Python: Fast and efficient way of writing large text file - python

I have a speed/efficiency related question about python:
I need to write a large number of very large R dataframe-ish files, about 0.5-2 GB sizes. This is basically a large tab-separated table, where each line can contain floats, integers and strings.
Normally, I would just put all my data in numpy dataframe and use np.savetxt to save it, but since there are different data types it can't really be put into one array.
Therefore I have resorted to simply assembling the lines as strings manually, but this is a tad slow. So far I'm doing:
1) Assemble each line as a string
2) Concatenate all lines as single huge string
3) Write string to file
I have several problems with this:
1) The large number of string-concatenations ends up taking a lot of time
2) I run of of RAM to keep strings in memory
3) ...which in turn leads to more separate file.write commands, which are very slow as well.
So my question is: What is a good routine for this kind of problem? One that balances out speed vs memory-consumption for most efficient string-concatenation and writing to disk.
... or maybe this strategy is simply just bad and I should do something completely different?
Thanks in advance!

Seems like Pandas might be a good tool for this problem. It's pretty easy to get started with pandas, and it deals well with most ways you might need to get data into python. Pandas deals well with mixed data (floats, ints, strings), and usually can detect the types on its own.
Once you have an (R-like) data frame in pandas, it's pretty straightforward to output the frame to csv.
DataFrame.to_csv(path_or_buf, sep='\t')
There's a bunch of other configuration things you can do to make your tab separated file just right.
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_csv.html

Unless you are running into a performance issue, you can probably write to the file line by line. Python internally uses buffering and will likely give you a nice compromise between performance and memory efficiency.
Python buffering is different from OS buffering and you can specify how you want things buffered by setting the buffering argument to open.

I think what you might want to do is create a memory mapped file. Take a look at the following documentation to see how you can do this with numpy:
http://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html

Related

Indexing very large hex file with python

I'm trying to write a program that parses data from a (very) large file that contains even rows of 8 sets of 16 bit hex values. For instance, one row would look like this:
edfc b600 edfc 2102 81fb 0000 d1fe 0eff
The data files are expected to be anywhere between 1-4 TB, so I wasn't sure what the best approach would be. If I load this file using Python's open() function, could this turn out badly? I'm worried about how much of an impact this will have on my memory if I'm loading such a large file just to index through. Alternatively, if there's a method I can use to load just the section of data I want from the file, that would be ideal, but as far as I know, I don't think that's even possible. Is this correct?
Anyway, Some sort of idea as to how to approach this very general problem would be much appreciated!
Found an answer from Github. In numpy, there's a function called memmap that works for what I'm doing.
samples = np.memmap("hexdump_samples", mode="r", dtype=np.int16)[100:159]
This didn't seem to cause any issues with the smaller data set I was using, but I can't imagine this causing any issues with memory with the larger files. As far as I understand, this wouldn't cause any issues.
It depends on your computer hardware, how much RAM you have. Python is an interpreted language with a bunch of safeguards, but I wouldn't risk trying to open that file with Python. I would recommend using C or C++, they are good with large amounts of data and memory management. You can then parse the data in bite sized chunks, maybe 16MB per chunk. Python is a extremely slow and memory inefficient compared to C.

Space efficient file type to store double precision floats

I am currently running Simulations written in C later analyzing the results using Python scripts.
ATM the C Programm is writing the results (lots of double values) in a text file which is slowly but surely eating a lot of disc space.
Is there a file format which is more space efficient to store lots of numeric values?
At best but not necessarily it should fulfill the following requirements
Values can be appended continuously such that not all values have to be in memory at once.
The file is more or less easily readable using Python.
I feel like this should be a really common question, but looking for an answer I only found descriptions of various data types within C.
Binary file, but please, be careful with the format of data that you are saving. If possible, reduce the width of each variable that you are using. For example, do you need to save decimal or float, or you can have just 16 or 32 bit integer?
Further, yes, you may apply some of the compression scheme to compress the data before saving, and decompress it after reading, but that requires much more work, and it is probably an overkill for what you are doing.

how to rapidaly load data into memory with python?

I have a large csv file (5 GB) and I can read it with pandas.read_csv(). This operation takes a lot of time 10-20 minutes.
How can I speed it up?
Would it be useful to transform the data in a sqllite format? In case what should I do?
EDIT: More information:
The data contains 1852 columns and 350000 rows. Most of the columns are float65 and contain numbers. Some other contains string or dates (that I suppose are considered as string)
I am using a laptop with 16 GB of RAM and SSD hard drive. The data should fit fine in memory (but I know that python tends to increase the data size)
EDIT 2 :
During the loading I receive this message
/usr/local/lib/python3.4/dist-packages/pandas/io/parsers.py:1164: DtypeWarning: Columns (1841,1842,1844) have mixed types. Specify dtype option on import or set low_memory=False.
data = self._reader.read(nrows)
EDIT: SOLUTION
Read one time the csv file and save it as
data.to_hdf('data.h5', 'table')
This format is incredibly efficient
This actually depends on which part of reading it is taking 10 minutes.
If it's actually reading from disk, then obviously any more compact form of the data will be better.
If it's processing the CSV format (you can tell this because your CPU is at near 100% on one core while reading; it'll be very low for the other two), then you want a form that's already preprocessed.
If it's swapping memory, e.g., because you only have 2GB of physical RAM, then nothing is going to help except splitting the data.
It's important to know which one you have. For example, stream-compressing the data (e.g., with gzip) will make the first problem a lot better, but the second one even worse.
It sounds like you probably have the second problem, which is good to know. (However, there are things you can do that will probably be better no matter what the problem.)
Your idea of storing it in a sqlite database is nice because it can at least potentially solve all three at once; you only read the data in from disk as-needed, and it's stored in a reasonably compact and easy-to-process form. But it's not the best possible solution for the first two, just a "pretty good" one.
In particular, if you actually do need to do array-wide work across all 350000 rows, and can't translate that work into SQL queries, you're not going to get much benefit out of sqlite. Ultimately, you're going to be doing a giant SELECT to pull in all the data and then process it all into one big frame.
Writing out the shape and structure information, then writing the underlying arrays in NumPy binary form. Then, for reading, you have to reverse that. NumPy's binary form just stores the raw data as compactly as possible, and it's a format that can be written blindingly quickly (it's basically just dumping the raw in-memory storage to disk). That will improve both the first and second problems.
Similarly, storing the data in HDF5 (either using Pandas IO or an external library like PyTables or h5py) will improve both the first and second problems. HDF5 is designed to be a reasonably compact and simple format for storing the same kind of data you usually store in Pandas. (And it includes optional compression as a built-in feature, so if you know which of the two you have, you can tune it.) It won't solve the second problem quite as well as the last option, but probably well enough, and it's much simpler (once you get past setting up your HDF5 libraries).
Finally, pickling the data may sometimes be faster. pickle is Python's native serialization format, and it's hookable by third-party modules—and NumPy and Pandas have both hooked it to do a reasonably good job of pickling their data.
(Although this doesn't apply to the question, it may help someone searching later: If you're using Python 2.x, make sure to explicitly use pickle format 2; IIRC, NumPy is very bad at the default pickle format 0. In Python 3.0+, this isn't relevant, because the default format is at least 3.)
Python has two built-in libraries called pickle and cPickle that can store any Python data structure.
cPickle is identical to pickle except that cPickle has trouble with Unicode stuff and is 1000x faster.
Both are really convenient for saving stuff that's going to be re-loaded into Python in some form, since you don't have to worry about some kind of error popping up in your file I/O.
Having worked with a number of XML files, I've found some performance gains from loading pickles instead of raw XML. I'm not entirely sure how the performance compares with CSVs, but it's worth a shot, especially if you don't have to worry about Unicode stuff and can use cPickle. It's also simple, so if it's not a good enough boost, you can move on to other methods with minimal time lost.
A simple example of usage:
>>> import pickle
>>> stuff = ["Here's", "a", "list", "of", "tokens"]
>>> fstream = open("test.pkl", "wb")
>>> pickle.dump(stuff,fstream)
>>> fstream.close()
>>>
>>> fstream2 = open("test.pkl", "rb")
>>> old_stuff = pickle.load(fstream2)
>>> fstream2.close()
>>> old_stuff
["Here's", 'a', 'list', 'of', 'tokens']
>>>
Notice the "b" in the file stream openers. This is important--it preserves cross-platform compatibility of the pickles. I've failed to do this before and had it come back to haunt me.
For your stuff, I recommend writing a first script that parses the CSV and saves it as a pickle; when you do your analysis, the script associated with that loads the pickle like in the second block of code up there.
I've tried this with XML; I'm curious how much of a boost you will get with CSVs.
If the problem is in the processing overhead, then you can divide the file into smaller files and handle them in different CPU cores or threads. Also for some algorithms the python time will increase non-linearly and the dividing method will help in these cases.

Python: handling a large set of data. Scipy or Rpy? And how?

In my python environment, the Rpy and Scipy packages are already installed.
The problem I want to tackle is such:
1) A huge set of financial data are stored in a text file. Loading into Excel is not possible
2) I need to sum a certain fields and get the totals.
3) I need to show the top 10 rows based on the totals.
Which package (Scipy or Rpy) is best suited for this task?
If so, could you provide me some pointers (e.g. documentation or online example) that can help me to implement a solution?
Speed is a concern. Ideally scipy and Rpy can handle the large files when even when the files are so large that they cannot be fitted into memory
Neither Rpy or Scipy is necessary, although numpy may make it a bit easier.
This problem seems ideally suited to a line-by-line parser.
Simply open the file, read a row into a string, scan the row into an array (see numpy.fromstring), update your running sums and move to the next line.
Python's File I/O doesn't have bad performance, so you can just use the file module directly. You can see what functions are available in it by typing help (file) in the interactive interpreter. Creating a file is part of the core language functionality and doesn't require you to import file.
Something like:
f = open ("C:\BigScaryFinancialData.txt", "r");
for line in f.readlines():
#line is a string type
#do whatever you want to do on a per-line basis here, for example:
print len(line)
Disclaimer: This is a Python 2 answer. I'm not 100% sure this works in Python 3.
I'll leave it to you to figure out how to show the top 10 rows and find the row sums. This can be done with simple program logic that shouldn't be a problem without any special libraries. Of course, if the rows have some kind of complicated formatting that makes it difficult to parse out the values, you might want to use some kind of module for parsing, re for example (type help(re) into the interactive interpreter).
As #gsk3 noted, bigmemory is a great package for this, along with the packages biganalytics and bigtabulate (there are more, but these are worth checking out). There's also ff, though that isn't as easy to use.
Common to both R and Python is support for HDF5 (see the ncdf4 or NetCDF4 packages in R), which makes it very speedy and easy to access massive data sets on disk. Personally, I primarily use bigmemory, though that's R specific. As HDF5 is available in Python and is very, very fast, it's probably going to be your best bet in Python.
How huge is your data, is it larger than your PC's memory? If it can be loaded into memory, you can use numpy.loadtxt() to load text data into a numpy array. for example:
import numpy as np
with file("data.csv", "rb") as f:
title = f.readline() # if your data have a title line.
data = np.loadtxt(f, delimiter=",") # if your data splitted by ","
print np.sum(data, axis=0) # sum along 0 axis to get the sum of every column
I don't know anything about Rpy. I do know that SciPy is used to do serious number-crunching with truly large data sets, so it should work for your problem.
As zephyr noted, you may not need either one; if you just need to keep some running sums, you can probably do it in Python. If it is a CSV file or other common file format, check and see if there is a Python module that will parse it for you, and then write a loop that sums the appropriate values.
I'm not sure how to get the top ten rows. Can you gather them on the fly as you go, or do you need to compute the sums and then choose the rows? To gather them you might want to use a dictionary to keep track of the current 10 best rows, and use the keys to store the metric you used to rank them (to make it easy to find and toss out a row if another row supersedes it). If you need to find the rows after the computation is done, slurp all the data into a numpy.array, or else just take a second pass through the file to pull out the ten rows.
Since this has the R tag I'll give some R solutions:
Overview
http://www.r-bloggers.com/r-references-for-handling-big-data/
bigmemory package http://www.cybaea.net/Blogs/Data/Big-data-for-R.html
XDF format http://blog.revolutionanalytics.com/2011/03/analyzing-big-data-with-revolution-r-enterprise.html
Hadoop interfaces to R (RHIPE, etc.)

Read flat file as transpose, python

I'm interested in reading fixed width text files in Python in as efficient a manner as I can. Specifically, most of the time I'm interested in one or more columns in the flat file but not entire records.
It strikes me as inefficient to read the file a line at a time and extract the desired columns after reading the entire line into memory. I think I'd rather have the option of reading only the desired columns, top to bottom, left to right (instead of reading left to right, top to bottom).
Is such a thing desirable, and if so, is it possible?
Files are laid out as a (one-dimensional) sequence of bits. 'Lines' are just a convenience we added to make things easy to read for humans. So, in general, what you're asking is not possible on plain files. To pull this off, you would need some way of finding where a record starts. The two most common ways are:
Search for newline symbols (in other words, read the entire file).
Use a specially spaced layout, so that each record is laid out using a fixed with. That way, you can use low level file operations, like seek, to go directly to where you need to go. This avoids reading the entire file, but is painful to do manually.
I wouldn't worry too much about file reading performance unless it becomes a problem. Yes, you could memory map the file, but your OS probably already caches for you. Yes, you could use a database format (e.g., the sqlite3 file format through sqlalchemy), but it probably isn't worth the hassle.
Side note on "fixed width:" What precisely do you mean by this? If you really mean 'every column always starts at the same offset relative to the start of the record' then you can definitely use Python's seek to skip past data that you are not interested in.
How big are the lines? Unless each record is huge, it's probably likely to make little difference only reading in the fields you're interested in rather than the whole line.
For big files with fixed formatting, you might get something out of mmapping the file. I've only done this with C rather than Python, but it seems like mmapping the file then accessing the appropriate fields directly is likely to be reasonably efficient.
Flat files are not good with what you're trying to do. My suggestion is to convert the files to SQL database (using sqlite3) and then reading just the columns you want. SQLite3 is blazing fast.
If it's truly fixed width, then you should be able to just call read(N) to skip past the fixed number of bytes from the end of your column on one line to the start of it on the next.

Categories