Do Python and Haskell have the float uncertanity issue of C/C++? - python

First of all, I was not studying math in English language, so I may use wrong words in my text.
Float numbers can be finite(42.36) and infinite (42.363636...)
In C/C++ numbers are stored at base 2. Our minds operate floats at base 10.
The problem is -
many (a lot, actually) of float numbers with base 10, that are finite, have no exact finite representation in base 2, and vice-versa.
This doesn't mean anything most of the time. The last digit of double may be off by 1 bit - not a problem.
A problem arises when we compute two floats that are actually integers. 99.0/3.0 on C++ can result in 33.0 as well as 32.9999...99. And if you convert it to integer then - you are in for a surprise. I always add a special value (2*smallest value for given type and architecture) before rounding up in C for this reason. Should I do it in Python or not?
I have run some tests in Python and it seems float division always results as expected. But some tests are not enough because the problem is architecture-dependent. Do somebody know for sure if it is taken care of, and on what level - in float type itself or only in rounding up and shortening functions?
P.S. And if somebody can clarify the same thing for Haskell, which I am only starting with - it would be great.
UPDATE
Folks pointed out to an official document stating there is uncertainty in floating point arithmetic. The remaining question is - do math functions like ceil take care of them or should I do it on my own? This must be pointed out to beginner users every time we speak of these functions, because otherwise they will all stumble on that problem.

The format C and C++ use for representing float and double is standardized (IEEE 754), and the problems you describe are inherent in that representation. Since Python is implemented in C, its floating point types are prone to the same rounding problems.
Haskell's Float and Double are a somewhat higher level abstraction, but since most (all?) modern CPUs use IEEE754 for floating point calculations, you most probably will have that kind of rounding errors there as well.
In other words: Only languages/libraries which choose to not base their floating point types on the underlying architecture might be able to circumvent the IEEE754 rounding problems to a certain degree, but since the underlying hardware does not support other representations directly, there has to be a performance penalty. Therefore, probably most languages will stick to the standard, not least because its limitations are well known.

Real numbers themselves, including floats, are never "infinite" in any mathematical sense. They may have infinite decimal representations, but that's only a technical problem of the way we write them (or store them in computers). In fact though, IEEE754 also specifies +∞ and -∞ values, those are actual infinities... but they don't represent real numbers and are mathematically quite horrible in many a way.
Also... "And if you convert it to integer then" you should never "convert" floats to integers anyway, it's not really possible: you can only round them to integers. and if you do that with e.g. Haskell's round, it's pretty safe indeed, certainly
Prelude> round $ 99/3
33
Though ghci calculates the division with floating-point.
The only things that are always unsafe:
Of course, implicit conversion from float to int is completely crazy, and positively a mistake in the C-languages. Haskell and Python are both properly strongly typed, so such stuff won't happen by accident.
Floating-points should generally not be expected to be exactly equal to anything particular. It's not really useful to expect so anyway, because for actual real numbers any single one is a null set, which roughly means the only way two real number can be equal is if there's so deep mathematical reason for it. But for any distribution e.g. from a physical process, the probability for equalness is exactly zero, so why would you check?Only comparing numbers OTOH, with <, is perfectly safe (unless you're dealing with very small differences between huge numbers, or you use it to "simulate" equality by also checking >).

Yes, this is a problem in Python.
See https://docs.python.org/2/tutorial/floatingpoint.html

Python internally represents numbers as C doubles, so you will have all the problems inherent to floating point arithmetics. But it also includes some algorithms to "fix" the obvious cases. The example you give, 32.99999... is recognised as being 33.0. From Python 2.7 and 3.1 onwards they do this using Gay's algorithm; that is, the shortest string that rounds back to the original value. You can see a description in Python 3.1 release notes. In earlier versions, it just rounds to the first 17 decimal places.
As they themselves warn, it doesn't mean that it is going to work as decimal numbers.
>>> 1.1 + 2.2
3.3000000000000003
>>> 1.1 + 2.2 == 3.3
False
(But that should already be ringing your bells, as comparing floating point numbers for equality is never a good thing)
If you want to assure precision to a number of decimal places (for example, if you are working with finances), you can use the module decimal from the standard library. If you want to represent fractional numbers, you could use fractions, but they are both slower than plain numbers.
>>> import decimal
>>> decimal.Decimal(1.1) + decimal.Decimal(2.2)
Decimal('3.300000000000000266453525910')
# Decimal is getting the full floating point representation, no what I type!
>>> decimal.Decimal('1.1') + decimal.Decimal('2.2')
Decimal('3.3')
# Now it is fine.
>>> decimal.Decimal('1.1') + decimal.Decimal('2.2') == 3.3
False
>>> decimal.Decimal('1.1') + decimal.Decimal('2.2') == decimal.Decimal(3.3)
False
>>> decimal.Decimal('1.1') + decimal.Decimal('2.2') == decimal.Decimal('3.3')
True

In addition to the other fantastic answers here, saying roughly that IEEE754 has exactly the same issues no matter which language you interface to them with, I'd like to point out that many languages have libraries for other kinds of numbers. Some standard approaches are to use fixed-point arithmetic (many, but not all, of IEEE754's nuances come from being floating-point) or rationals. Haskell also libraries for the computable reals and cyclotomic numbers.
In addition, using these alternative kinds of numbers is especially convenient in Haskell due to its typeclass mechanism, which means that doing arithmetic with these other types of numbers looks and feels exactly the same and doing arithmetic with your usual IEEE754 Floats and Doubles; but you get the better (and worse!) properties of the alternate type. For example, with appropriate imports, you can see:
> 99/3 :: Double
33.0
> 99/3 :: Fixed E12
33.000000000000
> 99/3 :: Rational
33 % 1
> 99/3 :: CReal
33.0
> 99/3 :: Cyclotomic
33
> 98/3 :: Rational
98 % 3
> sqrt 2 :: CReal
1.4142135623730950488016887242096980785697
> sqrtInteger (-5) :: Cyclotomic
e(20) + e(20)^9 - e(20)^13 - e(20)^17

Haskell doesn't require Float and Double to be IEEE single- and double-precision floating-point numbers, but it strongly recommends it. GHC follows the recommendation. IEEE floating-point numbers have the same issues across all languages. Some of this is handled by the LIA standard, but Haskell only implements that in "a library". (No, I'm not sure what libraryor if it even exists.)
This great answer shows the various other numeric representations that are either part of Haskell (like Rational) or available from hackage like (Fixed, CReal, and Cyclotomic).
Rational, Fixed, and Cyclotomic might have similar Python libraries; Fixed is somewhat similar to the .Net Decimal type. CReal also might, but I think it might take advantage of Haskell's call-by-need and could be difficult to directly port to Python; it's also pretty slow.

Related

Python: Precision of numpy.square vs **

What is the relative precision between using numpy.square() versus the pythonic **? As seen from here, it seems like numpy.square() is more precise, but to what degree? (Also, I recognize that the link I am referencing to may be outdated.) Thanks!
It is true that numpy.square() is more precise. However, this is not the case in general.
This difference arises from the way both functions are implemented. In particular, numpy.square() uses a trick to do a single-instruction calculation on the whole array without any explicit looping, and this trick is guaranteed to give exact results for the special case of a square.
In contrast, ** is not a built-in operation, but rather a special syntax for calling the pow method of its left argument. In this case, the result is guaranteed to be exact only if both arguments can be exactly represented in IEEE 754 double precision. This is not the case for a ** 2 unless the absolute value of the exponent is less than 53 (i.e., unless the exponent is less than the precision of the double-precision representation).
In general, it is best to avoid powers (**) and use numpy.square() instead.

What is the python standards by which a string is parsed to float?

For relatively simple floats, the numerical precision is sufficient to represent them exactly. For example, 17.5 is equal to 17.5
For more complicated floats, such as
17.4999999999999982236431605997495353221893310546874 = 17.499999999999996447286321199499070644378662109375
17.4999999999999982236431605997495353221893310546875 = 17.5
Using as_integer_ratio() on the first number above, one obtains (4925812092436479, 281474976710656) and since (4925812092436479*2+1)/(2*281474976710656) equals the second number above, it becomes evident that the partition between >=17.5 and <17.5 is 1/(2*281474976710656).
Do the python standards guarantee a particular float will be "binned" into a particular bin above, or is it implementation dependent? If there is a guarantee, how is it decided?
For the above I used, python 3.5.6, but I am interested in the general answer for python 3.x if it exists.
For relatively simple floats, the numerical precision is sufficient to represent them exactly
Not really. Yes, 17.5 can be represented exactly because it is a multiple of a power of two (a multiple of 2-1, to be exact). But even very simple floats like 0.1 cannot be represented exactly. There it depends on the text to float conversion routine to get a representation that is as close as possible.
The conversion is done by the runtime (or the C or Java runtime of the compiler, for literals), which uses the C or Java functions (like C's strtod()) to do this (Java implements the code of David Gay's strtod(), but in Java language).
Not every implementation of strtod(), i.e. not every C/Java compiler uses the same methodology to convert, so there may be slight, usually insignificant differences in some of the results.
FWIW, the website Exploring Binary (no affiliation, I'm just a big fan) has many articles on this subject. It is obviously not as simple as expected.
For relatively simple floats, the numerical precision is sufficient to represent them exactly.
No, even simple decimals don't necessarily have an exact IEEE-754 representation:
>>> format(0.1, '.20f')
'0.10000000000000000555'
>>> format(0.2, '.20f')
'0.20000000000000001110'
>>> format(0.3, '.20f')
'0.29999999999999998890'
>>> format(0.1 + 0.2, '.20f')
'0.30000000000000004441'
Powers of 2 (x.0, x.5, x.25, x.125, …) are exactly representable, modulo precision issues.
Do the python standards guarantee a particular float will be "binned" into a particular bin above, or is it implementation dependent?
Pretty sure Python simply delegates to the underlying system, so it's mostly hardware-dependent. If you want guarantees, use decimal. IIRC the native (C) implementation was merged in 3.3, and the performance impact of using decimals has thus become much, much lower than it was in Python 2.
Python floats are IEEE-754 doubles.

Round-off / round-up criteria in Python

I'm porting a MATLAB code to Python 3.5.1 and I found a float round-off issue.
In MATLAB, the following number is rounded up to the 6th decimal place:
fprintf(1,'%f', -67.6640625);
-67.664063
In Python, on the other hand, the following number is rounded off to the 6th decimal place:
print('%f' % -67.6640625)
-67.664062
Interestingly enough, if the number is '-67.6000625', then it is rounded up even in Python:
print('%f' % -67.6000625)
-67.600063
... Why does this happen?
What are the criteria to round-off/up in Python?
(I believe this has something to do with handling hexadecimal values.)
More importantly, how can I prevent this difference?
I'm supposed to create a python code which can reproduce exactly the same output as MATLAB produces.
The reason for the python behavior has to do with how floating point numbers are stored in a computer and the standardized rounding rules defined by IEEE, which defined the standard number formats and mathematical operations used on pretty much all modern computers.
The need to store numbers efficiently in binary on a computer has lead computers to use floating-point numbers. These numbers are easy for processors to work with, but have the disadvantage that many decimal numbers cannot be exactly represented. This results in numbers sometimes being a little off from what we think they should be.
The situation becomes a bit clearer if we expand the values in Python, rather than truncating them:
>>> print('%.20f' % -67.6640625)
-67.66406250000000000000
>>> print('%.20f' % -67.6000625)
-67.60006250000000704858
So as you can see, -67.6640625 is a number that can be exactly represented, but -67.6000625 isn't, it is actually a little bigger. The default rounding mode defined by the IEEE stanard for floating-point numbers says that anything above 5 should be rounded up, anything below should be rounded down. So for the case of -67.6000625, it is actualy 5 plus a small amount, so it is rounded up. However, in the case of -67.6640625, it is exactly equal to five, so a tiebreak rule comes into play. The default tiebreaker rule is round to the nearest even number. Since 2 is the nearest event number, it rounds down to two.
So Python is following the approach recommended by the floating-point standard. The question, then, is why your version of MATLAB doesn't do this. I tried it on my computer with 64bit MATLAB R2016a, and I got the same result as in Python:
>> fprintf(1,'%f', -67.6640625)
-67.664062>>
So it seems like MATLAB was, at some point, using a different rounding approach (perhaps a non-standard approach, perhaps one of the alternatives specified in the standard), and has since switched to follow the same rules as everyone else.

Python: Fastest way to calculate two digits after point (Float, decimal or something else)?

As i found out, decimal is is more precise at the cost of processing power.
And i found out that
getcontext().prec = 2
Decimal(number)
also counts the numbers before the point. In my case i need it only to calculate two numbers after the point no matter how big the number is. Because sometimes i got numbers like 12345.15 and sometimes numbers like 2.53. And what if the numbers are 5 or 298.1?
Im a bit confused with all these differences between float, decimal, rounding and truncate.
My main question is:
How can i calculate with a Number like 254.12 or 15.35 with fewest resource costs? Maybe it is even possible to fake these numbers? The rounding doesn't matter but calculating with floats and 8 digits after the point and then truncating them seems like a waste of resources to me. Please correct me if im wrong.
I also know how to do Benchmarks with
import time
start_time = time.clock()
main()
print time.clock() - start_time, "seconds"
But im sure there are enough things i dont know about. Since im quite new to programming i would be very happy if someone can give me a few hints with a piece of code to work and learn with. Thank you for taking your time to read this! :)
First, please be aware that floating point operations are not necessarily as expensive as you might fear. This will depend on the CPU you are using, but for example, a single floating point operation in a mainly integer program will cost about as much as an integer operation, due to pipelining. It's like going to a bathroom at a night club. There's always a line for the girls bathroom - integer ops - but never a line for the guys - floating point ops.
On the other hand, low-power CPUs may not even include floating point support at all, making any float operation hideously expensive! So before you get all judgy about whether you should use float or integer operations, do some profiling. You mention using time.clock and comparing start with end times. You should have a look at the timeit module shipped with python.
Worse than bad performance, though, is the fact that floats don't always represent the number you want. Regardless of decimal point, if a number is large enough, or if you do the wrong operation to it, you can end up with a float that "approximates" your result without storing it exactly.
If you know that your application requires two digits beyond the decimal, I'd suggest that you write a class to implement that behavior using integer numbers. Python's integers automatically convert to big numbers when they get large, and the precision is exact. So there's a performance penalty (bignum ops are slower than integer or float ops on top-end hardware). But you can guarantee whatever behavior you want.
If your application is financial, please be aware that you are going to have to spend some time dealing with rounding issues. Everybody saw Superman 3, and now they think you're stealing their .00001 cents...
In Python, all floats are all the same size, regardless of precision, because they are all represented in a single 'double' type. This means that either way you will be 'wasting' memory (24 bytes is a tiny amount, really). Using sys.getsizeof shows this:
>>> import sys
>>> sys.getsizeof(8.13333333)
24
>>> sys.getsizeof(8.13)
24
This is also shown in the fact that if an int is too big (ints have no max value) it can't be converted into a float - you get an OverflowError:
>>> 2**1024 + 0.5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
OverflowError: long int too large to convert to float
Using Decimal is even less efficient, even when the precision is set up right. This is because class instances take up lots of space on their own, regardless of their content:
>>> import decimal
>>> sys.getsizeof(decimal.Decimal(0))
80
The prec setting actually affects the total number of digits, not only the ones after the decimal point. Regarding that, the documentation says
The significance of a new Decimal is determined solely by the number
of digits input. Context precision and rounding only come into play
during arithmetic operations.
and also
The quantize() method rounds a number to a fixed exponent. This method
is useful for monetary applications that often round results to a
fixed number of places
So these are a few things you can look for if you need to work with a fixed number of digits after the point.
Regarding performance, it seems to me that you are prematurely optimizing. You generally don't need to worry about the fastest way to do a calculation that will take less than a microsecond (unless, of course, you need to do something on the order of millions of such calculations per second). On a quick benchmark, a sum of two numbers takes 48 nanoseconds for floats and 82 nanoseconds for Decimals. The impact of that difference should be very little for most applications.

Python : Float addition causing problems in conditional statement [duplicate]

This question already has answers here:
Is floating point math broken?
(31 answers)
Closed 7 years ago.
This might seem really silly. But I am new to python and like to use equality conditions in my program, and has hit a very surprising road block. While the practical issue here is that the last condition r==rmax is not satisfied and I will miss out on an iteration of the loop, but that is not what is worrying me.
Rather than (trivial) work arounds, can someone explain to me what is going on in simple terms? (Also why the numbers turn out the same no matter how many times I run this loop, therefore it is something systematic and not something probabilistic).
And a proper way to make sure this does not happen (What I mean by proper is a programming practice I should adopt in all my coding, so that such unintentional discrepancy does not occur ever again)? I mean such loops are omnipresent in my codes and it makes me worried.
It seems I cannot trust numbers in python, which would make it useless as a computational tool.
PS : I am working on a scientific computing project with Numpy.
>>> while r<=r_max:
... print repr(r)
... r = r + r_step
...
2.4
2.5
2.6
2.7
2.8000000000000003
2.9000000000000004
3.0000000000000004
3.1000000000000005
3.2000000000000006
3.3000000000000007
3.400000000000001
3.500000000000001
3.600000000000001
3.700000000000001
3.800000000000001
3.9000000000000012
The simple answer is that floating-point numbers, as usually represented in computing, aren't exact, and you can't treat them as if they were exact. Treat them as if they're fuzzy; see if they're within a certain range, not whether they "equal" something.
The numbers turn out the same because it's all deterministic. The calculations are being done in exactly the same way each time. This isn't a case of random errors, it's a case of the machine representing floating-point numbers in an inexact way.
Python has some exact datatypes you can use instead of inexact floats; see the decimal and fractions modules.
There's a classic article called "What Every Computer Scientist Should Know About Floating-Point Arithmetic"; google it and pick any link you like.
Pierre G. is correct. Because computer calculate number in binary, it cannot present a lot float number exactly. But it should be precise with in certain digits depends the data type you use.
For your case, I think maybe you could use round(number, digits) function to get a round number and then compare it.
It's just the matter of float arithmetic. Actually If you know about the representation of floating numbers in the computer memory, then the representation of certain numbers though we consider to be whole integer, is not stored as a whole integer. It's stored with certain precision(in terms of number of digits after decimal point) only. This problem will remain always, whenever you are doing mathematical programming. I suggest you to use comparision, which can accept tolerance value. Numpy has such methods, which facilitates such comparision.

Categories