored in the 'value' of the 2nd dict 'n'
Because both 'a' & 'c' have the same name 'jack' and c's value 3 is greater than '1', so {'a': 1} is deleted.
My above code works but looks bad. Is there a better way to do it?
Make name-key pairs from n, then sort them according to the key's corresponding value in m:
names_and_keys = [(v[0], k) for k, v in n.items()]
names_and_keys.sort(key=lambda nk: m[nk[1]])
Then build a dict from those pairs. Since they were sorted so that e.g. the c key comes after the a key (since m['c'] > m['a']), 'jack' will be mapped to 'c' (that pair will overwrite the original as each pair is used to build the dict).
lookup = dict(names_and_keys)
Finally, the values of that dict are the keys that should be retained from m (similar to how the original code works, except that we still have to get the values from the original m).
m = {k:m[k] for k in lookup.values()}
I was running this code through python tutor, and was just confused as to how the keys and values get switched around. I also was confused as to what value myDict[d[key]] would correspond to as I'm not sure what the d in [d[key]] actually does.
def dict_invert(d):
'''
d: dict
Returns an inverted dictionary according to the instructions above
'''
myDict = {}
for key in d.keys():
if d[key] in myDict:
myDict[d[key]].append(key)
else:
myDict[d[key]] = [key]
for val in myDict.values():
val.sort()
return myDict
print(dict_invert({8: 6, 2: 6, 4: 6, 6: 6}))
In your function d is the dictionary being passed in. Your code is creating a new dictionary, mapping the other direction (from the original dictionary's values to its keys). Since there may not be a one to one mapping (since values can be repeated in a dictionary), the new mapping actually goes from value to a list of keys.
When the code loops over the keys in d, it then uses d[key] to look up the corresponding value. As I commented above, this is not really the most efficient way to go about this. Instead of getting the key first and indexing to get the value, you can instead iterate over the items() of the dictionary and get key, value 2-tuples in the loop.
Here's how I'd rewrite the function, in what I think is a more clear fashion (as well as perhaps a little bit more efficient):
def dict_invert(d):
myDict = {}
for key, value in d.items(): # Get both key and value in the iteration.
if value in myDict: # That change makes these later lines more clear,
myDict[value].append(key) # as they can use value instead of d[key].
else:
myDict[value] = [key] # here too
for val in myDict.values():
val.sort()
return myDict
The function you are showing inverts a dictionary d. A dictionary is a collection of unique keys that map to values which are not necessarily unique. That means that when you swap keys and values, you may get multiple keys that have the same value. Your function handles this by adding keys in the input to a list in the inverse, instead of storing them directly as values. This avoids any possibility of conflict.
Let's look at a sample conceptually first before digging in. Let's say you have
d = {
'a': 1,
'b': 1,
'c': 2
}
When you invert that, you will have the keys 1 and 2. Key 1 will have two values: 'a' and 'b'. Key 2 will only have one value: 'c'. I used different types for the keys and values so you can tell immediately when you're looking at the input vs the output. The output should look like this:
myDict = {
1: ['a', 'b'],
2: ['c']
}
Now let's look at the code. First you initialize an empty output:
myDict = {}
Then you step through every key in the input d. Remember that these keys will become the values of the output:
for key in d.keys():
The value in d for key is d[key]. You need to check if that's a key in myDict since values become keys in the inverse:
if d[key] in myDict:
If the input's value is already a key in myDict, then it maps to a list of keys from d, and you need to append another one to the list. Specifically, d[key] represents the value in d for the key key. This value becomes a key in myDict, which is why it's being indexed like that:
myDict[d[key]].append(key)
Otherwise, create a new list with the single inverse recorded in it:
else:
myDict[d[key]] = [key]
The final step is to sort the values of the inverse. This is not necessarily a good idea. The values were keys in the input, so they are guaranteed to be hashable, but not necessarily comparable to each other:
for val in myDict.values():
val.sort()
The following should raise an error in Python 3:
dict_invert({(1, 2): 'a', 3: 'b'})
myDict[d[key]] takes value of d[key] and uses it as a key in myDict, for example
d = {'a': 'alpha', 'b': 'beta'}
D = {'alpha': 1, 'beta': 2}
D[d['a']] = 3
D[d['b']] = 4
now when contents of d and D should be as following
d = {'a': 'alpha', 'b': 'beta'}
D = {'alpha': 3, 'beta': 4}
d is the dictionary you are passing into the function
def dict_invert(d)
When you create
myDict[d[key]] = d
Its meaning is
myDict[value of d] = key of d
Resulting in
myDict = {'value of d': 'key of d'}
How do I add a key to an existing dictionary? It doesn't have an .add() method.
You create a new key/value pair on a dictionary by assigning a value to that key
d = {'key': 'value'}
print(d) # {'key': 'value'}
d['mynewkey'] = 'mynewvalue'
print(d) # {'key': 'value', 'mynewkey': 'mynewvalue'}
If the key doesn't exist, it's added and points to that value. If it exists, the current value it points to is overwritten.
I feel like consolidating info about Python dictionaries:
Creating an empty dictionary
data = {}
# OR
data = dict()
Creating a dictionary with initial values
data = {'a': 1, 'b': 2, 'c': 3}
# OR
data = dict(a=1, b=2, c=3)
# OR
data = {k: v for k, v in (('a', 1), ('b',2), ('c',3))}
Inserting/Updating a single value
data['a'] = 1 # Updates if 'a' exists, else adds 'a'
# OR
data.update({'a': 1})
# OR
data.update(dict(a=1))
# OR
data.update(a=1)
Inserting/Updating multiple values
data.update({'c':3,'d':4}) # Updates 'c' and adds 'd'
Python 3.9+:
The update operator |= now works for dictionaries:
data |= {'c':3,'d':4}
Creating a merged dictionary without modifying originals
data3 = {}
data3.update(data) # Modifies data3, not data
data3.update(data2) # Modifies data3, not data2
Python 3.5+:
This uses a new feature called dictionary unpacking.
data = {**data1, **data2, **data3}
Python 3.9+:
The merge operator | now works for dictionaries:
data = data1 | {'c':3,'d':4}
Deleting items in dictionary
del data[key] # Removes specific element in a dictionary
data.pop(key) # Removes the key & returns the value
data.clear() # Clears entire dictionary
Check if a key is already in dictionary
key in data
Iterate through pairs in a dictionary
for key in data: # Iterates just through the keys, ignoring the values
for key, value in d.items(): # Iterates through the pairs
for key in d.keys(): # Iterates just through key, ignoring the values
for value in d.values(): # Iterates just through value, ignoring the keys
Create a dictionary from two lists
data = dict(zip(list_with_keys, list_with_values))
To add multiple keys simultaneously, use dict.update():
>>> x = {1:2}
>>> print(x)
{1: 2}
>>> d = {3:4, 5:6, 7:8}
>>> x.update(d)
>>> print(x)
{1: 2, 3: 4, 5: 6, 7: 8}
For adding a single key, the accepted answer has less computational overhead.
"Is it possible to add a key to a Python dictionary after it has been created? It doesn't seem to have an .add() method."
Yes it is possible, and it does have a method that implements this, but you don't want to use it directly.
To demonstrate how and how not to use it, let's create an empty dict with the dict literal, {}:
my_dict = {}
Best Practice 1: Subscript notation
To update this dict with a single new key and value, you can use the subscript notation (see Mappings here) that provides for item assignment:
my_dict['new key'] = 'new value'
my_dict is now:
{'new key': 'new value'}
Best Practice 2: The update method - 2 ways
We can also update the dict with multiple values efficiently as well using the update method. We may be unnecessarily creating an extra dict here, so we hope our dict has already been created and came from or was used for another purpose:
my_dict.update({'key 2': 'value 2', 'key 3': 'value 3'})
my_dict is now:
{'key 2': 'value 2', 'key 3': 'value 3', 'new key': 'new value'}
Another efficient way of doing this with the update method is with keyword arguments, but since they have to be legitimate python words, you can't have spaces or special symbols or start the name with a number, but many consider this a more readable way to create keys for a dict, and here we certainly avoid creating an extra unnecessary dict:
my_dict.update(foo='bar', foo2='baz')
and my_dict is now:
{'key 2': 'value 2', 'key 3': 'value 3', 'new key': 'new value',
'foo': 'bar', 'foo2': 'baz'}
So now we have covered three Pythonic ways of updating a dict.
Magic method, __setitem__, and why it should be avoided
There's another way of updating a dict that you shouldn't use, which uses the __setitem__ method. Here's an example of how one might use the __setitem__ method to add a key-value pair to a dict, and a demonstration of the poor performance of using it:
>>> d = {}
>>> d.__setitem__('foo', 'bar')
>>> d
{'foo': 'bar'}
>>> def f():
... d = {}
... for i in xrange(100):
... d['foo'] = i
...
>>> def g():
... d = {}
... for i in xrange(100):
... d.__setitem__('foo', i)
...
>>> import timeit
>>> number = 100
>>> min(timeit.repeat(f, number=number))
0.0020880699157714844
>>> min(timeit.repeat(g, number=number))
0.005071878433227539
So we see that using the subscript notation is actually much faster than using __setitem__. Doing the Pythonic thing, that is, using the language in the way it was intended to be used, usually is both more readable and computationally efficient.
dictionary[key] = value
If you want to add a dictionary within a dictionary you can do it this way.
Example: Add a new entry to your dictionary & sub dictionary
dictionary = {}
dictionary["new key"] = "some new entry" # add new dictionary entry
dictionary["dictionary_within_a_dictionary"] = {} # this is required by python
dictionary["dictionary_within_a_dictionary"]["sub_dict"] = {"other" : "dictionary"}
print (dictionary)
Output:
{'new key': 'some new entry', 'dictionary_within_a_dictionary': {'sub_dict': {'other': 'dictionarly'}}}
NOTE: Python requires that you first add a sub
dictionary["dictionary_within_a_dictionary"] = {}
before adding entries.
The conventional syntax is d[key] = value, but if your keyboard is missing the square bracket keys you could also do:
d.__setitem__(key, value)
In fact, defining __getitem__ and __setitem__ methods is how you can make your own class support the square bracket syntax. See Dive Into Python, Classes That Act Like Dictionaries.
You can create one:
class myDict(dict):
def __init__(self):
self = dict()
def add(self, key, value):
self[key] = value
## example
myd = myDict()
myd.add('apples',6)
myd.add('bananas',3)
print(myd)
Gives:
>>>
{'apples': 6, 'bananas': 3}
This popular question addresses functional methods of merging dictionaries a and b.
Here are some of the more straightforward methods (tested in Python 3)...
c = dict( a, **b ) ## see also https://stackoverflow.com/q/2255878
c = dict( list(a.items()) + list(b.items()) )
c = dict( i for d in [a,b] for i in d.items() )
Note: The first method above only works if the keys in b are strings.
To add or modify a single element, the b dictionary would contain only that one element...
c = dict( a, **{'d':'dog'} ) ## returns a dictionary based on 'a'
This is equivalent to...
def functional_dict_add( dictionary, key, value ):
temp = dictionary.copy()
temp[key] = value
return temp
c = functional_dict_add( a, 'd', 'dog' )
Let's pretend you want to live in the immutable world and do not want to modify the original but want to create a new dict that is the result of adding a new key to the original.
In Python 3.5+ you can do:
params = {'a': 1, 'b': 2}
new_params = {**params, **{'c': 3}}
The Python 2 equivalent is:
params = {'a': 1, 'b': 2}
new_params = dict(params, **{'c': 3})
After either of these:
params is still equal to {'a': 1, 'b': 2}
and
new_params is equal to {'a': 1, 'b': 2, 'c': 3}
There will be times when you don't want to modify the original (you only want the result of adding to the original). I find this a refreshing alternative to the following:
params = {'a': 1, 'b': 2}
new_params = params.copy()
new_params['c'] = 3
or
params = {'a': 1, 'b': 2}
new_params = params.copy()
new_params.update({'c': 3})
Reference: What does `**` mean in the expression `dict(d1, **d2)`?
There is also the strangely named, oddly behaved, and yet still handy dict.setdefault().
This
value = my_dict.setdefault(key, default)
basically just does this:
try:
value = my_dict[key]
except KeyError: # key not found
value = my_dict[key] = default
E.g.,
>>> mydict = {'a':1, 'b':2, 'c':3}
>>> mydict.setdefault('d', 4)
4 # returns new value at mydict['d']
>>> print(mydict)
{'a':1, 'b':2, 'c':3, 'd':4} # a new key/value pair was indeed added
# but see what happens when trying it on an existing key...
>>> mydict.setdefault('a', 111)
1 # old value was returned
>>> print(mydict)
{'a':1, 'b':2, 'c':3, 'd':4} # existing key was ignored
This question has already been answered ad nauseam, but since my
comment
gained a lot of traction, here it is as an answer:
Adding new keys without updating the existing dict
If you are here trying to figure out how to add a key and return a new dictionary (without modifying the existing one), you can do this using the techniques below
Python >= 3.5
new_dict = {**mydict, 'new_key': new_val}
Python < 3.5
new_dict = dict(mydict, new_key=new_val)
Note that with this approach, your key will need to follow the rules of valid identifier names in Python.
If you're not joining two dictionaries, but adding new key-value pairs to a dictionary, then using the subscript notation seems like the best way.
import timeit
timeit.timeit('dictionary = {"karga": 1, "darga": 2}; dictionary.update({"aaa": 123123, "asd": 233})')
>> 0.49582505226135254
timeit.timeit('dictionary = {"karga": 1, "darga": 2}; dictionary["aaa"] = 123123; dictionary["asd"] = 233;')
>> 0.20782899856567383
However, if you'd like to add, for example, thousands of new key-value pairs, you should consider using the update() method.
Here's another way that I didn't see here:
>>> foo = dict(a=1,b=2)
>>> foo
{'a': 1, 'b': 2}
>>> goo = dict(c=3,**foo)
>>> goo
{'c': 3, 'a': 1, 'b': 2}
You can use the dictionary constructor and implicit expansion to reconstruct a dictionary. Moreover, interestingly, this method can be used to control the positional order during dictionary construction (post Python 3.6). In fact, insertion order is guaranteed for Python 3.7 and above!
>>> foo = dict(a=1,b=2,c=3,d=4)
>>> new_dict = {k: v for k, v in list(foo.items())[:2]}
>>> new_dict
{'a': 1, 'b': 2}
>>> new_dict.update(newvalue=99)
>>> new_dict
{'a': 1, 'b': 2, 'newvalue': 99}
>>> new_dict.update({k: v for k, v in list(foo.items())[2:]})
>>> new_dict
{'a': 1, 'b': 2, 'newvalue': 99, 'c': 3, 'd': 4}
>>>
The above is using dictionary comprehension.
First to check whether the key already exists:
a={1:2,3:4}
a.get(1)
2
a.get(5)
None
Then you can add the new key and value.
Add a dictionary (key,value) class.
class myDict(dict):
def __init__(self):
self = dict()
def add(self, key, value):
#self[key] = value # add new key and value overwriting any exiting same key
if self.get(key)!=None:
print('key', key, 'already used') # report if key already used
self.setdefault(key, value) # if key exit do nothing
## example
myd = myDict()
name = "fred"
myd.add('apples',6)
print('\n', myd)
myd.add('bananas',3)
print('\n', myd)
myd.add('jack', 7)
print('\n', myd)
myd.add(name, myd)
print('\n', myd)
myd.add('apples', 23)
print('\n', myd)
myd.add(name, 2)
print(myd)
I think it would also be useful to point out Python's collections module that consists of many useful dictionary subclasses and wrappers that simplify the addition and modification of data types in a dictionary, specifically defaultdict:
dict subclass that calls a factory function to supply missing values
This is particularly useful if you are working with dictionaries that always consist of the same data types or structures, for example a dictionary of lists.
>>> from collections import defaultdict
>>> example = defaultdict(int)
>>> example['key'] += 1
>>> example['key']
defaultdict(<class 'int'>, {'key': 1})
If the key does not yet exist, defaultdict assigns the value given (in our case 10) as the initial value to the dictionary (often used inside loops). This operation therefore does two things: it adds a new key to a dictionary (as per question), and assigns the value if the key doesn't yet exist. With the standard dictionary, this would have raised an error as the += operation is trying to access a value that doesn't yet exist:
>>> example = dict()
>>> example['key'] += 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'key'
Without the use of defaultdict, the amount of code to add a new element would be much greater and perhaps looks something like:
# This type of code would often be inside a loop
if 'key' not in example:
example['key'] = 0 # add key and initial value to dict; could also be a list
example['key'] += 1 # this is implementing a counter
defaultdict can also be used with complex data types such as list and set:
>>> example = defaultdict(list)
>>> example['key'].append(1)
>>> example
defaultdict(<class 'list'>, {'key': [1]})
Adding an element automatically initialises the list.
Adding keys to dictionary without using add
# Inserting/Updating single value
# subscript notation method
d['mynewkey'] = 'mynewvalue' # Updates if 'a' exists, else adds 'a'
# OR
d.update({'mynewkey': 'mynewvalue'})
# OR
d.update(dict('mynewkey'='mynewvalue'))
# OR
d.update('mynewkey'='mynewvalue')
print(d) # {'key': 'value', 'mynewkey': 'mynewvalue'}
# To add/update multiple keys simultaneously, use d.update():
x = {3:4, 5:6, 7:8}
d.update(x)
print(d) # {'key': 'value', 'mynewkey': 'mynewvalue', 3: 4, 5: 6, 7: 8}
# update operator |= now works for dictionaries:
d |= {'c':3,'d':4}
# Assigning new key value pair using dictionary unpacking.
data1 = {4:6, 9:10, 17:20}
data2 = {20:30, 32:48, 90:100}
data3 = { 38:"value", 99:"notvalid"}
d = {**data1, **data2, **data3}
# The merge operator | now works for dictionaries:
data = data1 | {'c':3,'d':4}
# Create a dictionary from two lists
data = dict(zip(list_with_keys, list_with_values))
dico["new key"] = "value"
I'm trying to append a value (list) to a dictionary unsuccessfully. setting the value by 'equal' works, but appending doesn't.
DurationDict = dict()
DurationDict[str(curYear)] = duration // This works
DurationDict[str(curYear)].append(duration) //This does't work.
any ideas?
If you want to append to the value of dictionary, then value should be a type of list.
lets consider following example:
>>> k = {"a":1}
>>> k["b"] = 2
>>> k["c"] = [2]
>>> k["c"].append("new value") # here you can append because value of c is type of list.
>>> print(k)
{'a': 1, 'c': [2, 'new value'], 'b': 2}
>>> k["b"].append("new value") # here you can not append because value of b is type of int
you can append to a list but not to a dict. python dicts are documented here.
if you want to have a list for all your dictionary entries, you can use defaultdict:
collections import defaultdict
DurationDict = defaultdict(list)
DurationDict[str(curYear)].append(duration)
defaultdict works like a normal dict except it returns the result of the 'factory' - in this case list() if the key you are looking up does not exist yet. you can then append to this (empty) list.
You can only append lists. If you have an empty dictionary d,
d = {} # initialize an empty dictionary
d['a'].append(1) # will NOT work
But if you already had an empty list defined,
d = {'a': []} # initialize with an empty list
df['a'].append(1) # will work
>>> d
{'a': [1]}
How do I add a key to an existing dictionary? It doesn't have an .add() method.
You create a new key/value pair on a dictionary by assigning a value to that key
d = {'key': 'value'}
print(d) # {'key': 'value'}
d['mynewkey'] = 'mynewvalue'
print(d) # {'key': 'value', 'mynewkey': 'mynewvalue'}
If the key doesn't exist, it's added and points to that value. If it exists, the current value it points to is overwritten.
I feel like consolidating info about Python dictionaries:
Creating an empty dictionary
data = {}
# OR
data = dict()
Creating a dictionary with initial values
data = {'a': 1, 'b': 2, 'c': 3}
# OR
data = dict(a=1, b=2, c=3)
# OR
data = {k: v for k, v in (('a', 1), ('b',2), ('c',3))}
Inserting/Updating a single value
data['a'] = 1 # Updates if 'a' exists, else adds 'a'
# OR
data.update({'a': 1})
# OR
data.update(dict(a=1))
# OR
data.update(a=1)
Inserting/Updating multiple values
data.update({'c':3,'d':4}) # Updates 'c' and adds 'd'
Python 3.9+:
The update operator |= now works for dictionaries:
data |= {'c':3,'d':4}
Creating a merged dictionary without modifying originals
data3 = {}
data3.update(data) # Modifies data3, not data
data3.update(data2) # Modifies data3, not data2
Python 3.5+:
This uses a new feature called dictionary unpacking.
data = {**data1, **data2, **data3}
Python 3.9+:
The merge operator | now works for dictionaries:
data = data1 | {'c':3,'d':4}
Deleting items in dictionary
del data[key] # Removes specific element in a dictionary
data.pop(key) # Removes the key & returns the value
data.clear() # Clears entire dictionary
Check if a key is already in dictionary
key in data
Iterate through pairs in a dictionary
for key in data: # Iterates just through the keys, ignoring the values
for key, value in d.items(): # Iterates through the pairs
for key in d.keys(): # Iterates just through key, ignoring the values
for value in d.values(): # Iterates just through value, ignoring the keys
Create a dictionary from two lists
data = dict(zip(list_with_keys, list_with_values))
To add multiple keys simultaneously, use dict.update():
>>> x = {1:2}
>>> print(x)
{1: 2}
>>> d = {3:4, 5:6, 7:8}
>>> x.update(d)
>>> print(x)
{1: 2, 3: 4, 5: 6, 7: 8}
For adding a single key, the accepted answer has less computational overhead.
"Is it possible to add a key to a Python dictionary after it has been created? It doesn't seem to have an .add() method."
Yes it is possible, and it does have a method that implements this, but you don't want to use it directly.
To demonstrate how and how not to use it, let's create an empty dict with the dict literal, {}:
my_dict = {}
Best Practice 1: Subscript notation
To update this dict with a single new key and value, you can use the subscript notation (see Mappings here) that provides for item assignment:
my_dict['new key'] = 'new value'
my_dict is now:
{'new key': 'new value'}
Best Practice 2: The update method - 2 ways
We can also update the dict with multiple values efficiently as well using the update method. We may be unnecessarily creating an extra dict here, so we hope our dict has already been created and came from or was used for another purpose:
my_dict.update({'key 2': 'value 2', 'key 3': 'value 3'})
my_dict is now:
{'key 2': 'value 2', 'key 3': 'value 3', 'new key': 'new value'}
Another efficient way of doing this with the update method is with keyword arguments, but since they have to be legitimate python words, you can't have spaces or special symbols or start the name with a number, but many consider this a more readable way to create keys for a dict, and here we certainly avoid creating an extra unnecessary dict:
my_dict.update(foo='bar', foo2='baz')
and my_dict is now:
{'key 2': 'value 2', 'key 3': 'value 3', 'new key': 'new value',
'foo': 'bar', 'foo2': 'baz'}
So now we have covered three Pythonic ways of updating a dict.
Magic method, __setitem__, and why it should be avoided
There's another way of updating a dict that you shouldn't use, which uses the __setitem__ method. Here's an example of how one might use the __setitem__ method to add a key-value pair to a dict, and a demonstration of the poor performance of using it:
>>> d = {}
>>> d.__setitem__('foo', 'bar')
>>> d
{'foo': 'bar'}
>>> def f():
... d = {}
... for i in xrange(100):
... d['foo'] = i
...
>>> def g():
... d = {}
... for i in xrange(100):
... d.__setitem__('foo', i)
...
>>> import timeit
>>> number = 100
>>> min(timeit.repeat(f, number=number))
0.0020880699157714844
>>> min(timeit.repeat(g, number=number))
0.005071878433227539
So we see that using the subscript notation is actually much faster than using __setitem__. Doing the Pythonic thing, that is, using the language in the way it was intended to be used, usually is both more readable and computationally efficient.
dictionary[key] = value
If you want to add a dictionary within a dictionary you can do it this way.
Example: Add a new entry to your dictionary & sub dictionary
dictionary = {}
dictionary["new key"] = "some new entry" # add new dictionary entry
dictionary["dictionary_within_a_dictionary"] = {} # this is required by python
dictionary["dictionary_within_a_dictionary"]["sub_dict"] = {"other" : "dictionary"}
print (dictionary)
Output:
{'new key': 'some new entry', 'dictionary_within_a_dictionary': {'sub_dict': {'other': 'dictionarly'}}}
NOTE: Python requires that you first add a sub
dictionary["dictionary_within_a_dictionary"] = {}
before adding entries.
The conventional syntax is d[key] = value, but if your keyboard is missing the square bracket keys you could also do:
d.__setitem__(key, value)
In fact, defining __getitem__ and __setitem__ methods is how you can make your own class support the square bracket syntax. See Dive Into Python, Classes That Act Like Dictionaries.
You can create one:
class myDict(dict):
def __init__(self):
self = dict()
def add(self, key, value):
self[key] = value
## example
myd = myDict()
myd.add('apples',6)
myd.add('bananas',3)
print(myd)
Gives:
>>>
{'apples': 6, 'bananas': 3}
This popular question addresses functional methods of merging dictionaries a and b.
Here are some of the more straightforward methods (tested in Python 3)...
c = dict( a, **b ) ## see also https://stackoverflow.com/q/2255878
c = dict( list(a.items()) + list(b.items()) )
c = dict( i for d in [a,b] for i in d.items() )
Note: The first method above only works if the keys in b are strings.
To add or modify a single element, the b dictionary would contain only that one element...
c = dict( a, **{'d':'dog'} ) ## returns a dictionary based on 'a'
This is equivalent to...
def functional_dict_add( dictionary, key, value ):
temp = dictionary.copy()
temp[key] = value
return temp
c = functional_dict_add( a, 'd', 'dog' )
Let's pretend you want to live in the immutable world and do not want to modify the original but want to create a new dict that is the result of adding a new key to the original.
In Python 3.5+ you can do:
params = {'a': 1, 'b': 2}
new_params = {**params, **{'c': 3}}
The Python 2 equivalent is:
params = {'a': 1, 'b': 2}
new_params = dict(params, **{'c': 3})
After either of these:
params is still equal to {'a': 1, 'b': 2}
and
new_params is equal to {'a': 1, 'b': 2, 'c': 3}
There will be times when you don't want to modify the original (you only want the result of adding to the original). I find this a refreshing alternative to the following:
params = {'a': 1, 'b': 2}
new_params = params.copy()
new_params['c'] = 3
or
params = {'a': 1, 'b': 2}
new_params = params.copy()
new_params.update({'c': 3})
Reference: What does `**` mean in the expression `dict(d1, **d2)`?
There is also the strangely named, oddly behaved, and yet still handy dict.setdefault().
This
value = my_dict.setdefault(key, default)
basically just does this:
try:
value = my_dict[key]
except KeyError: # key not found
value = my_dict[key] = default
E.g.,
>>> mydict = {'a':1, 'b':2, 'c':3}
>>> mydict.setdefault('d', 4)
4 # returns new value at mydict['d']
>>> print(mydict)
{'a':1, 'b':2, 'c':3, 'd':4} # a new key/value pair was indeed added
# but see what happens when trying it on an existing key...
>>> mydict.setdefault('a', 111)
1 # old value was returned
>>> print(mydict)
{'a':1, 'b':2, 'c':3, 'd':4} # existing key was ignored
This question has already been answered ad nauseam, but since my
comment
gained a lot of traction, here it is as an answer:
Adding new keys without updating the existing dict
If you are here trying to figure out how to add a key and return a new dictionary (without modifying the existing one), you can do this using the techniques below
Python >= 3.5
new_dict = {**mydict, 'new_key': new_val}
Python < 3.5
new_dict = dict(mydict, new_key=new_val)
Note that with this approach, your key will need to follow the rules of valid identifier names in Python.
If you're not joining two dictionaries, but adding new key-value pairs to a dictionary, then using the subscript notation seems like the best way.
import timeit
timeit.timeit('dictionary = {"karga": 1, "darga": 2}; dictionary.update({"aaa": 123123, "asd": 233})')
>> 0.49582505226135254
timeit.timeit('dictionary = {"karga": 1, "darga": 2}; dictionary["aaa"] = 123123; dictionary["asd"] = 233;')
>> 0.20782899856567383
However, if you'd like to add, for example, thousands of new key-value pairs, you should consider using the update() method.
Here's another way that I didn't see here:
>>> foo = dict(a=1,b=2)
>>> foo
{'a': 1, 'b': 2}
>>> goo = dict(c=3,**foo)
>>> goo
{'c': 3, 'a': 1, 'b': 2}
You can use the dictionary constructor and implicit expansion to reconstruct a dictionary. Moreover, interestingly, this method can be used to control the positional order during dictionary construction (post Python 3.6). In fact, insertion order is guaranteed for Python 3.7 and above!
>>> foo = dict(a=1,b=2,c=3,d=4)
>>> new_dict = {k: v for k, v in list(foo.items())[:2]}
>>> new_dict
{'a': 1, 'b': 2}
>>> new_dict.update(newvalue=99)
>>> new_dict
{'a': 1, 'b': 2, 'newvalue': 99}
>>> new_dict.update({k: v for k, v in list(foo.items())[2:]})
>>> new_dict
{'a': 1, 'b': 2, 'newvalue': 99, 'c': 3, 'd': 4}
>>>
The above is using dictionary comprehension.
First to check whether the key already exists:
a={1:2,3:4}
a.get(1)
2
a.get(5)
None
Then you can add the new key and value.
Add a dictionary (key,value) class.
class myDict(dict):
def __init__(self):
self = dict()
def add(self, key, value):
#self[key] = value # add new key and value overwriting any exiting same key
if self.get(key)!=None:
print('key', key, 'already used') # report if key already used
self.setdefault(key, value) # if key exit do nothing
## example
myd = myDict()
name = "fred"
myd.add('apples',6)
print('\n', myd)
myd.add('bananas',3)
print('\n', myd)
myd.add('jack', 7)
print('\n', myd)
myd.add(name, myd)
print('\n', myd)
myd.add('apples', 23)
print('\n', myd)
myd.add(name, 2)
print(myd)
I think it would also be useful to point out Python's collections module that consists of many useful dictionary subclasses and wrappers that simplify the addition and modification of data types in a dictionary, specifically defaultdict:
dict subclass that calls a factory function to supply missing values
This is particularly useful if you are working with dictionaries that always consist of the same data types or structures, for example a dictionary of lists.
>>> from collections import defaultdict
>>> example = defaultdict(int)
>>> example['key'] += 1
>>> example['key']
defaultdict(<class 'int'>, {'key': 1})
If the key does not yet exist, defaultdict assigns the value given (in our case 10) as the initial value to the dictionary (often used inside loops). This operation therefore does two things: it adds a new key to a dictionary (as per question), and assigns the value if the key doesn't yet exist. With the standard dictionary, this would have raised an error as the += operation is trying to access a value that doesn't yet exist:
>>> example = dict()
>>> example['key'] += 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'key'
Without the use of defaultdict, the amount of code to add a new element would be much greater and perhaps looks something like:
# This type of code would often be inside a loop
if 'key' not in example:
example['key'] = 0 # add key and initial value to dict; could also be a list
example['key'] += 1 # this is implementing a counter
defaultdict can also be used with complex data types such as list and set:
>>> example = defaultdict(list)
>>> example['key'].append(1)
>>> example
defaultdict(<class 'list'>, {'key': [1]})
Adding an element automatically initialises the list.
Adding keys to dictionary without using add
# Inserting/Updating single value
# subscript notation method
d['mynewkey'] = 'mynewvalue' # Updates if 'a' exists, else adds 'a'
# OR
d.update({'mynewkey': 'mynewvalue'})
# OR
d.update(dict('mynewkey'='mynewvalue'))
# OR
d.update('mynewkey'='mynewvalue')
print(d) # {'key': 'value', 'mynewkey': 'mynewvalue'}
# To add/update multiple keys simultaneously, use d.update():
x = {3:4, 5:6, 7:8}
d.update(x)
print(d) # {'key': 'value', 'mynewkey': 'mynewvalue', 3: 4, 5: 6, 7: 8}
# update operator |= now works for dictionaries:
d |= {'c':3,'d':4}
# Assigning new key value pair using dictionary unpacking.
data1 = {4:6, 9:10, 17:20}
data2 = {20:30, 32:48, 90:100}
data3 = { 38:"value", 99:"notvalid"}
d = {**data1, **data2, **data3}
# The merge operator | now works for dictionaries:
data = data1 | {'c':3,'d':4}
# Create a dictionary from two lists
data = dict(zip(list_with_keys, list_with_values))
dico["new key"] = "value"