Is there a way to get the parent list, if some element is given? For instance, I have two lists a and b, and I want
def func(a,b):
mx = max(a[0], b[0]);
mn = min(a[0], b[0]);
return (the list that corresponds to (mx, mn) in the order)
Edit: for the above example, a simple if else is enough; but I wonder how to do it if I am dealing with many lists, and want to return, say, the name of the lists in the order of comparison? One solution I can come up with is use numpy sorting, which uses n log(n) sorting algorithms. Is there faster way?
Edit: Probably using numpy sorting is the way.
No, it is not possible. But you can get the list corresponding the maximum of the first elements, with conditional expression, like this
a, b = [1, 2], [2, 1]
c = a if a[0] > b[0] else b
print c
# [2, 1]
So, your function can be written as
def func(a,b):
return a if a[0] > b[0] else b
Since you mentioned numpy, simply use argmin and argmax.
def func(a,b):
lists = (a, b)
vals = np.array([a[0], b[0]])
return ( lists[np.argmax(vals)], lists[np.argmin(vals)] )
This can easily be generalised to more than two lists, and if all lists are of the same length, func can elegantly work on a 2dim array, e.g.:
def func(arr):
return ( arr[np.argmax(arr[:,0])], arr[np.argmin(arr[:,0])] )
You can use the key parameter of the max function.
import operator
def func(a,b):
return max(a, b, key=operator.itemgetter(0))
Related
a = [1, 2, 3, 1, 2, 3]
b = [3, 2, 1, 3, 2, 1]
a & b should be considered equal, because they have exactly the same elements, only in different order.
The thing is, my actual lists will consist of objects (my class instances), not integers.
O(n): The Counter() method is best (if your objects are hashable):
def compare(s, t):
return Counter(s) == Counter(t)
O(n log n): The sorted() method is next best (if your objects are orderable):
def compare(s, t):
return sorted(s) == sorted(t)
O(n * n): If the objects are neither hashable, nor orderable, you can use equality:
def compare(s, t):
t = list(t) # make a mutable copy
try:
for elem in s:
t.remove(elem)
except ValueError:
return False
return not t
You can sort both:
sorted(a) == sorted(b)
A counting sort could also be more efficient (but it requires the object to be hashable).
>>> from collections import Counter
>>> a = [1, 2, 3, 1, 2, 3]
>>> b = [3, 2, 1, 3, 2, 1]
>>> print (Counter(a) == Counter(b))
True
If you know the items are always hashable, you can use a Counter() which is O(n)
If you know the items are always sortable, you can use sorted() which is O(n log n)
In the general case you can't rely on being able to sort, or has the elements, so you need a fallback like this, which is unfortunately O(n^2)
len(a)==len(b) and all(a.count(i)==b.count(i) for i in a)
If you have to do this in tests:
https://docs.python.org/3.5/library/unittest.html#unittest.TestCase.assertCountEqual
assertCountEqual(first, second, msg=None)
Test that sequence first contains the same elements as second, regardless of their order. When they don’t, an error message listing the differences between the sequences will be generated.
Duplicate elements are not ignored when comparing first and second. It verifies whether each element has the same count in both sequences. Equivalent to: assertEqual(Counter(list(first)), Counter(list(second))) but works with sequences of unhashable objects as well.
New in version 3.2.
or in 2.7:
https://docs.python.org/2.7/library/unittest.html#unittest.TestCase.assertItemsEqual
Outside of tests I would recommend the Counter method.
The best way to do this is by sorting the lists and comparing them. (Using Counter won't work with objects that aren't hashable.) This is straightforward for integers:
sorted(a) == sorted(b)
It gets a little trickier with arbitrary objects. If you care about object identity, i.e., whether the same objects are in both lists, you can use the id() function as the sort key.
sorted(a, key=id) == sorted(b, key==id)
(In Python 2.x you don't actually need the key= parameter, because you can compare any object to any object. The ordering is arbitrary but stable, so it works fine for this purpose; it doesn't matter what order the objects are in, only that the ordering is the same for both lists. In Python 3, though, comparing objects of different types is disallowed in many circumstances -- for example, you can't compare strings to integers -- so if you will have objects of various types, best to explicitly use the object's ID.)
If you want to compare the objects in the list by value, on the other hand, first you need to define what "value" means for the objects. Then you will need some way to provide that as a key (and for Python 3, as a consistent type). One potential way that would work for a lot of arbitrary objects is to sort by their repr(). Of course, this could waste a lot of extra time and memory building repr() strings for large lists and so on.
sorted(a, key=repr) == sorted(b, key==repr)
If the objects are all your own types, you can define __lt__() on them so that the object knows how to compare itself to others. Then you can just sort them and not worry about the key= parameter. Of course you could also define __hash__() and use Counter, which will be faster.
If the comparison is to be performed in a testing context, use assertCountEqual(a, b) (py>=3.2) and assertItemsEqual(a, b) (2.7<=py<3.2).
Works on sequences of unhashable objects too.
If the list contains items that are not hashable (such as a list of objects) you might be able to use the Counter Class and the id() function such as:
from collections import Counter
...
if Counter(map(id,a)) == Counter(map(id,b)):
print("Lists a and b contain the same objects")
Let a,b lists
def ass_equal(a,b):
try:
map(lambda x: a.pop(a.index(x)), b) # try to remove all the elements of b from a, on fail, throw exception
if len(a) == 0: # if a is empty, means that b has removed them all
return True
except:
return False # b failed to remove some items from a
No need to make them hashable or sort them.
I hope the below piece of code might work in your case :-
if ((len(a) == len(b)) and
(all(i in a for i in b))):
print 'True'
else:
print 'False'
This will ensure that all the elements in both the lists a & b are same, regardless of whether they are in same order or not.
For better understanding, refer to my answer in this question
You can write your own function to compare the lists.
Let's get two lists.
list_1=['John', 'Doe']
list_2=['Doe','Joe']
Firstly, we define an empty dictionary, count the list items and write in the dictionary.
def count_list(list_items):
empty_dict={}
for list_item in list_items:
list_item=list_item.strip()
if list_item not in empty_dict:
empty_dict[list_item]=1
else:
empty_dict[list_item]+=1
return empty_dict
After that, we'll compare both lists by using the following function.
def compare_list(list_1, list_2):
if count_list(list_1)==count_list(list_2):
return True
return False
compare_list(list_1,list_2)
from collections import defaultdict
def _list_eq(a: list, b: list) -> bool:
if len(a) != len(b):
return False
b_set = set(b)
a_map = defaultdict(lambda: 0)
b_map = defaultdict(lambda: 0)
for item1, item2 in zip(a, b):
if item1 not in b_set:
return False
a_map[item1] += 1
b_map[item2] += 1
return a_map == b_map
Sorting can be quite slow if the data is highly unordered (timsort is extra good when the items have some degree of ordering). Sorting both also requires fully iterating through both lists.
Rather than mutating a list, just allocate a set and do a left-->right membership check, keeping a count of how many of each item exist along the way:
If the two lists are not the same length you can short circuit and return False immediately.
If you hit any item in list a that isn't in list b you can return False
If you get through all items then you can compare the values of a_map and b_map to find out if they match.
This allows you to short-circuit in many cases long before you've iterated both lists.
plug in this:
def lists_equal(l1: list, l2: list) -> bool:
"""
import collections
compare = lambda x, y: collections.Counter(x) == collections.Counter(y)
ref:
- https://stackoverflow.com/questions/9623114/check-if-two-unordered-lists-are-equal
- https://stackoverflow.com/questions/7828867/how-to-efficiently-compare-two-unordered-lists-not-sets
"""
compare = lambda x, y: collections.Counter(x) == collections.Counter(y)
set_comp = set(l1) == set(l2) # removes duplicates, so returns true when not sometimes :(
multiset_comp = compare(l1, l2) # approximates multiset
return set_comp and multiset_comp #set_comp is gere in case the compare function doesn't work
Write a function called append_three_elements. This function takes four arguments as parameters. First is a list that we will be appending to, and the next three and values to be added to the list. This function should return a new list with the three values appended in order at the end.
For example,
append_three_elements([], 1, 2, 3)
you would expect to return
[1, 2, 3]
def append_three_elements(lst, a, b, c):
lst1 = lst.copy()
lst1.append(a)
lst1.append(b)
lst1.append(c)
return lst1
It's a recursive function without an end. It will keep going round and around without ever stopping.
Try this instead:
def append_three_elements(a, b, c, lst):
new_lst = lst.copy()
for i in (a, b, c):
new_lst.append(i)
return new_lst
This takes a copy of the list (if you just use new_lst = lst, it will still refer to the same object), then appends each of the three different values before returning a new list (it doesn't modify the original).
A fun & short solution. Mark's solution, however, is more specialized and is likely the right answer you are looking for.
def append_three_elements(lst, *args):
return lst + list(args)
lst = append_three_elements(['lol'], 1, 2, 3)
print(lst) # >>> ['lol', 1, 2, 3]
a = [1, 2, 3, 1, 2, 3]
b = [3, 2, 1, 3, 2, 1]
a & b should be considered equal, because they have exactly the same elements, only in different order.
The thing is, my actual lists will consist of objects (my class instances), not integers.
O(n): The Counter() method is best (if your objects are hashable):
def compare(s, t):
return Counter(s) == Counter(t)
O(n log n): The sorted() method is next best (if your objects are orderable):
def compare(s, t):
return sorted(s) == sorted(t)
O(n * n): If the objects are neither hashable, nor orderable, you can use equality:
def compare(s, t):
t = list(t) # make a mutable copy
try:
for elem in s:
t.remove(elem)
except ValueError:
return False
return not t
You can sort both:
sorted(a) == sorted(b)
A counting sort could also be more efficient (but it requires the object to be hashable).
>>> from collections import Counter
>>> a = [1, 2, 3, 1, 2, 3]
>>> b = [3, 2, 1, 3, 2, 1]
>>> print (Counter(a) == Counter(b))
True
If you know the items are always hashable, you can use a Counter() which is O(n)
If you know the items are always sortable, you can use sorted() which is O(n log n)
In the general case you can't rely on being able to sort, or has the elements, so you need a fallback like this, which is unfortunately O(n^2)
len(a)==len(b) and all(a.count(i)==b.count(i) for i in a)
If you have to do this in tests:
https://docs.python.org/3.5/library/unittest.html#unittest.TestCase.assertCountEqual
assertCountEqual(first, second, msg=None)
Test that sequence first contains the same elements as second, regardless of their order. When they don’t, an error message listing the differences between the sequences will be generated.
Duplicate elements are not ignored when comparing first and second. It verifies whether each element has the same count in both sequences. Equivalent to: assertEqual(Counter(list(first)), Counter(list(second))) but works with sequences of unhashable objects as well.
New in version 3.2.
or in 2.7:
https://docs.python.org/2.7/library/unittest.html#unittest.TestCase.assertItemsEqual
Outside of tests I would recommend the Counter method.
The best way to do this is by sorting the lists and comparing them. (Using Counter won't work with objects that aren't hashable.) This is straightforward for integers:
sorted(a) == sorted(b)
It gets a little trickier with arbitrary objects. If you care about object identity, i.e., whether the same objects are in both lists, you can use the id() function as the sort key.
sorted(a, key=id) == sorted(b, key==id)
(In Python 2.x you don't actually need the key= parameter, because you can compare any object to any object. The ordering is arbitrary but stable, so it works fine for this purpose; it doesn't matter what order the objects are in, only that the ordering is the same for both lists. In Python 3, though, comparing objects of different types is disallowed in many circumstances -- for example, you can't compare strings to integers -- so if you will have objects of various types, best to explicitly use the object's ID.)
If you want to compare the objects in the list by value, on the other hand, first you need to define what "value" means for the objects. Then you will need some way to provide that as a key (and for Python 3, as a consistent type). One potential way that would work for a lot of arbitrary objects is to sort by their repr(). Of course, this could waste a lot of extra time and memory building repr() strings for large lists and so on.
sorted(a, key=repr) == sorted(b, key==repr)
If the objects are all your own types, you can define __lt__() on them so that the object knows how to compare itself to others. Then you can just sort them and not worry about the key= parameter. Of course you could also define __hash__() and use Counter, which will be faster.
If the comparison is to be performed in a testing context, use assertCountEqual(a, b) (py>=3.2) and assertItemsEqual(a, b) (2.7<=py<3.2).
Works on sequences of unhashable objects too.
If the list contains items that are not hashable (such as a list of objects) you might be able to use the Counter Class and the id() function such as:
from collections import Counter
...
if Counter(map(id,a)) == Counter(map(id,b)):
print("Lists a and b contain the same objects")
Let a,b lists
def ass_equal(a,b):
try:
map(lambda x: a.pop(a.index(x)), b) # try to remove all the elements of b from a, on fail, throw exception
if len(a) == 0: # if a is empty, means that b has removed them all
return True
except:
return False # b failed to remove some items from a
No need to make them hashable or sort them.
I hope the below piece of code might work in your case :-
if ((len(a) == len(b)) and
(all(i in a for i in b))):
print 'True'
else:
print 'False'
This will ensure that all the elements in both the lists a & b are same, regardless of whether they are in same order or not.
For better understanding, refer to my answer in this question
You can write your own function to compare the lists.
Let's get two lists.
list_1=['John', 'Doe']
list_2=['Doe','Joe']
Firstly, we define an empty dictionary, count the list items and write in the dictionary.
def count_list(list_items):
empty_dict={}
for list_item in list_items:
list_item=list_item.strip()
if list_item not in empty_dict:
empty_dict[list_item]=1
else:
empty_dict[list_item]+=1
return empty_dict
After that, we'll compare both lists by using the following function.
def compare_list(list_1, list_2):
if count_list(list_1)==count_list(list_2):
return True
return False
compare_list(list_1,list_2)
from collections import defaultdict
def _list_eq(a: list, b: list) -> bool:
if len(a) != len(b):
return False
b_set = set(b)
a_map = defaultdict(lambda: 0)
b_map = defaultdict(lambda: 0)
for item1, item2 in zip(a, b):
if item1 not in b_set:
return False
a_map[item1] += 1
b_map[item2] += 1
return a_map == b_map
Sorting can be quite slow if the data is highly unordered (timsort is extra good when the items have some degree of ordering). Sorting both also requires fully iterating through both lists.
Rather than mutating a list, just allocate a set and do a left-->right membership check, keeping a count of how many of each item exist along the way:
If the two lists are not the same length you can short circuit and return False immediately.
If you hit any item in list a that isn't in list b you can return False
If you get through all items then you can compare the values of a_map and b_map to find out if they match.
This allows you to short-circuit in many cases long before you've iterated both lists.
plug in this:
def lists_equal(l1: list, l2: list) -> bool:
"""
import collections
compare = lambda x, y: collections.Counter(x) == collections.Counter(y)
ref:
- https://stackoverflow.com/questions/9623114/check-if-two-unordered-lists-are-equal
- https://stackoverflow.com/questions/7828867/how-to-efficiently-compare-two-unordered-lists-not-sets
"""
compare = lambda x, y: collections.Counter(x) == collections.Counter(y)
set_comp = set(l1) == set(l2) # removes duplicates, so returns true when not sometimes :(
multiset_comp = compare(l1, l2) # approximates multiset
return set_comp and multiset_comp #set_comp is gere in case the compare function doesn't work
Can you explain this python code?
Here how does L.sort(fun) work?
def fun(a, b):
return cmp(a[1], b[1])
L= [[2, 1], [4, 5, 3]]
L.sort(fun)
print L
From the official documentation:
The sort() method takes optional arguments for controlling the comparisons.
cmp specifies a custom comparison function of two arguments (list items)
which should return a negative, zero or positive number depending on whether
the first argument is considered smaller than, equal to, or larger than the
second argument: cmp=lambda x,y: cmp(x.lower(), y.lower()).
The default value is None.
So you are trying to control the comparison using your own function "fun". Which say compares the values present at 1st index of the lists inside list(nested lists).
if you try to test it separately you will get -1 as the a[1] is smaller than b[1]
clearly and hence the output is "[[2,1],[4,5,3]]" which is already sorted
a = [2,1]
b = [4,5,3]
cmp(a[1], b[1])
You can give it a try changing value at 1st index something like this and you will understand how it is working.
Something like this
def fun(a,b):
return cmp(a[1], b[1])
L=[[2,6],[4,5,3]]
L.sort(fun)
print L
I hope this will help.
Without any heavy libraries such as numpy, I want to uniformly handle a single list or multi-dimensional list in my code. For example, the function sum_up(list_or_matrix) should
return 6 for argument [1, 2, 3] and return 9 for [[1, 2, 3], [1, 2, 0]].
My question is:
1. Can I code in a way without explicitly detecting the dimension of my input such as by isinstance(arg[0], (tuple, list))?
2. If I have to do so, is there any elegant way of detecting the dimension of a list (of list of list ...), e.g. recursively?
As many users suggested you can always use dict instead of list for any-dimensinal collection. Dictionaries are accepting tuples as arguments as they are hashable. So you can easy fill-up your collection like
>>> m = {}
>>> m[1] = 1
>>> m[1,2] = 12
>>> m[1,2,"three",4.5] = 12345
>>> sum(m.values()) #better use m.itervalues() in python 2.*
12358
You can solve this problem using recursion, like this:
#!/usr/bin/env python
def sum(seq_or_elem):
if hasattr(seq_or_elem, '__iter__'):
# We were passed a sequence so iterate over it, summing the elements.
total = 0
for i in seq_or_elem:
total += sum(i)
return total
else:
# We were passed an atomic element, the sum is identical to the passed value.
return seq_or_elem
Test:
>>> print(sum([1, 2, [3, [4]], [], 5]))
15
Well I dont see a way if you are planning to use a single function to sum up your list like sum_up(list_or_matrix).
If you are having a list of lists I would only imagine you need to loop through the list to find out if its a 1-D or a 2-D list. Anyway whats wrong in looping?
def sum_up(matrix):
2DMatrix = False
for item in matrix:
if type(item) == list:
2DMatrix = True
if(2DMatrix):
//sum 2d matrix
else:
//sum 1d matrix
A simple way to sum up a matrix is as follow:
def sum_up(matrix):
if isinstance(matrix, (tuple, list)):
return sum(matrix)
else:
return sum((sum(x) for x in matrix))
The 'else' branch uses list comprehension, a powerful and quick tool.
You could sum recursively until you have a scalar value:
def flatten(x):
if isinstance(x, list):
return sum(map(flatten, x))
return x
Note: you can use collections.Iterable (or another base class) instead of list, depending on what you want to flatten.