How to add different values in the same key of a dictionary? These different values are added
in a loop.
Below is what I desired entries in the dictionary data_dict
data_dict = {}
And during each iterations, output should looks like:
Iteration1 -> {'HUBER': {'100': 5.42}}
Iteration2 -> {'HUBER': {'100': 5.42, '10': 8.34}}
Iteration3 -> {'HUBER': {'100': 5.42, '10': 8.34, '20': 7.75}} etc
However, at the end of the iterations, data_dict is left with the last entry only:
{'HUBER': {'80': 5.50}}
Here's the code:
import glob
path = "./meanFilesRun2/*.txt"
all_files = glob.glob(path)
data_dict = {}
def func_(all_lines, method, points, data_dict):
if method == "HUBER":
mean_error = float(all_lines[-1]) # end of the file contains total_error
data_dict["HUBER"] = {points: mean_error}
return data_dict
elif method == "L1":
mean_error = float(all_lines[-1])
data_dict["L1"] = {points: mean_error}
return data_dict
for file_ in all_files:
lineMthds = file_.split("_")[1] # reading line methods like "HUBER/L1/L2..."
algoNum = file_.split("_")[-2] # reading diff. algos number used like "1/2.."
points = file_.split("_")[2] # diff. points used like "10/20/30..."
if algoNum == "1":
FI = open(file_, "r")
all_lines = FI.readlines()
data_dict = func_(all_lines, lineMthds, points, data_dict)
print data_dict
FI.close()
You can use dict.setdefault here. Currently the problem with your code is that in each call to func_ you're re-assigning data_dict["HUBER"] to a new dict.
Change:
data_dict["HUBER"] = {points: mean_error}
to:
data_dict.setdefault("HUBER", {})[points] = mean_error
You can use defaultdict from the collections module:
import collections
d = collections.defaultdict(dict)
d['HUBER']['100'] = 5.42
d['HUBER']['10'] = 3.45
Related
I have some student names of different types and scores of each type in a list.
Eg:
students_exam_names = [exam_name1, exam_name2, exam_name3]
students_exam_score = [exam_score1, exam_score2, exam_score3]
students_quiz_names = [quiz_name1, quiz_name2]
students_quiz_score = [quiz_score1, quiz_score2]
students_homework_names = [homework_name1, homework_name2, homework_name3, homework_name4]
students_homework_score = [homework_score1, homework_score2, homework_score3, homework_score4]
Similarly for all three as shown below.
I want to have the details in the form of nested dict as follows:
details = {'students_exam':{
'exam_name1':exam_score1,
'exam_name2':exam_score2,
'exam_name3':exam_score3
},
'students_quiz':{
'quiz_name1': quiz_score1,
'quiz_name2': quiz_score2
},
'students_homework':{
'homework_name1': homework_score1,
'homework_name2': homework_score2,
'homework_name3': homework_score3,
'homework_name4': homework_score4,
}
The length of each students type is different. I tried to get it in the form of list of dictionaries as below but couldn't go further.
students_exam = {}
for i in range(len(students_exam_names)):
students_exam[students_exam_names[i]] = students_exam_score[i]
Do not forget to use ' when you are defining your inputs:
students_exam_names = ['exam_name1', 'exam_name2', 'exam_name3']
students_exam_score = ['exam_score1', 'exam_score2', 'exam_score3']
students_quiz_names = ['quiz_name1', 'quiz_name2']
students_quiz_score = ['quiz_score1', 'quiz_score2']
students_homework_names = ['homework_name1', 'homework_name2', 'homework_name3', 'homework_name4']
students_homework_score = ['homework_score1', 'homework_score2', 'homework_score3', 'homework_score4']
Then, simply use the zip function:
details = {'students_exam': dict(zip(students_exam_names, students_exam_score)),
'students_quiz': dict(zip(students_quiz_names, students_quiz_score)),
'students_homework': dict(zip(students_homework_names, students_homework_score))}
The output is:
{'students_exam': {'exam_name1': 'exam_score1', 'exam_name2': 'exam_score2', 'exam_name3': 'exam_score3'}, 'students_quiz': {'quiz_name1': 'quiz_score1', 'quiz_name2': 'quiz_score2'}, 'students_homework': {'homework_name1': 'homework_score1', 'homework_name2': 'homework_score2', 'homework_name3': 'homework_score3', 'homework_name4': 'homework_score4'}}
So what if i assume your complete set of inputs are like
students_exam_names = ['name1', 'name2', 'name3']
students_exam_score = ['score1', 'score2', 'score3']
students_quiz_names = ['name1', 'name2']
students_quiz_score = ['score1', 'score2']
students_homework_names = ['name1', 'name2', 'name3', 'name4']
students_homework_score = ['score1', 'score2', 'score3', 'score4']
if so then the following code should do the job.
details={}
details['students_exam']={sexam: students_exam_score[students_exam_names.index(sexam)] for sexam in students_exam_names}
details['students_quiz']={squiz: students_quiz_score[students_quiz_names.index(squiz)] for squiz in students_quiz_names}
details['students_homework']={shome: students_homework_score[students_homework_names.index(shome)] for shome in students_homework_names}
It looks like you need some functions to do these updates:
def update_exam(details, names, scores):
results = {}
for name,score in zip(names,scores):
results[name]=score
details['students_exam'] = results
def update_quiz(details, names, scores):
results = {}
for name,score in zip(names,scores):
results[name]=score
details['students_quiz'] = results
def update_homework(details, names, scores):
results = {}
for name,score in zip(names,scores):
results[name]=score
details['students_homework'] = results
details = {}
update_exam(details, students_exam_names, students_exam_score)
update_quiz(details, students_quiz_names, students_quiz_score)
update_homework(details, students_homework_names, students_homework_score)
But since the above functions only really differ in the text name of the key, they can be collapsed further:
def update(details, key, names, scores):
results = {}
for name,score in zip(names,scores):
results[name]=score
details[key] = results
details = {}
update(details,'students_exam', students_exam_names, students_exam_score)
update(details,'students_quiz', students_quiz_names, students_quiz_score)
update(details,'students_homework', students_homework_names, students_homework_score)
And then the loop can become a dictionary comprehension:
def update(details, key, names, scores):
details[key] = {name:score for (name,score) in zip(names,scores)}
I have a list like this:
data = [
{'date':'2017-01-02', 'model': 'iphone5', 'feature':'feature1'},
{'date':'2017-01-02', 'model': 'iphone7', 'feature':'feature2'},
{'date':'2017-01-03', 'model': 'iphone6', 'feature':'feature2'},
{'date':'2017-01-03', 'model': 'iphone6', 'feature':'feature2'},
{'date':'2017-01-03', 'model': 'iphone7', 'feature':'feature3'},
{'date':'2017-01-10', 'model': 'iphone7', 'feature':'feature2'},
{'date':'2017-01-10', 'model': 'iphone7', 'feature':'feature1'},
]
I want to achieve this:
[
{
'2017-01-02':[{'iphone5':['feature1']}, {'iphone7':['feature2']}]
},
{
'2017-01-03': [{'iphone6':['feature2']}, {'iphone7':['feature3']}]
},
{
'2017-01-10':[{'iphone7':['feature2', 'feature1']}]
}
]
I need an efficient way, since it could be much data.
I was trying this:
data = sorted(data, key=itemgetter('date'))
date = itertools.groupby(data, key=itemgetter('date'))
But I'm getting nothing for the value of the 'date' key.
Later I will iterate over this structure for building an HTML.
You can do this pretty efficiently and cleanly using defaultdict. Unfortunately it's a pretty advanced use and it gets hard to read.
from collections import defaultdict
from pprint import pprint
# create a dictionary whose elements are automatically dictionaries of sets
result_dict = defaultdict(lambda: defaultdict(set))
# Construct a dictionary with one key for each date and another dict ('model_dict')
# as the value.
# The model_dict has one key for each model and a set of features as the value.
for d in data:
result_dict[d["date"]][d["model"]].add(d["feature"])
# more explicit version:
# for d in data:
# model_dict = result_dict[d["date"]] # created automatically if needed
# feature_set = model_dict[d["model"]] # created automatically if needed
# feature_set.add(d["feature"])
# convert the result_dict into the required form
result_list = [
{
date: [
{phone: list(feature_set)}
for phone, feature_set in sorted(model_dict.items())
]
} for date, model_dict in sorted(result_dict.items())
]
pprint(result_list)
# [{'2017-01-02': [{'iphone5': ['feature1']}, {'iphone7': ['feature2']}]},
# {'2017-01-03': [{'iphone6': ['feature2']}, {'iphone7': ['feature3']}]},
# {'2017-01-10': [{'iphone7': ['feature2', 'feature1']}]}]
You can try this, here is my way, td is a dict to store { iphone : index } to check if the new item exist in the list of dict:
from itertools import groupby
from operator import itemgetter
r = []
for i in groupby(sorted(data, key=itemgetter('date')), key=itemgetter('date')):
td, tl = {}, []
for j in i[1]:
if j["model"] not in td:
tl.append({j["model"]: [j["feature"]]})
td[j["model"]] = len(tl) - 1
elif j["feature"] not in tl[td[j["model"]]][j["model"]]:
tl[td[j["model"]]][j["model"]].append(j["feature"])
r.append({i[0]: tl})
Result:
[
{'2017-01-02': [{'iphone5': ['feature1']}, {'iphone7': ['feature2']}]},
{'2017-01-03': [{'iphone6': ['feature2']}, {'iphone7': ['feature3']}]},
{'2017-01-10': [{'iphone7': ['feature2', 'feature1']}]}
]
As matter of fact, I think the data structure can be simplified, maybe you don't need so many nesting.
total_result = list()
result = dict()
inner_value = dict()
for d in data:
if d["date"] not in result:
if result:
total_result.append(result)
result = dict()
result[d["date"]] = set()
inner_value = dict()
if d["model"] not in inner_value:
inner_value[d["model"]] = set()
inner_value[d["model"]].add(d["feature"])
tmp_v = [{key: list(inner_value[key])} for key in inner_value]
result[d["date"]] = tmp_v
total_result.append(result)
total_result
[{'2017-01-02': [{'iphone7': ['feature2']}, {'iphone5': ['feature1']}]},
{'2017-01-03': [{'iphone6': ['feature2']}, {'iphone7': ['feature3']}]},
{'2017-01-10': [{'iphone7': ['feature2', 'feature1']}]}]
had a question regarding summing the multiple values of duplicate keys into one key with the aggregate total. For example:
1:5
2:4
3:2
1:4
Very basic but I'm looking for an output that looks like:
1:9
2:4
3:2
In the two files I am using, I am dealing with a list of 51 users(column 1 of user_artists.dat) who have the artistID(column 2) and how many times that user has listened to that particular artist given by the weight(column 3).
I am attempting to aggregate the total times that artist has been played, across all users and display it in a format such as:
Britney Spears (289) 2393140. Any help or input would be so appreciated.
import codecs
#from collections import defaultdict
with codecs.open("artists.dat", encoding = "utf-8") as f:
artists = f.readlines()
with codecs.open("user_artists.dat", encoding = "utf-8") as f:
users = f.readlines()
artist_list = [x.strip().split('\t') for x in artists][1:]
user_stats_list = [x.strip().split('\t') for x in users][1:]
artists = {}
for a in artist_list:
artistID, name = a[0], a[1]
artists[artistID] = name
grouped_user_stats = {}
for u in user_stats_list:
userID, artistID, weight = u
grouped_user_stats[artistID] = grouped_user_stats[artistID].astype(int)
grouped_user_stats[weight] = grouped_user_stats[weight].astype(int)
for artistID, weight in u:
grouped_user_stats.groupby('artistID')['weight'].sum()
print(grouped_user_stats.groupby('artistID')['weight'].sum())
#if userID not in grouped_user_stats:
#grouped_user_stats[userID] = { artistID: {'name': artists[artistID], 'plays': 1} }
#else:
#if artistID not in grouped_user_stats[userID]:
#grouped_user_stats[userID][artistID] = {'name': artists[artistID], 'plays': 1}
#else:
#grouped_user_stats[userID][artistID]['plays'] += 1
#print('this never happens')
#print(grouped_user_stats)
how about:
import codecs
from collections import defaultdict
# read stuff
with codecs.open("artists.dat", encoding = "utf-8") as f:
artists = f.readlines()
with codecs.open("user_artists.dat", encoding = "utf-8") as f:
users = f.readlines()
# transform artist data in a dict with "artist id" as key and "artist name" as value
artist_repo = dict(x.strip().split('\t')[:2] for x in artists[1:])
user_stats_list = [x.strip().split('\t') for x in users][1:]
grouped_user_stats = defaultdict(lambda:0)
for u in user_stats_list:
#userID, artistID, weight = u
grouped_user_stats[u[0]] += int(u[2]) # accumulate weights in a dict with artist id as key and sum of wights as values
# extra: "fancying" the data transforming the keys of the dict in "<artist name> (artist id)" format
grouped_user_stats = dict(("%s (%s)" % (artist_repo.get(k,"Unknown artist"), k), v) for k ,v in grouped_user_stats.iteritems() )
# lastly print it
for k, v in grouped_user_stats.iteritems():
print k,v
I am trying to create a nested dictionary from a mysql query but I am getting a key error
result = {}
for i, q in enumerate(query):
result['data'][i]['firstName'] = q.first_name
result['data'][i]['lastName'] = q.last_name
result['data'][i]['email'] = q.email
error
KeyError: 'data'
desired result
result = {
'data': {
0: {'firstName': ''...}
1: {'firstName': ''...}
2: {'firstName': ''...}
}
}
You wanted to create a nested dictionary
result = {} will create an assignment for a flat dictionary, whose items can have any values like "string", "int", "list" or "dict"
For this flat assignment
python knows what to do for result["first"]
If you want "first" also to be another dictionary you need to tell Python by an assingment
result['first'] = {}.
otherwise, Python raises "KeyError"
I think you are looking for this :)
>>> from collections import defaultdict
>>> mydict = lambda: defaultdict(mydict)
>>> result = mydict()
>>> result['Python']['rules']['the world'] = "Yes I Agree"
>>> result['Python']['rules']['the world']
'Yes I Agree'
result = {}
result['data'] = {}
for i, q in enumerate(query):
result['data']['i'] = {}
result['data'][i]['firstName'] = q.first_name
result['data'][i]['lastName'] = q.last_name
result['data'][i]['email'] = q.email
Alternatively, you can use you own class which adds the extra dicts automatically
class AutoDict(dict):
def __missing__(self, k):
self[k] = AutoDict()
return self[k]
result = AutoDict()
for i, q in enumerate(query):
result['data'][i]['firstName'] = q.first_name
result['data'][i]['lastName'] = q.last_name
result['data'][i]['email'] = q.email
result['data'] does exist. So you cannot add data to it.
Try this out at the start:
result = {'data': []};
You have to create the key data first:
result = {}
result['data'] = {}
for i, q in enumerate(query):
result['data'][i] = {}
result['data'][i]['firstName'] = q.first_name
result['data'][i]['lastName'] = q.last_name
result['data'][i]['email'] = q.email
How can I do the following in Python:
I have a command output that outputs this:
Datexxxx
Clientxxx
Timexxx
Datexxxx
Client2xxx
Timexxx
Datexxxx
Client3xxx
Timexxx
And I want to work this in a dict like:
Client:(date,time), Client2:(date,time) ...
After reading the data into a string subject, you could do this:
import re
d = {}
for match in re.finditer(
"""(?mx)
^Date(.*)\r?\n
Client\d*(.*)\r?\n
Time(.*)""",
subject):
d[match.group(2)] = (match.group(1), match.group(2))
How about something like:
rows = {}
thisrow = []
for line in output.split('\n'):
if line[:4].lower() == 'date':
thisrow.append(line)
elif line[:6].lower() == 'client':
thisrow.append(line)
elif line[:4].lower() == 'time':
thisrow.append(line)
elif line.strip() == '':
rows[thisrow[1]] = (thisrow[0], thisrow[2])
thisrow = []
print rows
Assumes a trailing newline, no spaces before lines, etc.
What about using a dict with tuples?
Create a dictionary and add the entries:
dict = {}
dict['Client'] = ('date1','time1')
dict['Client2'] = ('date2','time2')
Accessing the entires:
dict['Client']
>>> ('date1','time1')