Python caching in objects - python

I've created an object called 'Frame'
class Frame:
def __init__(self, image):
self.image = image
def gray(self):
return cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
Some operations, e.g. gray(), are expensive. I'd like to cache the result in the instance so that subsequent calls don't have to recalculate this. What's the cleanest way to do that?

Pyramid uses this fantastic #reify decorator:
class reify(object):
""" Use as a class method decorator. It operates almost exactly like the
Python ``#property`` decorator, but it puts the result of the method it
decorates into the instance dict after the first call, effectively
replacing the function it decorates with an instance variable. It is, in
Python parlance, a non-data descriptor. An example:
.. code-block:: python
class Foo(object):
#reify
def jammy(self):
print('jammy called')
return 1
And usage of Foo:
>>> f = Foo()
>>> v = f.jammy
'jammy called'
>>> print(v)
1
>>> f.jammy
1
>>> # jammy func not called the second time; it replaced itself with 1
"""
def __init__(self, wrapped):
self.wrapped = wrapped
try:
self.__doc__ = wrapped.__doc__
except: # pragma: no cover
pass
def __get__(self, inst, objtype=None):
if inst is None:
return self
val = self.wrapped(inst)
setattr(inst, self.wrapped.__name__, val)
return val
The docstring speaks for itself. =)

The best goto for problems involving this would be to use a memoize like function simple decorator solution can be found here: (http://code.activestate.com/recipes/578231-probably-the-fastest-memoization-decorator-in-the-/)

Could this not simply be done on instantiation?
class Frame:
def __init__(self, image):
self.image = image
self.gray = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
EDIT - Seems like a good time for a property?
class Frame(object):
def __init__(self, image):
self.image = image
self._grey = None
#property
def grey(self):
if self._grey is None:
self._grey = solve_for_grey(self.image, stuff)
return self._grey

Related

Tracking decorated methods of children classes in python

In python, how can I setup a parent class to track methods with a specific decorator for each child seperatly? A quick code snippet of what I am trying to do:
class Parent:
decorated_func_dict = {} #dictionary that stores name->func for decorated functions
def get_func_by_decorator_name(self, name):
#stuff
pass
class Child1(Parent):
#func_name("Bob")
def bob_func(self, *args):
pass
#func_name("Tom")
def func2(self, *args):
pass
class Child2(Parent):
#func_name("Bob")
def func_bob2(self, *args):
pass
foo = Child1()
bar = Child2()
foo.get_func_by_decorator_name("Bob")
#Returns foo.bob_func
bar.get_func_by_decorator_name("Bob")
#Returns bar.func_bob2
Using Python 3.9.
A decorator is not something that makes a function look pretty. It is a callable that ingests an object (not only functions), does some arbitrary operations, and returns a replacement object.
In this case, your decorator should be storing references to function objects in a dictionary somewhere. The problem is that you won't be able to reference the class in which the functions are defined until it is created, which happens well after the decorator is run. You can avoid this by storing the name of the class as well as the name of the function.
The final step here is to properly bind the function objects to methods on the right object. That is something that get_func_by_decorated_name can do for you.
In sum, you can write something like this:
decorated_func_dict = {}
def func_name(cls_name, func_name):
def decorator(func):
decorated_func_dict.setdefault(cls_name, {})[func_name] = func
return func
return decorator
class Parent:
def get_func_by_decorator_name(self, name):
return decorated_func_dict[type(self).__name__][name].__get__(self)
class Child1(Parent):
#func_name("Child1", "Bob")
def bob_func(self, *args):
pass
#func_name("Child1", "Tom")
def func2(self, *args):
pass
class Child2(Parent):
#func_name("Child2", "Bob")
def func_bob2(self, *args):
pass
And indeed you get:
>>> foo.get_func_by_decorator_name("Bob")
<bound method Child1.bob_func of <__main__.Child1 object at 0x000001D58181E070>>
>>> bar.get_func_by_decorator_name("Bob")
<bound method Child2.func_bob2 of <__main__.Child2 object at 0x000001D582041F10>>
Another way to do this is to give your functions a name attribute, which you can then aggregate into a mapping in __init_subclass__ in Parent. This allows you to make an interface a bit closer to what you originally intended:
def func_name(func_name):
def decorator(func):
func.special_name = func_name
return func
return decorator
class Parent:
def __init_subclass__(cls):
cls.decorated_func_dict = {}
for item in cls.__dict__.values():
if hasattr(item, 'special_name'):
cls.decorated_func_dict[item.special_name] = item
del item.special_name # optional
def get_func_by_decorator_name(self, name):
return self.decorated_func_dict[name].__get__(self)
class Child1(Parent):
#func_name("Bob")
def bob_func(self, *args):
pass
#func_name("Tom")
def func2(self, *args):
pass
class Child2(Parent):
#func_name("Bob")
def func_bob2(self, *args):
pass
The results are identical to the first example.
The easiest way would of course be to get access to the child's namespace before the class is created, e.g. with a metaclass.

Python : use a class methods as static , when its implemented as instance methods

I have a big class which has a lot of functions and attributes.
the instances are created from data in a remote database.
the process of creating each instance is very long and heavy.
In performance sake ive created a bunch class from this heavy class.
so accessing the attributed is easy and works great .
the problem is how to use the methods from that class.
ex :
class clsA():
def __init__(self,obj):
self.attrA=obj.attrA
def someFunc(self):
print self
class bunchClsA(bunch):
def __getattr__(self, attr):
# this is the problem:
try:
#try and return a func
func = clsA.attr
return func
except:
# return simple attribute
return self.attr
Clearly this dosent work , Is there a way i could access the instance function staticly and override the "self" var ?
Found out a nice solution to the problem :
from bunch import Bunch
import types
#Original class:
class A():
y=6
def __init__(self,num):
self.x=num
def funcA(self):
print self.x
#class that wraps A using Bunch(thats what i needed .. u can use another):
class B(Bunch):
def __init__(self, data, cls):
self._cls = cls # notice, not an instance just the class it self
super(B, self).__init__(data)
def __getattr__(self, attr):
# Handles normal Bunch, dict attributes
if attr in self.keys():
return self[attr]
else:
res = getattr(self._cls, attr)
if isinstance(res, types.MethodType):
# returns the class func with self overriden
return types.MethodType(res.im_func, self, type(self))
else:
# returns class attributes like y
return res
data = {'x': 3}
ins_b = B(data, A)
print ins_b.funcA() # returns 3
print ins_b.y # returns 6
And this solves my issue, its a hack and if you have the privileges, redesign the code.

Setting a functools.partial as an instance method in Python

I'm using functools.partial to create a closure, and using setattr to make is callable from a class instance. The idea here is to create a set of methods at runtime.
#!/usr/bin/python
from functools import partial
class MyClass(object):
def __init__(self, val):
self.val = val
#classmethod
def generateMethods(self):
def dummy(conf1, self):
print "conf1:", conf1
print "self.val:", self.val
print
for s in ('dynamic_1', 'dynamic_2'):
closed = partial(dummy, s)
setattr(self, "test_{0}".format(s), closed)
It seems to me that partial would bind the current value of s to dummy's first arg, which would free up self to be passed when this is called from an instance.
It's not working how I'd expect
if __name__ == '__main__':
# Dynamically create some methods
MyClass.generateMethods()
# Create an instance
x = MyClass('FOO')
# The dynamically created methods aren't callable from the instance :(
#x.test_dynamic_1()
# TypeError: dummy() takes exactly 2 arguments (1 given)
# .. but these work just fine
MyClass.test_dynamic_1(x)
MyClass.test_dynamic_2(x)
Is it possible to dynamically create methods which are closures, but callable from instances of the class?
I think the new functools.partialmethod is for this exact use case.
Straight from the docs:
>>> class Cell(object):
... def __init__(self):
... self._alive = False
... #property
... def alive(self):
... return self._alive
... def set_state(self, state):
... self._alive = bool(state)
... set_alive = partialmethod(set_state, True)
... set_dead = partialmethod(set_state, False)
...
>>> c = Cell()
>>> c.alive
False
>>> c.set_alive()
>>> c.alive
True
The issue is that when you're calling them using the instances they are actually not bound methods, i.e they have no knowledge about the instance. Bound methods insert the self to the arguments of the underlying function automatically when called, it is stored in the __self__ attribute of bound method.
So, override __getattribute__ and see if the object being fetched is an instance of partial type or not, if yes, convert it to a bound method using types.MethodType.
Code:
#!/usr/bin/python
from functools import partial
import types
class MyClass(object):
def __init__(self, val):
self.val = val
#classmethod
def generateMethods(self):
def dummy(conf1, self):
print "conf1:", conf1
print "self.val:", self.val
print
for s in ('dynamic_1', 'dynamic_2'):
closed = partial(dummy, s)
setattr(self, "test_{0}".format(s), closed)
def __getattribute__(self, attr):
# Here we do have access to the much need instance(self)
obj = object.__getattribute__(self, attr)
if isinstance(obj, partial):
return types.MethodType(obj, self, type(self))
else:
return obj
if __name__ == '__main__':
MyClass.generateMethods()
x = MyClass('FOO')
x.test_dynamic_1()
x.test_dynamic_2()

Can I refactor this simple callback pattern that uses the property decorator?

I'm just getting to grips with decorators in Python and using them to add callbacks to some instance variables using the following simple pattern:
class A(object):
def __init__(self):
self._var = 0
self.var_callbacks = []
#property
def var(self):
return self._var
#var.setter
def var(self, x):
self._var = x
for f in self.var_callbacks:
f(x)
The property decorator is a neat way of allowing me to introduce callbacks where necessary without changing the class interface. However, after the third or fourth variable it's making the code a bit repetitive.
Is there a way to refactor this pattern into something along the following:
class A(object):
def __init__(self):
self.var = 0
enable_callback(self, 'var', 'var_callbacks')
You'll need to set the property on the class (since it is a descriptor), so using a enable_callback call in the initializer is not going to work.
You could use a class decorator to set the properties from a pattern:
def callback_properties(callbacks_attribute, *names):
def create_callback_property(name):
def getter(self):
return getattr(self, '_' + name)
def setter(self, value):
setattr(self, '_' + name, value)
for f in getattr(self, callbacks_attribute):
f(value)
return property(getter, setter)
def add_callback_properties(cls):
for name in names:
setattr(cls, name, create_callback_property(name)
return cls
return add_callback_properties
Then use that as:
#add_callback_properties('var_callbacks', 'var1', 'var2')
class A(object):
# everything else
Have a look at the Python descriptor protocol. In essence, you can define a class that handles the getting, setting and deleting of a property. So you could define a descriptor that runs your callbacks on setting the attribute.
Descriptors are regular classes, and can be parameterized. So you could implement a descriptor that takes the destination variable its constructor. Something like the following:
class A(object):
var = CallbackDescriptor('var')
foo = CallbackDescriptor('foo')

dynamically adding callable to class as instance "method"

I implemented a metaclass that tears down the class attributes for classes created with it and builds methods from the data from those arguments, then attaches those dynamically created methods directly to the class object (the class in question allows for easy definition of web form objects for use in a web testing framework). It has been working just fine, but now I have a need to add a more complex type of method, which, to try to keep things clean, I implemented as a callable class. Unfortunately, when I try to call the callable class on an instance, it is treated as a class attribute instead of an instance method, and when called, only receives its own self. I can see why this happens, but I was hoping someone might have a better solution than the ones I've come up with. Simplified illustration of the problem:
class Foo(object):
def __init__(self, name, val):
self.name = name
self.val = val
self.__name__ = name + '_foo'
self.name = name
# This doesn't work as I'd wish
def __call__(self, instance):
return self.name + str(self.val + instance.val)
def get_methods(name, foo_val):
foo = Foo(name, foo_val)
def bar(self):
return name + str(self.val + 2)
bar.__name__ = name + '_bar'
return foo, bar
class Baz(object):
def __init__(self, val):
self.val = val
for method in get_methods('biff', 1):
setattr(Baz, method.__name__, method)
baz = Baz(10)
# baz.val == 10
# baz.biff_foo() == 'biff11'
# baz.biff_bar() == 'biff12'
I've thought of:
Using a descriptor, but that seems way more complex than is necessary here
Using a closure inside of a factory for foo, but nested closures are ugly and messy replacements for objects most of the time, imo
Wrapping the Foo instance in a method that passes its self down to the Foo instance as instance, basically a decorator, that is what I actually add to Baz, but that seems superfluous and basically just a more complicated way of doing the same thing as (2)
Is there a better way then any of these to try to accomplish what I want, or should I just bite the bullet and use some closure factory type pattern?
One way to do this is to attach the callable objects to the class as unbound methods. The method constructor will work with arbitrary callables (i.e. instances of classes with a __call__() method)—not just functions.
from types import MethodType
class Foo(object):
def __init__(self, name, val):
self.name = name
self.val = val
self.__name__ = name + '_foo'
self.name = name
def __call__(self, instance):
return self.name + str(self.val + instance.val)
class Baz(object):
def __init__(self, val):
self.val = val
Baz.biff = MethodType(Foo("biff", 42), None, Baz)
b = Baz(13)
print b.biff()
>>> biff55
In Python 3, there's no such thing as an unbound instance method (classes just have regular functions attached) so you might instead make your Foo class a descriptor that returns a bound instance method by giving it a __get__() method. (Actually, that approach will work in Python 2.x as well, but the above will perform a little better.)
from types import MethodType
class Foo(object):
def __init__(self, name, val):
self.name = name
self.val = val
self.__name__ = name + '_foo'
self.name = name
def __call__(self, instance):
return self.name + str(self.val + instance.val)
def __get__(self, instance, owner):
return MethodType(self, instance) if instance else self
# Python 2: MethodType(self, instance, owner)
class Baz(object):
def __init__(self, val):
self.val = val
Baz.biff = Foo("biff", 42)
b = Baz(13)
print b.biff()
>>> biff55
The trouble you're running into is that your object is not being bound as a method of the Baz class you're putting it in. This is because it is not a descriptor, which regular functions are!
You can fix this by adding a simple __get__ method to your Foo class that makes it into a method when it's accessed as a descriptor:
import types
class Foo(object):
# your other stuff here
def __get__(self, obj, objtype=None):
if obj is None:
return self # unbound
else:
return types.MethodType(self, obj) # bound to obj

Categories