Read a binary file *.SRS (Solar Radio Spectrograph) - python

I wanna read a binary file (K7120127.SRS) with caractristhics detailed in the word file (Documentacion SRS DATA.doc) ,2.2. chapter, that adding in the next link
https://drive.google.com/folderview?id=0B_NlxFaQkpgHb00yTm5kU0MyaUU&usp=sharing
In the link is included a viewer of that data (Srsdisp.exe), but i wanna process this data not only view it, that's why I'd want to read it in Python.
I know plot using matplotlib, but work with binary files is new for me. I 'd wanna plot something like this (That plot was made using the viewer included in the link)

Try that.
from struct import unpack
# constants from the file spec
RECORD_SIZE=826
RECORD_HEADER_SIZE=24
RECORD_ARRAY_SIZE=401
# verbosity values
VERBOSITY_ALL = 2 # print warnings and errors
VERBOSITY_ERRORS = 1 # print errors
VERBOSITY_NONE = 0 # print nothing
class SRSRecord:
"""Holds one 826 byte SRS Record."""
_site_to_name = {
1: "Palehua",
2: "Holloman",
3: "Learmonth",
4: "San Vito",
# add new site names here ..
}
def __init__(self):
self.year = None
self.month = None
self.day = None
self.hour = None
self.minute = None
self.seconds = None
self.site_number = None
self.site_name = None
self.n_bands_per_record = None
self.a_start_freq = None
self.a_end_freq = None
self.a_num_bytes = None
self.a_analyser_reference_level = None
self.a_analyser_attenuation = None
self.b_start_freq = None
self.b_end_freq = None
self.b_num_bytes = None
self.b_analyser_reference_level = None
self.b_analyser_attenuation = None
# dictionary that maps frequency in mega hertz to level
self.a_values = {}
# dictionary that maps frequency in mega hertz to level
self.b_values = {}
return
def _parse_srs_file_header(self, header_bytes, verbosity = VERBOSITY_ALL):
fields = unpack(
# General header information
'>' # (data packed in big endian format)
'B' # 1 Year (last 2 digits) Byte integer (unsigned)
'B' # 2 Month number (1 to 12) "
'B' # 3 Day (1 to 31) "
'B' # 4 Hour (0 to 23 UT) "
'B' # 5 Minute (0 to 59) "
'B' # 6 Second at start of scan (0 to 59) "
'B' # 7 Site Number (0 to 255) "
'B' # 8 Number of bands in the record (2) "
# Band 1 (A-band) header information
'h' # 9,10 Start Frequency (MHz) Word integer (16 bits)
'H' # 11,12 End Frequency (MHz) "
'H' # 13,14 Number of bytes in data record (401) "
'B' # 15 Analyser reference level Byte integer
'B' # 16 Analyser attenuation (dB) "
# Band 2 (B-band) header information
# 17-24 As for band 1
'H' # 17,18 Start Frequency (MHz) Word integer (16 bits)
'H' # 19,20 End Frequency (MHz) "
'H' # 21,22 Number of bytes in data record (401) "
'B' # 23 Analyser reference level Byte integer
'B', # 24 Analyser attenuation (dB) "
header_bytes)
self.year = fields[0]
self.month = fields[1]
self.day = fields[2]
self.hour = fields[3]
self.minute = fields[4]
self.seconds = fields[5]
# read the site number and work out the site name
self.site_number = fields[6]
if self.site_number not in SRSRecord._site_to_name.keys():
# got an unknown site number.. complain a bit..
if verbosity >= VERBOSITY_ALL:
print("Unknown site number: %s" % self.site_number)
print("A list of known site numbers follows:")
for site_number, site_name in SRSRecord._site_to_name.items():
print("\t%s: %s" % (site_number, site_name))
# then set the site name to unknown.
self.site_name = "UnknownSite"
else:
# otherwise look up the site using our lookup table
self.site_name = SRSRecord._site_to_name[self.site_number]
# read the number of bands
self.n_bands_per_record = fields[7] # should be 2
if self.n_bands_per_record != 2 and verbosity >= VERBOSITY_ERRORS:
print("Warning.. record has %s bands, expecting 2!" % self.n_bands_per_record)
# read the a record meta data
self.a_start_freq = fields[8]
self.a_end_freq = fields[9]
self.a_num_bytes = fields[10]
if self.a_num_bytes != 401 and verbosity >= VERBOSITY_ERRORS:
print("Warning.. record has %s bytes in the a array, expecting 401!" %
self.a_num_bytes)
self.a_analyser_reference_level = fields[11]
self.a_analyser_attenuation = fields[12]
# read the b record meta data
self.b_start_freq = fields[13]
self.b_end_freq = fields[14]
self.b_num_bytes = fields[15]
if self.b_num_bytes != 401 and verbosity >= VERBOSITY_ERRORS:
print("Warning.. record has %s bytes in the b array, expecting 401!" %
self.b_num_bytes)
self.b_analyser_reference_level = fields[16]
self.b_analyser_attenuation = fields[17]
return
def _parse_srs_a_levels(self, a_bytes):
# unpack the frequency/levels from the first array
for i in range(401):
# freq equation from the srs file format spec
freq_a = 25 + 50 * i / 400.0
level_a = unpack('>B', a_bytes[i])[0]
self.a_values[freq_a] = level_a
return
def _parse_srs_b_levels(self, b_bytes):
for i in range(401):
# freq equation from the srs file format spec
freq_b = 75 + 105 * i / 400.0
level_b = unpack('>B', b_bytes[i])[0]
self.b_values[freq_b] = level_b
return
def __str__(self):
return ("%s/%s/%s, %s:%s:%s site: %s/%s bands: %s "
"[A %s->%s MHz ref_level: %s atten: %s dB], "
"[B %s->%s MHz ref_level: %s atten: %s dB]"
)% (
self.day, self.month, self.year,
self.hour, self.minute, self.seconds,
self.site_number, self.site_name,
self.n_bands_per_record,
self.a_start_freq, self.a_end_freq,
self.a_analyser_reference_level, self.a_analyser_attenuation,
self.b_start_freq, self.b_end_freq,
self.b_analyser_reference_level, self.b_analyser_attenuation,
)
def _dump(self, values):
freqs = values.keys()
freqs.sort()
for freq in freqs:
print "%5s %s" % (freq, values[freq])
return
def dump_a(self):
self._dump(self.a_values)
return
def dump_b(self):
self._dump(self.b_values)
return
def read_srs_file(fname):
"""Parses an srs file and returns a list of SRSRecords."""
# keep the records we read in here
srs_records = []
f = open(fname, "rb")
while True:
# read raw record data
record_data = f.read(RECORD_SIZE)
# if the length of the record data is zero we've reached the end of the data
if len(record_data) == 0:
break
# break up the record bytes into header, array a and array b bytes
header_bytes = record_data[:RECORD_HEADER_SIZE]
a_bytes = record_data[RECORD_HEADER_SIZE : RECORD_HEADER_SIZE + RECORD_ARRAY_SIZE]
b_bytes = record_data[RECORD_HEADER_SIZE + RECORD_ARRAY_SIZE :
RECORD_HEADER_SIZE + 2 * RECORD_ARRAY_SIZE]
# make a new srs record
record = SRSRecord()
record._parse_srs_file_header(header_bytes, verbosity = VERBOSITY_ERRORS)
record._parse_srs_a_levels(a_bytes)
record._parse_srs_b_levels(b_bytes)
srs_records.append(record)
return srs_records
if __name__ == "__main__":
# parse the file.. (this is where the magic happens ;)
srs_records = read_srs_file(fname = "K7120127.SRS")
# play with the data
for i in range(3):
print srs_records[i]
r0 = srs_records[0]
r0.dump_a()
r0.dump_b()

Related

Taking values from one file and after some calculation and a bit changes need to print into another file in python

below is c.txt
CO11 CSE C1 8
CO12 ETC C1 8
CO13 Electrical C2 12
CO14 Mech E 5
my program needs to print a course summary on screen and save that summary into a file
named cr.txt. Given the above c.txt, your program output should look like
below. The content of course_report.txt should also be the same, except the last line. Course
names in the second column use * to indicate a compulsory course and – to indicate an elective
course. The fourth column is the number of students enrolled in that course. The fifth column is the average score of the course.
CID Name Points. Enrollment. Average.
----------------------------------
CO11 * CSE 8 2 81
CO12 * ETC 8 10 71
CO13 * Electrical 12 8 61
CO14 - Mech 5 4 51
----------------------------------
poor-performing subject is CO14 with an average 51.
cr.txt generated!
below is what I've tried:
def read(self):
ctype = []
fi = open("c.txt", "r")
l = fi.readline()
while l != "":
fields = l.strip().split(" ")
self.c.append(fields)
l = fi.readline().strip()
f.close()
# print(f"{'CID'}{'Name':>20}{'Points.':>16}{'Enrollment.':>18}{'Average.':>10}")
# print("-" * 67, end="")
print()
for i in range(0, len(self.c)):
for j in range(len(self.c[i])):
obj = self.c[i][j]
print(obj.ljust(18), end="")
print()
print("-" * 67, end="")
print()
you can try use 'file.read' or 'file.readlines' after use 'open' function, if you choose 'file.readlines' you'll have to use 'for row in file.readlines()' look my example with 'file.read':
headers = ['CID', 'Name', 'Points.', 'Enrollment.', 'Average.']
compulsory_course = ['CO11', 'CO12', 'CO13']
elective_course = ['CO14']
count = 0
with open('c.txt', 'r') as file_c:
file_c.seek(0, 0)
file_string = file_c.read().replace('\n', ' ')
fields = file_string.split(' ')
with open('cr.txt', 'w') as file_cr:
for field in headers:
file_cr.write(f'{field} ')
file_cr.write('\n')
for v in fields:
if count == 4:
file_cr.write('\n')
count = 0
count += 1
if v in compulsory_course:
file_cr.write(f'{v} * ')
continue
elif v in elective_course:
file_cr.write(f'{v} - ')
continue
elif count == 3:
file_cr.write(f' ')
continue
file_cr.write(f'{v} ')

Unable to break infinite loop

There are various posts related to infinite loops on here but none reflect my particular predicament (they deal with Java or they do not match my code format etc). The code I have used is actually source code or 'answer code' to an exercise aimed at new students such as myself and it only supplies the 'correct code without correct format' which for an independent student can complicate things but also provide a more productive challenge.
The code makes solid use of 'functions' and 'calling functions from within other functions' which leaves very little 'global code' as a result, this may make things slightly more complicated but hopefully experienced programmers won't be phased by this.
I think the loop is either an issue with my 'while loop code indentation' or the 'while loop condition/counter code itself'. The loop code takes and uses data from other parts of the program code and shouldn't be completely ruled out but realistically I suspect the problem is one of the two former possible issues of either indentation or internal loop code itself, I have already tried multiple variations of 'indentation layout' as well as making quick fixes (misstyped syntax etc).
The code in question can be found towards the end of the program code (there is only one 'while loop' in the program code) it is in the 'menu options' section of code under '# Loop through quotes selecting those referencing the appropriate month and store the data in the summary dictionary'.
I have included two separate code windows, one highlighting the suspected 'problem code' and the the other with 'full program code'. Any help in any aspect will be appreciated.
Code segment most likely to hold error
def monthlyReport():
file = open(QUOTES_TO_DATE_FILE, 'r')
text = file.read()
file.close()
quotes = text.split()
month = input('Enter month: ')
summary = {'Lawn':{'Quantity' : 0.0, 'Value' : 0.0}, 'Patio' :{'Quantity' : 0.0, 'Value' : 0.0}, 'Water Feature' :{'Quantity' : 0.0, 'Value' : 0.0}}
# Loop through quotes selecting those referencing the appropriate month and
#store the data in summary dictionary
index = 0
while True:
if quotes[index] == month:
inputQuotesFromFile2(quotes[index+1])
summary['Lawn']['Quantity'] = summary['Lawn']['Quantity'] + quote['Lawn']['Width'] * quote['Lawn']['Length']
summary['Lawn']['Value'] = summary['Lawn']['Value'] + quote ['Lawn']['Cost']
summary['Patio']['Quantity'] = summary['Patio']['Quantity'] + quote['Patio']['Width'] * quote['Patio']['Length']
summary['Patio']['Value'] = summary['Patio']['Value'] + quote['Patio']['Cost']
summary['Water Feature']['Quantity'] = summary['Water Feature']['Quantity'] + quote['Water Feature']['Quantity']
summary['Water Feature']['Value'] = summary['Water Feature']['Value'] + quote['Water Feature']['Cost']
index = index + 2
if (index >= len(quotes)):
break
totalValue = summary['Lawn']['Value'] + summary['Patio']['Value'] + summary['Water Feature']['Value']
outputSummaryDictionary(summary, month, totalValue)
Full program code
# `Dictionary containing time values (mins) per square metre/ per feature
##lawn:20 patio:20 water feature:60
TIME = {'Lawn': 20, 'Patio': 20, 'Water Feature': 60}
# Constant for labour cost
##16.49
LABOUR_COST = 16.49
# Variable for filename of list of quotes made to date
##quotesToDateFile
QUOTES_TO_DATE_FILE = 'quotesToDateFile.txt'
# 'Global variables'
# A dictionary that stores quote data temporarily, contains sub dicts for each
#material type including keys for length, width, cost, time/quantity,cost, time
quote = {'Lawn':{'Length': 0 , 'Width': 0 , 'Cost': 0.0 , 'Time': 0.0},
'Patio':{'Length': 0 , 'Width': 0, 'Cost': 0.0 , 'Time': 0.0 },
'Water Feature':{'Quantity': 0 , 'Cost': 0.0 , 'Time': 0.0}}
# A dictionary storing material costs of individual items (can be updated)
materialCost = {'Lawn': 15.5, 'Patio': 20.99, 'Water Feature': 150}
# 'Input'
# Function to input material info defined by a length
##create function with named parameter for 'item'
def inputItemDimensions(item):
s = 'Enter length of ' + item + ':'
length = int(input('Enter length of material: '))
s = 'Enter width of ' + item + ':'
width = int(input('Enter width of material: '))
return length, width
# Function to input material info defined by quantity
##create function with named parameter 'item
def inputItemQuantity(item):
s = 'Enter quantity of ' + item + ':'
quantity = int(input('Enter quantity of items: '))
return quantity
# Function for input of area and quantity
def itemInput():
global quote
quote['Lawn']['Length'], quote['Lawn']['Width'] = inputItemDimensions('lawn')
quote['Patio']['Length'], quote['Patio']['Width'] = inputItemDimensions('concrete patio')
quote['Water Feature']['Quantity'] = inputItemQuantity('water feature')
# 'Cost calculation'
# Function to calculate, output to screen, return the material cost and time
#to install a landscape item installed by length and width
def costCalculation1(num, item, length, width, cost, time):
print('[{0}]'.format(num))
print('Length and width of the {0} = {1} x {2}m'.format(item, length, width))
area = length * width
print('Total area of {0} = {1:.2f}m^2'.format(item, area))
print('Cost of {0} per m^2 = £{1:.2f}'.format(item, cost))
totalCost = area * cost
print('Total cost of {0} = £{1}\n'.format(item, totalCost))
totalTime = area * time
return totalCost, totalTime
# Function to calculate, output to screen and return the material cost and time
#to install a landscape item installed by quantity
def costCalculation2(num, item, quantity, cost, time):
print('[{0}]'.format(num))
print('Quantity of {0} = {1} items'.format(item, quantity))
print('Cost of one {0} = £{1:.2f}'.format(item, cost))
totalCost = quantity * cost
print("Total cost of {0} {1} = £{2}\n".format(quantity, item, totalCost))
totalTime = quantity * time
return totalCost, totalTime
# Function to calculate individual costs of items
def calculateItemCosts():
global quote
quote['Lawn']['Cost'], quote['Lawn']['Time'] = costCalculation1('1', 'lawn', quote['Lawn']['Length'], quote['Lawn']['Width'], materialCost['Lawn'], TIME['Lawn'])
quote['Patio']['Cost'], quote['Patio']['Time'] = costCalculation1('2', 'patio', quote['Patio']['Length'], quote['Patio']['Width'], materialCost['Patio'], TIME['Patio'])
quote['Water Feature']['Cost'], quote['Water Feature']['Time'] = costCalculation2('3', 'water features', quote['Water Feature']['Quantity'], materialCost['Water Feature'], TIME['Water Feature'])
# Function to calculate workimg costs and output them
def workingCost():
print('Working costs:')
totalTime = (quote['Lawn']['Time'] + quote['Patio']['Time'] + quote['Water Feature']['Time']) / 60
labourCost = totalTime * LABOUR_COST
print('Total time to complete work = {0} mins'.format(totalTime))
print('Cost of work per hour = £{0}'.format(LABOUR_COST))
print('Total cost of work = £{0}\n'.format(labourCost))
# Calculate total fee payable by customer, output to screen and file
materialCost = quote['Lawn']['Cost'] + quote['Patio']['Cost'] + quote['Water Feature']['Cost']
totalCost = materialCost + labourCost
print('Total cost to pay = £{0}\n'.format(totalCost))
# 'Output functions'
# Output details concerning item
def outputItems():
outputItems1('1', 'Lawn', quote['Lawn'])
outputItems1('2', 'Patio', quote['Patio'])
outputItems2('3', 'Water Feature', quote['Water Feature'])
# Output dimensions and cost for certain item
def outputItems1(num, item, itemDict):
print('[{0}]'.format(num))
print('Length of width of {0} = {1}m x {2}m'.format(item, itemDict['Length'], itemDict['Width']))
print('Total cost of {0} = £{1}'.format(item, itemDict['Cost']))
print('Time to install {0} = {1}mins\n'.format(item, itemDict['Time'] / 60))
# Output quantity and cost for item
def outputItems2(num, item, itemDict):
print('[{0}]'.format(num))
print('Quantity of {0} = {1} items'.format(item, itemDict['Quantity']))
print('Cost of one {0} = £{1:.2f}'.format(item, itemDict['Cost']))
print('Time to install {0} = {1:.2f} hours\n'.format(item, itemDict['Time'] / 60))
# Output material cost dictionary
def outputMaterialCostDictionary():
for key, value in materialCost.items():
print('{0} = {1}'.format(key, value))
print('\n')
# Output summary dictionary
def outputSummaryDictionary(summaryD, month, totalV):
outputSummaryItem1(['Month', month, '', '', ''])
outputSummaryItem1(['Total', '', 'Total', 'Total', 'Total'])
outputSummaryItem1(['Working', 'Item', 'Square metre', 'Number', 'Monthly'])
outputSummaryItem1(['Costs', '', 'Purchased', 'Purchased', 'Value'])
outputSummaryItem2('Lawn', summaryD['Lawn'])
outputSummaryItem2('Patio', summaryD['Patio'])
outputSummaryItem3('Water Feature', summaryD['Water Feature'])
outputSummaryItem4(totalV)
# Output summary dictionary item ver 1
def outputSummaryItem1(sList):
print('|{0:^13}|{1:^13}|{2:^13}|{3:^13}|{4:^13}|'.format(sList[0], sList[1], sList[2], sList[3], sList[4]))
# Output summary dictionary item ver 2
def outputSummaryItem2(name, item):
print('|{0:^13}|{1:^13}|{2:13.2f}|{3:^13}|{4:13.2f}|'.format('', name, item['Quantity'], '', item['Value']))
# Output summary dictionary item ver 3
def outputSummaryItem3(name, item):
print('|{0:^13}|{1:^13}|{2:^13}|{3:13.0f}|{4:13.2f}|'.format('', name, '', item['Quantity'], item['Value']))
# Output summary dictionary item ver 4
def outputSummaryItem4(totalValue):
print('|{0:^13}|{1:^13}|{2:^13}|{3:^13}|{4:13.2f}|'.format('Total', '', '', '', totalValue))
# 'File handling'
# Function to output file
def outputToFile():
filename = input('Enter file name: ')
file = open(filename, 'w')
month = input('Enter month:' )
print('Filename = {0}....Month = {1}\n'.format(filename, month))
file.write('{0}\n'.format(month))
s = '{0} {1} {2} {3}\n'.format(quote['Lawn']['Length'], quote['Lawn']['Width'], quote['Lawn']['Cost'], quote['Lawn']['Time'])
file.write(s)
s = '{0} {1} {2} {3}\n'.format(quote['Patio']['Length'], quote['Patio']['Width'], quote['Patio']['Cost'], quote['Patio']['Time'])
file.write(s)
s = '{0} {1} {2}\n'.format(quote['Water Feature']['Quantity'], quote['Water Feature']['Cost'], quote['Water Feature']['Time'])
file.write(s)
file.close()
# Update quotes to date file
file = open(QUOTES_TO_DATE_FILE, 'a')
s = '{0} {1}\n'.format(month, filename)
file.write(s)
file.close()
# Function to input quote from file where file name is not known
def inputQuoteFromFile1():
filename = input('Enter name for input file: ')
inputQuoteFromFile2(filename)
# Function to input quote from file when file IS known
def inputQuoteFromFile2(filename):
file = open(filename, 'r')
text = file.read()
list1 = text.split()
file.close()
# Process the data (ignore first item which is the month)
##declare 'quote' dict as global (this might mean this code is within function)
global quote
subDictionary = {'Length' : float(list1[1]), 'Width' : float(list1[2]), 'Cost' : float(list1[3]), 'Time' : float(list1[4])}
quote['Lawn'] = subDictionary
subDictionary = {'Length' : float(list1[5]), 'Width' : float(list1[6]), 'Cost' : float(list1[7]), 'Time' : float(list1[8])}
quote['Patio'] = subDictionary
subDictionary = {'Quantity' : float(list1[9]), 'Cost' : float(list1[10]), 'Time' : float(list1[11])}
quote['Water Feature'] = subDictionary
file.close()
# 'Menu options'
# Function to allow preperation of a new quote
def prepareANewQuote():
itemInput()
calculateItemCosts()
workingCost()
outputToFile()
# Function to load new material costs
def loadNewMaterialCosts():
filename = input('Enter filename: ')
file = open(filename, 'r')
text = file.read()
file.close()
newMaterialCosts = text.split()
# Assign costs to material cost dictionary
index = 0
for key in materialCost.keys():
materialCost['Key'] = float(newMaterialCosts['index'])
index = index + 1
# Output new material costs # NOTE MAY NEED TO BE INDENTED FURTHER
outputMaterialCostDictionary()
# Function to view and load existing quote
def viewExistingQuote():
inputQuoteFromFile1()
outputItems()
workingCost()
# Function to generate monthly report summary
def monthlyReport():
file = open(QUOTES_TO_DATE_FILE, 'r')
text = file.read()
file.close()
quotes = text.split()
month = input('Enter month: ')
summary = {'Lawn':{'Quantity' : 0.0, 'Value' : 0.0}, 'Patio' :{'Quantity' : 0.0, 'Value' : 0.0}, 'Water Feature' :{'Quantity' : 0.0, 'Value' : 0.0}}
# Loop through quotes selecting those referencing the appropriate month and
#store the data in summary dictionary
index = 0
while True:
if quotes[index] == month:
inputQuotesFromFile2(quotes[index+1])
summary['Lawn']['Quantity'] = summary['Lawn']['Quantity'] + quote['Lawn']['Width'] * quote['Lawn']['Length']
summary['Lawn']['Value'] = summary['Lawn']['Value'] + quote ['Lawn']['Cost']
summary['Patio']['Quantity'] = summary['Patio']['Quantity'] + quote['Patio']['Width'] * quote['Patio']['Length']
summary['Patio']['Value'] = summary['Patio']['Value'] + quote['Patio']['Cost']
summary['Water Feature']['Quantity'] = summary['Water Feature']['Quantity'] + quote['Water Feature']['Quantity']
summary['Water Feature']['Value'] = summary['Water Feature']['Value'] + quote['Water Feature']['Cost']
index = index + 2
if (index >= len(quotes)):
break
totalValue = summary['Lawn']['Value'] + summary['Patio']['Value'] + summary['Water Feature']['Value']
outputSummaryDictionary(summary, month, totalValue)
# 'Main' (initialisation)
# Top level function
def start():
while True :
print('Select one of following options')
print('(1) Prepare new quote')
print('(2) Load new cost data')
print('(3) Load and view existing quote')
print('(4) Generate monthly report summary')
print('(5) Exit')
selection = int(input())
if selection == 1:
prepareANewQuote()
elif selection == 2:
loadNewMaterialCosts()
elif selection == 3:
viewExistingQuote()
elif selection == 4:
monthlyReport()
elif selection == 5:
quit()
else:
print('Error unrecognised command')
# Start
start()
index never gets modified if quotes[index] does not equal month, so the code will keep checking the same value over and over again and never proceed.
You should unindent that assignment of index by one level. But really this is not an appropriate use of a while loop; you should use for to iterate over quotes:
for quote in quotes:
(Also note there are two while loops in this code; and actually far too much use of global.)

High Performance with RaspberryPi and MPU6050

I have a problem in performance (scanning speed) with my Pi and the MPU6050.
The task of the code is to log the data from the MPU as fast as possible and in an accurate interval.
To reach a high scanning speed I just record the raw register values and convert everything later.
Moreover, I change the I2C baud rate from the Raspberry to 400kHz.
At the moment the code provide a raw data record frequency with max 135Hz.
Can you help me to get higher sampling rate and a better accurate interval. Wherein the exact interval the more important point is.
#!/usr/bin/python
import smbus
from datetime import datetime, timedelta
import time
bus = smbus.SMBus(1) # Bus for Revision 2 boards
address = 0x68 # Sensor i2c address
# Power management registers
power_mgmt_1 = 0x6b
power_mgmt_2 = 0x6c
# Accelerometer
# Data register
ACCEL_XOUT0 = 0x3B
ACCEL_XOUT1 = 0x3C
ACCEL_YOUT0 = 0x3D
ACCEL_YOUT1 = 0x3E
ACCEL_ZOUT0 = 0x3F
ACCEL_ZOUT1 = 0x40
# Range
ACCEL_CONFIG_REGISTER = 0x1C
ACCEL_2G = 0x00
ACCEL_4G = 0x08
ACCEL_8G = 0x10
ACCEL_16G = 0x18
# Scale Modifiers
ACCEL_SCALE_MODIFIER_2G = 16384.0
ACCEL_SCALE_MODIFIER_4G = 8192.0
ACCEL_SCALE_MODIFIER_8G = 4096.0
ACCEL_SCALE_MODIFIER_16G = 2048.0
# Gyroscope
# Data register
GYRO_XOUT0 = 0x43
GYRO_XOUT1 = 0x44
GYRO_YOUT0 = 0x45
GYRO_YOUT1 = 0x46
GYRO_ZOUT0 = 0x47
GYRO_ZOUT1 = 0x48
# Range
GYRO_CONFIG_REGISTER = 0x1B
GYRO_250DEG = 0x00
GYRO_500DEG = 0x08
GYRO_1000DEG = 0x10
GYRO_2000DEG = 0x18
# Scale Modifiers
GYRO_SCALE_MODIFIER_250DEG = 131.0
GYRO_SCALE_MODIFIER_500DEG = 65.5
GYRO_SCALE_MODIFIER_1000DEG = 32.8
GYRO_SCALE_MODIFIER_2000DEG = 16.4
# Temperature
# Data register
TEMP_OUT0 = 0x41
TEMP_OUT1 = 0x42
# -- Functions --
def read_register(adr):
return [bus.read_byte_data(address, adr),bus.read_byte_data(address, adr+1)]
def convert_register(raw_val):
convert_val = (raw_val[0] << 8) + raw_val[1]
if (convert_val >= 0x8000):
return -((65535 - convert_val) + 1)
else:
return convert_val
def convert_temp(raw_val):
raw_temp = convert_register(raw_val)
temp = (raw_temp / 340) + 36.53
return temp
def set_range_get_scale(register, range):
bus.write_byte_data(address, register, range) # set new range
time.sleep(0.5)
current_range = bus.read_byte_data(address, register) # read current set range
if register == ACCEL_CONFIG_REGISTER:
if current_range == ACCEL_2G:
return ACCEL_SCALE_MODIFIER_2G
elif current_range == ACCEL_4G:
return ACCEL_SCALE_MODIFIER_4G
elif current_range == ACCEL_8G:
return ACCEL_SCALE_MODIFIER_8G
else: #current_range == ACCEL_16G
return ACCEL_SCALE_MODIFIER_16G
if register == GYRO_CONFIG_REGISTER:
if current_range == GYRO_250DEG:
return GYRO_SCALE_MODIFIER_250DEG
elif current_range == GYRO_500DEG:
return GYRO_SCALE_MODIFIER_500DEG
elif current_range == GYRO_1000DEG:
return GYRO_SCALE_MODIFIER_1000DEG
else: #current_range == GYRO_2000DEG:
return GYRO_SCALE_MODIFIER_2000DEG
# -- INIT --
print('| Loading...')
bus.write_byte_data(address, power_mgmt_1, 0)
acc_scale = set_range_get_scale(ACCEL_CONFIG_REGISTER,ACCEL_2G)
gyro_scale = set_range_get_scale(GYRO_CONFIG_REGISTER,GYRO_250DEG)
# -- MAIN --
# query of parameters
freqInput = raw_input("Measuring frequency[Hz]: ")
durationInput=[0,0]
tmp = raw_input("Measuring duration[m]: ")
durationInput[0] = int(tmp)
tmp = raw_input("Measuring duration[s]: ")
durationInput[1] = int(tmp)
# Calculation of frequency
milsec = float(1000.0/float(freqInput))
if milsec==1000:
freq=timedelta(0,1)
elif milsec%1==0:
freq=timedelta(0,0,0,int(milsec))
else:
freq=timedelta(0,0,(milsec-int(milsec))*1000,int(milsec))
# Set measurement duration
duration=timedelta(0,durationInput[1],0,0,durationInput[0]) # days, seconds, microseconds, milliseconds, minutes
# List for data record
time=[]
temp=[]
acc=[]
gyro=[]
# Loop
print('| Start Logging')
tend = datetime.now()+duration
t = datetime.now()
while datetime.now().time() < tend.time(): # interrupts if the total measuring time is passed
t = datetime.now()
time.append(datetime.now())
temp.append(read_register(0x41))
acc.append([read_register(0x3B),read_register(0x3D),read_register(0x3F)])
gyro.append([read_register(0x43),read_register(0x45),read_register(0x47)])
while datetime.now() < t+freq: # interrupts if it time for the next record
pass
tend = datetime.now()
print('| Finish Logging')
# Test Records
print('| Start Test Record')
if len(time) == len(temp) and len(time) == len(acc) and len(time) == len(gyro):
print('| Finish Record Test; Result = OK')
else:
print('| Finish Record Test; Result = FALSE')
SystemExit(0)
# Convert Raw Data
print('| Start Raw Data Converting')
for i in range(len(time)):
temp[i] = convert_temp(temp[i])
for j in range(0,3):
acc[i][j] = convert_register(acc[i][j]) / acc_scale
gyro[i][j] = convert_register(gyro[i][j]) / gyro_scale
print('| Finish Raw Data Converting')
# write file
print ("| Start file writing")
name = datetime.now()
file = name.strftime('%Y%m%d_%H%M%S')
datei_out = open(file+".csv","w")
for i in range(len(time)):
datei_out.write(str(i+1)+";") # number of measurment
datei_out.write(str(time[i].time())+";") # time stamp of measurment
datei_out.write(str(time[i]-time[0])+";") # time delta since measurement start
datei_out.write(str(acc[i][0])+";") # Accelerometer X
datei_out.write(str(acc[i][1])+";") # Accelerometer X
datei_out.write(str(acc[i][2])+";") # Accelerometer X
datei_out.write(str(gyro[i][0])+";") # Gyroscope X
datei_out.write(str(gyro[i][1])+";") # Gyroscope X
datei_out.write(str(gyro[i][2])+"\n") # Gyroscope X
datei_out.close()
print ("| Finish file writing")
# end
print ("| Completely Finish")

Calculate the future value for only one category using the IRR (Python)

import xlrd
import numpy
fileWorkspace = 'C://Users/jod/Desktop/'
wb1 = xlrd.open_workbook(fileWorkspace + 'assign2.xls')
sh1 = wb1.sheet_by_index(0)
time,amount,category = [],[],[]
for a in range(2,sh1.nrows):
time.append(int(sh1.cell(a,0).value)) # Pulling time from excel (column A)
amount.append(float(sh1.cell(a,1).value)) # Pulling amount from excel (column B)
category.append(str(sh1.cell(a,2).value)) # Pulling category from excel (column C)
#print(time)
#print(amount)
#print(category)
print('\n')
p_p2 = str(sh1.cell(0,1))
p_p1 = p_p2.replace("text:'","")
pp = p_p1.replace("'","")
print(pp) # Printing the type of pay period (Row 1, col B)
c_p2 = str(sh1.cell(1,1))
c_p1 = c_p2.replace("text:'","")
cp = c_p1.replace("'","")
print(cp) # Printing the type of compound period (Row 2, col B)
netflow = 0
outflow = 0
inflow = 0
flow = 0
cat = ["Sales", "Salvage", "Subsidy", "Redeemable", "Utility", "Labor",
"Testing", "Marketing", "Materials", "Logistics"]
if pp == "Years" and cp == "Years": # if pay period and compound period are both in years
IRR = numpy.irr(amount) * 100 # Calculates the internal rate of return (IRR)
print ("IRR:", round(IRR, 2), '%', '\n') # prints (IRR)
for i in time: # for every value in time array
if cat[5] in category: # if "Labor" for cat array is in category array or not
# calculates the present values using all the amount values (col B) instead of
# just using the ones that has "Labor" category label beside them
# Need to make every other value 0, such as beside "Redeemable" and "Salvage"
flow = amount[i] / numpy.power((1 + (IRR/100)), time[i])
if flow>0:
inflow = inflow + flow
if flow<0:
outflow = outflow + flow
print ('Present Value (P) is:', round(flow,0), '\n')
netflow = outflow + inflow
print("In year 0 or current year")
print("-------")
print ('Outflow is: ', round(outflow,0))
print ('Inflow is: ', round(inflow,0))
print ('Netflow is: ', round(netflow,0), '\n')
outflow2 = (round(outflow,0))*(1+(IRR/100))**(9)
inflow2 = (round(inflow,0))*(1+(IRR/100))**(9)
netflow2 = outflow2 + inflow2
print("In year 9")
print("-------")
print ('Outflow is: ', round(outflow2,0))
print ('Inflow is: ', round(inflow2,0))
print ('Netflow is: ', round(netflow2,0), '\n')
I have commented important lines of code for clarification.
Here is the original question:
illustrate the breakdown of major project revenues and expenses by category as a percentage of that project’s future value in year 9. The illustration must also clearly indicate the total future value of the project in year 9 as well as the IRR.
There will be a total of 10 revenue and cost categories that a project may be composed of. The categories are: Sales, salvage, subsidy, redeemable, utility, labor, testing, marketing, materials and logistics. All revenues and expenses will fall in one of these ten categories. The project pay period and compound period will be identified at the top of the Excel sheet. Pay period and compound period may be designated as any of the following: years, quarters, months.
I am getting confused because I am not able to pull the only values from beside the "Labor", "Redeemable", or "Salvage". I just don't know where I am making a mistake, or there is something that is incomplete. Below is the excel file image:
Excel File Image 2
Excel File Image 3
After revising, all cashflows are discounted at the irr. What is done is the following:
i) determineAdjustments takes the pay period (column A) and adjusts if for the year ended (if it is a monthly amount it puts it in the proper year ended) and if its monthly puts in in the month ended (no adjustment necessary). This will divide the pay period by 12 if yearly cash flows are needed (yearly compounding)
ii) IRR is calculated, and the compounding period is used to adjust the monthly IRR for monthly pay periods
iii) all expenses are discounted at the IRR and input into a list for cat_contributions['category_name'] = [discounted period 1, discounted period 2 ... ]
iv) Then the net inflows and outflows are sums of these.
I can't type up data in the spreadsheets from the images as that would take a while, but maybe tinker with this and see if you can get it to work.
from __future__ import division
import xlrd
import numpy
import os
import math
def main(xls = 'xls_name.xlsx', sh = 0):
#save script in same folder as the xls file
os.chdir( os.getcwd() )
wb = xlrd.open_workbook(xls)
sh = wb.sheet_by_index(0)
pay_period = sh.cell_value(0,1)
compounding_period = sh.cell_value(1,1)
compounding_factor, pay_factor = determineAdjustments(
pay_period, compounding_period)
number_of_periods = max( sh.col_values(0, start_rowx = 2) )
flow_per_period = [ 0*i for i in range( int( math.ceil( number_of_periods/pay_factor ) ) + 1 ) ]#list of length number of pay_periods
for r in range(2,sh.nrows):
pay_period = int( math.ceil( sh.cell_value(r,0) / pay_factor ) )
flow_per_period[pay_period] += sh.cell_value(r,1) #unadjusted cash flows
irr = calculateIRR(flow_per_period, compounding_factor)
cat_contributions = sortExpenditures(sh, irr, pay_factor)
total_cat_contributions, netflow, total_outflow, total_inflow = calculateFlows(cat_contributions)
printStats(cat_contributions, irr, compounding_factor, pay_factor,
total_cat_contributions, netflow, total_outflow, total_inflow)
return
def determineAdjustments(pay_period, compounding_period):
if compounding_period == 'years':
compounding_factor = 1
if pay_period == 'months':
pay_factor = 12
if pay_period == 'years':
pay_factor = 1
#assume no days pay periods
if compounding_period == 'months':
compounding_factor = 12
#assume no yearly payouts and that the
#all payments are in months
pay_factor = 1
return compounding_factor, pay_factor
def calculateIRR(cashflow, compounding_factor):
irr = numpy.irr(cashflow)
irr_comp = (1 + irr)**compounding_factor - 1
#seems like in first example it uses rounded irr, can do something like:
#irr_comp = round(irr_comp,4)
return irr_comp
def sortExpenditures(sh, irr, pay_factor):
#percentages and discounting occurs at the IRR caculated in the main
#function
cat = ["Sales", "Salvage", "Subsidy", "Redeemable", "Utility", "Labor",
"Testing", "Marketing", "Materials", "Logistics"]
#python dictionary to sort contributions into categories
cat_contributions = {}
for c in cat:
cat_contributions[c] = []
# create list of contributions of each list item to FV in a dictionary
for r in range(2,sh.nrows):
try:
#discounted cash flow of each expenditure
#using formula FV = expenditure/(1+i)^n
cat_contributions[sh.cell_value(r,2)].append(
sh.cell_value(r,1) / ( (1 + irr) ** (sh.cell_value(r,0)/pay_factor) )
)
except KeyError:
print "No category for type: " + sh.cell_value(r,2) +'\n'
return cat_contributions
def calculateFlows(cat_contributions):
total_outflow = 0
total_inflow = 0
total_cat_contributions = {}
for cat in cat_contributions:
total_cat_contributions[cat] = sum( cat_contributions[cat] )
if total_cat_contributions[cat] < 0:
total_outflow += total_cat_contributions[cat]
else:
total_inflow += total_cat_contributions[cat]
netflow = total_inflow + total_outflow
return total_cat_contributions, netflow, total_outflow, total_inflow
def printStats(cat_contributions, irr, compounding_factor, pay_period,
total_cat_contributions, netflow, total_outflow, total_inflow):
print "IRR: "+str(irr*100) +' %'
if compounding_factor == 1: print "Compounding: Yearly"
if compounding_factor == 12: print "Compounding: Monthly"
if pay_period == 1: "Cashflows: Year Ended"
if pay_period == 12: "Cashflows: Month Ended"
print "Future Value (Net Adjusted Cashflow): " +str(netflow)
print "Adjusted Inflows: " + str(total_inflow)
print "Adjusted Outflows: " + str(total_outflow) +'\n'
for cat in total_cat_contributions:
if total_cat_contributions[cat] != 0:
print '-----------------------------------------------------'
print cat + '\n'
print "Total Contribution to FV " + str( total_cat_contributions[cat] )
if total_cat_contributions[cat] < 0:
print "Contribution to Expenses: " + str ( abs(100 * total_cat_contributions[cat]/total_outflow) )
else:
print "Contribution to Revenues: " + str ( abs(100 * total_cat_contributions[cat]/total_inflow) ) +'\n'
main(xls='Book1.xlsx')

Importing code from file into Python and adding file dialog box

I have a python script signalgen.py that plays audio using equations but I would like to be able to hard code the file where the equation is stored in eq1.txt or choose a file and import the equation.
The problems I'm having are:
1) How can I hard code a file and it's path correctly so it will play the equation as audio
I get an error
Traceback (most recent call last):
File "signalgen.py", line 484, in need_data
v += (datum * self.sig_level)
TypeError: can't multiply sequence by non-int of type 'float'
The specific block of code which I believe is causing the issue
def equation_import_function(self,t,f):
fileobj=open("/home/rat/eq1.txt","r")
eqdata =fileobj.read() #read whole file
fileobj.close()
#return math.tan(2.0*math.pi*f*t)
return eqdata
I have this line of code in the eq1.txt file-> math.tan(2.0*math.pi*f*t)
2) How can I add a file open dialog box to be able to choose a file and import the equation.
PS I'm using Ubuntu 10.04 (Linux) and the equations will be several pages long this is the reason I would like to import them into python from text files
Here's the entire code if you want to look at what I'm using below or seen on pastebin which includes line numbers http://pastebin.com/HZg0Jhaw
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# ***************************************************************************
# * Copyright (C) 2011, Paul Lutus *
# * *
# * This program is free software; you can redistribute it and/or modify *
# * it under the terms of the GNU General Public License as published by *
# * the Free Software Foundation; either version 2 of the License, or *
# * (at your option) any later version. *
# * *
# * This program is distributed in the hope that it will be useful, *
# * but WITHOUT ANY WARRANTY; without even the implied warranty of *
# * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
# * GNU General Public License for more details. *
# * *
# * You should have received a copy of the GNU General Public License *
# * along with this program; if not, write to the *
# * Free Software Foundation, Inc., *
# * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
# ***************************************************************************
# version date 01-12-2011
VERSION = '1.1'
import re, sys, os
import gobject
gobject.threads_init()
import gst
import gtk
gtk.gdk.threads_init()
import time
import struct
import math
import random
import signal
import webbrowser
class Icon:
icon = [
"32 32 17 1",
" c None",
". c #2A2E30",
"+ c #333739",
"# c #464A4C",
"# c #855023",
"$ c #575A59",
"% c #676A69",
"& c #CC5B00",
"* c #777A78",
"= c #DB731A",
"- c #8A8C8A",
"; c #969895",
"> c #F68C22",
", c #A5A7A4",
"' c #F49D4A",
") c #B3B5B2",
"! c #DEE0DD",
" &&&&&&& ",
" &&&===='''''& ",
" &'''''====&'& ",
" +++++&'&&&&& &'& ",
" +#$%****&'&+ &'& ",
" +#**%$#++#&'&*#+ &'& ",
" +#**#+++++++&'&#**#+ &'& ",
" +$*$+++++++++&'&++$*$+ &'& ",
" #*#++++++++++&'&+++##&&&'& ",
" +*#++++++++#&&&'&+++#=''''& ",
" +*$++++++++#=''''&+++&'>>>'& ",
" #*+++++++++&'>>>'&+++#='''= ",
" +%$++++++++##='''=###++#&&&# ",
" +*#+++++++####&&&######++#*+ ",
" +*+++++++####++#$%$$####++*+ ",
" +*++++++##+#;,,*##*$$$###+*+ ",
" +*#++++###%!!!!,;#$*$$$###*+ ",
" +%$++++##+)!!!),-*+-%$$$#$%+ ",
" +#*+++###+-!!!,;-%#;%%$$+*#+ ",
" +*#++####+$*-*%#+*-%%$##*+ ",
" ++*#+###$$%#++#%;;*%%$#-$+ ",
" +#%+###$$%*;;;;-*%%%#**+ ",
" .+$%###$$$*******%$$*-+. ",
" .+#%%##$$*#*#%%%$%-%+. ",
" .++#%$$$$$$%%%%--#+. ",
" +++##$%*****%+++ ",
" +++++++++++++#. ",
" #--%#++#$*-%+ ",
" +%,))),;%+. ",
" ++++++. ",
" ",
" "
]
# this should be a temporary hack
class WidgetFinder:
def localize_widgets(self,parent,xmlfile):
# an unbelievable hack made necessary by
# someone unwilling to fix a year-old bug
with open(xmlfile) as f:
for name in re.findall('(?s) id="(.*?)"',f.read()):
if re.search('^k_',name):
obj = parent.builder.get_object(name)
setattr(parent,name,obj)
class ConfigManager:
def __init__(self,path,dic):
self.path = path
self.dic = dic
def read_config(self):
if os.path.exists(self.path):
with open(self.path) as f:
for record in f.readlines():
se = re.search('(.*?)\s*=\s*(.*)',record.strip())
if(se):
key,value = se.groups()
if (key in self.dic):
widget = self.dic[key]
typ = type(widget)
if(typ == list):
widget[0] = value
elif(typ == gtk.Entry):
widget.set_text(value)
elif(typ == gtk.HScale):
widget.set_value(float(value))
elif(typ == gtk.Window):
w,h = value.split(',')
widget.resize(int(w),int(h))
elif(typ == gtk.CheckButton or typ == gtk.RadioButton or typ == gtk.ToggleButton):
widget.set_active(value == 'True')
elif(typ == gtk.ComboBox):
if(value in widget.datalist):
i = widget.datalist.index(value)
widget.set_active(i)
else:
print "ERROR: reading, cannot identify key %s with type %s" % (key,type(widget))
def write_config(self):
with open(self.path,'w') as f:
for key,widget in sorted(self.dic.iteritems()):
typ = type(widget)
if(typ == list):
value = widget[0]
elif(typ == gtk.Entry):
value = widget.get_text()
elif(typ == gtk.HScale):
value = str(widget.get_value())
elif(typ == gtk.Window):
_,_,w,h = widget.get_allocation()
value = "%d,%d" % (w,h)
elif(typ == gtk.CheckButton or typ == gtk.RadioButton or typ == gtk.ToggleButton):
value = ('False','True')[widget.get_active()]
elif(typ == gtk.ComboBox):
value = widget.get_active_text()
else:
print "ERROR: writing, cannot identify key %s with type %s" % (key,type(widget))
value = "Error"
f.write("%s = %s\n" % (key,value))
def preset_combobox(self,box,v):
if(v in box.datalist):
i = box.datalist.index(v)
box.set_active(i)
else:
box.set_active(0)
def load_combobox(self,obj,data):
if(len(obj.get_cells()) == 0):
# Create a text cell renderer
cell = gtk.CellRendererText ()
obj.pack_start(cell)
obj.add_attribute (cell, "text", 0)
obj.get_model().clear()
for s in data:
obj.append_text(s.strip())
setattr(obj,'datalist',data)
class TextEntryController:
def __init__(self,parent,widget):
self.par = parent
self.widget = widget
widget.connect('scroll-event',self.scroll_event)
widget.set_tooltip_text('Enter number or:\n\
Mouse wheel: increase,decrease\n\
Shift/Ctrl/Alt: faster change')
def scroll_event(self,w,evt):
q = (-1,1)[evt.direction == gtk.gdk.SCROLL_UP]
# magnify change if shift,ctrl,alt pressed
for m in (1,2,4):
if(self.par.mod_key_val & m): q *= 10
s = self.widget.get_text()
v = float(s)
v += q
v = max(0,v)
s = self.par.format_num(v)
self.widget.set_text(s)
class SignalGen:
M_AM,M_FM = range(2)
W_SINE,W_TRIANGLE,W_SQUARE,W_SAWTOOTH,W_EQUATION_IMPORT = range(5)
waveform_strings = ('Sine','Triangle','Square','Sawtooth', 'Equation_Import')
R_48000,R_44100,R_22050,R_16000,R_11025,R_8000,R_4000 = range(7)
sample_rates = ('48000','44100','22050','16000', '11025', '8000', '4000')
def __init__(self):
self.restart = False
# exit correctly on system signals
signal.signal(signal.SIGTERM, self.close)
signal.signal(signal.SIGINT, self.close)
# precompile struct operator
self.struct_int = struct.Struct('i')
self.max_level = (2.0**31)-1
self.gen_functions = (
self.sine_function,
self.triangle_function,
self.square_function,
self.sawtooth_function,
self.equation_import_function
)
self.main_color = gtk.gdk.color_parse('#c04040')
self.sig_color = gtk.gdk.color_parse('#40c040')
self.mod_color = gtk.gdk.color_parse('#4040c0')
self.noise_color = gtk.gdk.color_parse('#c040c0')
self.pipeline = False
self.count = 0
self.imod = 0
self.rate = 1
self.mod_key_val = 0
self.sig_freq = 440
self.mod_freq = 3
self.sig_level = 100
self.mod_level = 100
self.noise_level = 100
self.enable = True
self.sig_waveform = SignalGen.W_SINE
self.sig_enable = True
self.sig_function = False
self.mod_waveform = SignalGen.W_SINE
self.mod_function = False
self.mod_mode = SignalGen.M_AM
self.mod_enable = False
self.noise_enable = False
self.sample_rate = SignalGen.R_22050
self.left_audio = True
self.right_audio = True
self.program_name = self.__class__.__name__
self.config_file = os.path.expanduser("~/." + self.program_name)
self.builder = gtk.Builder()
self.xmlfile = 'signalgen_gui.glade'
self.builder.add_from_file(self.xmlfile)
WidgetFinder().localize_widgets(self,self.xmlfile)
self.k_quit_button.connect('clicked',self.close)
self.k_help_button.connect('clicked',self.launch_help)
self.k_mainwindow.connect('destroy',self.close)
self.k_mainwindow.set_icon(gtk.gdk.pixbuf_new_from_xpm_data(Icon.icon))
self.title = self.program_name + ' ' + VERSION
self.k_mainwindow.set_title(self.title)
self.tooltips = {
self.k_sample_rate_combobox : 'Change data sampling rate',
self.k_left_checkbutton : 'Enable left channel audio',
self.k_right_checkbutton : 'Enable right channel audio',
self.k_sig_waveform_combobox : 'Select signal waveform',
self.k_mod_waveform_combobox : 'Select modulation waveform',
self.k_mod_enable_checkbutton : 'Enable modulation',
self.k_sig_enable_checkbutton : 'Enable signal',
self.k_noise_enable_checkbutton : 'Enable white noise',
self.k_mod_am_radiobutton : 'Enable amplitude modulation',
self.k_mod_fm_radiobutton : 'Enable frequency modulation',
self.k_quit_button : 'Quit %s' % self.title,
self.k_enable_checkbutton : 'Enable output',
self.k_help_button : 'Visit the %s Web page' % self.title,
}
for k,v in self.tooltips.iteritems():
k.set_tooltip_text(v)
self.config_data = {
'SampleRate' : self.k_sample_rate_combobox,
'LeftChannelEnabled' : self.k_left_checkbutton,
'RightChannelEnabled' : self.k_right_checkbutton,
'SignalWaveform' : self.k_sig_waveform_combobox,
'SignalFrequency' : self.k_sig_freq_entry,
'SignalLevel' : self.k_sig_level_entry,
'SignalEnabled' : self.k_sig_enable_checkbutton,
'ModulationWaveform' : self.k_mod_waveform_combobox,
'ModulationFrequency' : self.k_mod_freq_entry,
'ModulationLevel' : self.k_mod_level_entry,
'ModulationEnabled' : self.k_mod_enable_checkbutton,
'AmplitudeModulation' : self.k_mod_am_radiobutton,
'FrequencyModulation' : self.k_mod_fm_radiobutton,
'NoiseEnabled' : self.k_noise_enable_checkbutton,
'NoiseLevel' : self.k_noise_level_entry,
'OutputEnabled' : self.k_enable_checkbutton,
}
self.cm = ConfigManager(self.config_file,self.config_data)
self.cm.load_combobox(self.k_sig_waveform_combobox,self.waveform_strings)
self.k_sig_waveform_combobox.set_active(self.sig_waveform)
self.cm.load_combobox(self.k_mod_waveform_combobox,self.waveform_strings)
self.k_mod_waveform_combobox.set_active(self.mod_waveform)
self.cm.load_combobox(self.k_sample_rate_combobox,self.sample_rates)
self.k_sample_rate_combobox.set_active(self.sample_rate)
self.k_sig_freq_entry.set_text(self.format_num(self.sig_freq))
self.k_sig_level_entry.set_text(self.format_num(self.sig_level))
self.k_mod_freq_entry.set_text(self.format_num(self.mod_freq))
self.k_mod_level_entry.set_text(self.format_num(self.mod_level))
self.k_noise_level_entry.set_text(self.format_num(self.noise_level))
self.k_main_viewport_border.modify_bg(gtk.STATE_NORMAL,self.main_color)
self.k_sig_viewport_border.modify_bg(gtk.STATE_NORMAL,self.sig_color)
self.k_mod_viewport_border.modify_bg(gtk.STATE_NORMAL,self.mod_color)
self.k_noise_viewport_border.modify_bg(gtk.STATE_NORMAL,self.noise_color)
self.sig_freq_cont = TextEntryController(self,self.k_sig_freq_entry)
self.sig_level_cont = TextEntryController(self,self.k_sig_level_entry)
self.mod_freq_cont = TextEntryController(self,self.k_mod_freq_entry)
self.mod_level_cont = TextEntryController(self,self.k_mod_level_entry)
self.noise_level_cont = TextEntryController(self,self.k_noise_level_entry)
self.k_mainwindow.connect('key-press-event',self.key_event)
self.k_mainwindow.connect('key-release-event',self.key_event)
self.k_enable_checkbutton.connect('toggled',self.update_values)
self.k_sig_freq_entry.connect('changed',self.update_entry_values)
self.k_sig_level_entry.connect('changed',self.update_entry_values)
self.k_sig_enable_checkbutton.connect('toggled',self.update_checkbutton_values)
self.k_mod_freq_entry.connect('changed',self.update_entry_values)
self.k_mod_level_entry.connect('changed',self.update_entry_values)
self.k_noise_level_entry.connect('changed',self.update_entry_values)
self.k_sample_rate_combobox.connect('changed',self.update_values)
self.k_sig_waveform_combobox.connect('changed',self.update_values)
self.k_mod_waveform_combobox.connect('changed',self.update_values)
self.k_left_checkbutton.connect('toggled',self.update_checkbutton_values)
self.k_right_checkbutton.connect('toggled',self.update_checkbutton_values)
self.k_mod_enable_checkbutton.connect('toggled',self.update_checkbutton_values)
self.k_noise_enable_checkbutton.connect('toggled',self.update_checkbutton_values)
self.k_mod_am_radiobutton.connect('toggled',self.update_checkbutton_values)
self.cm.read_config()
self.update_entry_values()
self.update_checkbutton_values()
self.update_values()
def format_num(self,v):
return "%.2f" % v
def get_widget_text(self,w):
typ = type(w)
if(typ == gtk.ComboBox):
return w.get_active_text()
elif(typ == gtk.Entry):
return w.get_text()
def get_widget_num(self,w):
try:
return float(self.get_widget_text(w))
except:
return 0.0
def restart_test(self,w,pv):
nv = w.get_active()
self.restart |= (nv != pv)
return nv
def update_entry_values(self,*args):
self.sig_freq = self.get_widget_num(self.k_sig_freq_entry)
self.sig_level = self.get_widget_num(self.k_sig_level_entry) / 100.0
self.mod_freq = self.get_widget_num(self.k_mod_freq_entry)
self.mod_level = self.get_widget_num(self.k_mod_level_entry) / 100.0
self.noise_level = self.get_widget_num(self.k_noise_level_entry) / 100.0
def update_checkbutton_values(self,*args):
self.left_audio = self.k_left_checkbutton.get_active()
self.right_audio = self.k_right_checkbutton.get_active()
self.mod_enable = self.k_mod_enable_checkbutton.get_active()
self.sig_enable = self.k_sig_enable_checkbutton.get_active()
self.mod_mode = (SignalGen.M_FM,SignalGen.M_AM)[self.k_mod_am_radiobutton.get_active()]
self.noise_enable = self.k_noise_enable_checkbutton.get_active()
def update_values(self,*args):
self.restart = (not self.sig_function)
self.sample_rate = self.restart_test(self.k_sample_rate_combobox, self.sample_rate)
self.enable = self.restart_test(self.k_enable_checkbutton,self.enable)
self.mod_waveform = self.k_mod_waveform_combobox.get_active()
self.mod_function = self.gen_functions[self.mod_waveform]
self.sig_waveform = self.k_sig_waveform_combobox.get_active()
self.sig_function = self.gen_functions[self.sig_waveform]
self.k_sample_rate_combobox.set_sensitive(not self.enable)
if(self.restart):
self.init_audio()
def make_and_chain(self,name):
target = gst.element_factory_make(name)
self.chain.append(target)
return target
def unlink_gst(self):
if(self.pipeline):
self.pipeline.set_state(gst.STATE_NULL)
self.pipeline.remove_many(*self.chain)
gst.element_unlink_many(*self.chain)
for item in self.chain:
item = False
self.pipeline = False
time.sleep(0.01)
def init_audio(self):
self.unlink_gst()
if(self.enable):
self.chain = []
self.pipeline = gst.Pipeline("mypipeline")
self.source = self.make_and_chain("appsrc")
rs = SignalGen.sample_rates[self.sample_rate]
self.rate = float(rs)
self.interval = 1.0 / self.rate
caps = gst.Caps(
'audio/x-raw-int,'
'endianness=(int)1234,'
'channels=(int)2,'
'width=(int)32,'
'depth=(int)32,'
'signed=(boolean)true,'
'rate=(int)%s' % rs)
self.source.set_property('caps', caps)
self.sink = self.make_and_chain("autoaudiosink")
self.pipeline.add(*self.chain)
gst.element_link_many(*self.chain)
self.source.connect('need-data', self.need_data)
self.pipeline.set_state(gst.STATE_PLAYING)
def key_event(self,w,evt):
cn = gtk.gdk.keyval_name(evt.keyval)
if(re.search('Shift',cn) != None):
mod = 1
elif(re.search('Control',cn) != None):
mod = 2
elif(re.search('Alt|Meta',cn) != None):
mod = 4
else:
return
if(evt.type == gtk.gdk.KEY_PRESS):
self.mod_key_val |= mod
else:
self.mod_key_val &= ~mod
def sine_function(self,t,f):
return math.sin(2.0*math.pi*f*t)
def triangle_function(self,t,f):
q = 4*math.fmod(t*f,1)
q = (q,2-q)[q > 1]
return (q,-2-q)[q < -1]
def square_function(self,t,f):
if(f == 0): return 0
q = 0.5 - math.fmod(t*f,1)
return (-1,1)[q > 0]
def sawtooth_function(self,t,f):
return 2.0*math.fmod((t*f)+0.5,1.0)-1.0
def equation_import_function(self,t,f):
fileobj=open("/home/rat/eq1.txt","r")
eqdata =fileobj.read() #read whole file
fileobj.close()
#return math.tan(2.0*math.pi*f*t)
return eqdata
def need_data(self,src,length):
bytes = ""
# sending two channels, so divide requested length by 2
ld2 = length / 2
for tt in range(ld2):
t = (self.count + tt) * self.interval
if(not self.mod_enable):
datum = self.sig_function(t,self.sig_freq)
else:
mod = self.mod_function(t,self.mod_freq)
# AM mode
if(self.mod_mode == SignalGen.M_AM):
datum = 0.5 * self.sig_function(t,self.sig_freq) * (1.0 + (mod * self.mod_level))
# FM mode
else:
self.imod += (mod * self.mod_level * self.interval)
datum = self.sig_function(t+self.imod,self.sig_freq)
v = 0
if(self.sig_enable):
v += (datum * self.sig_level)
if(self.noise_enable):
noise = ((2.0 * random.random()) - 1.0)
v += noise * self.noise_level
v *= self.max_level
v = max(-self.max_level,v)
v = min(self.max_level,v)
left = (0,v)[self.left_audio]
right = (0,v)[self.right_audio]
bytes += self.struct_int.pack(left)
bytes += self.struct_int.pack(right)
self.count += ld2
src.emit('push-buffer', gst.Buffer(bytes))
def launch_help(self,*args):
webbrowser.open("http://arachnoid.com/python/signalgen_program.html")
def close(self,*args):
self.unlink_gst()
self.cm.write_config()
gtk.main_quit()
app=SignalGen()
gtk.main()
The imp module will help you to cleanly load Python code chunks from arbitrary files.
#!/usr/bin/env python
# equation in equation-one.py
def eqn(arg):
return arg * 3 + 2
#!/usr/bin/env python
# your code
import imp
path = "equation-one.py"
eq_mod = imp.load_source("equation", path, open(path))
print("Oh the nice stuff in eq_mod: %s" % dir(eq_mod))
In your custom function definition, you can create a file selector dialog, get the selected file path, load the code using imp, and return the result of the function inside the imported module.
I was commenting before, but I stared at your code long enough and kinda realized what you were trying to do, so it was easier for me to post an answer. Please refer to cJ Zougloubs answer as I expand on his suggestion to use the imp module.
Your equation files should implement a common interface:
# equation1.py
def eqn(*args):
return sum(*args)
Then you would load them in using cj Zougloubs suggestion, but with a common interface:
# python_rt.py
def equation_import_function(self, *args):
filepath = ''
# filepath = ... do file chooser dialog here ...
eq_mod = imp.load_source("equation", filepath)
eqdata = eq_mod.eqn(*args)
return eqdata
Now you have a function in your main code that takes any number of arguments, asks the user to pick the equation file, and gets the result for you.
Edit To address your comment more specifically
# equation1.py
import math
def eqn(*args):
f = args[0]
t = args[1]
return math.tan(2.0*math.pi*f*t)
And in your main tool, you would use imp.load_source to bring it in. Wherever you needed that equation for your audio, you could then do:
eq_mod.eqn(f, t)

Categories